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SANDIA NATIONAL LABORATORIES OVERVIEW
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Subsurface Energy Activities

Subsurface energy technologies typically involve the change of fluid
flow, stress, thermal, chemical (aka THMC) status in fractured and
porous media

= Unconventional resources recovery
= Disposal of wastewater and nuclear waste

= Subsurface carbon and compressed gas storage

To improve modern energy activities and reduce adverse risks (e.g.,
induced seismicity and environmental impact), current
understanding of poromechanics, averaging conceptual models
(e.g., cubic law and biot effective stress), and coupled effects on
flow paths needs to be improved

Mesoscale analysis — linking discrete and complex pore-scale
behavior to continuum (macroscale) reservoir response — is key, yet
remains elusive as a result of the extreme heterogeneity and
resulting scale dependence.

Induced Seismicity Potential in
ENERGY TECHNOLOGIES

NRC, 2013

Controlling Subsurface Fractures and
Fluid Flow: A Basic Research Agenda

DOE Roundtable Report ua s o
e @¢kiERcy
Germuntown, |

Office of Science

DOE BES Report, 2015




Multiscale Heterogeneity in Compositions,
Pore structure, and Mechanical Properties

» Understand how heterogeneity, pores, cracks, flaws etc. contribute to
shale poromechanics over scales and provide physical basis for core-scale
measured deformational and transport constitutive behavior

» Develop novel techniques and workflow for a linked imaging,
experimental, and modeling-based advancement of shale poromechanics

Quartz area, 20 indents Clay-rich area, 64 indents
Load-displacement Load-displacement

ORI




Multiscale characterization of physical, chemical,
and mechanical heterogeneity of nano-porous geomaterials

Macroscopic and Optical and Confocal Microscopy Focused-lon Beam & Broad-
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o 3D multiscale microCT
X-ray probe and QEMSCAN for mineralogy
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Approach

¢ 40 cm diameter core of Mancos Shale
— Interlaminated fine mud, medium/ coarse

mud, and very fine sand
— 1-3 mm laminae
— Parallel lamina, wavy lenticular

lamina, ripple forms, and bioturbation

e Mineralogical and textural

characterization
— Macroscopic
— Optical petrography/microscopy
— Micro-CT
— FIB-SEM
— BSE
— MAPS Mineralogy
e Mechanical tests
— Uni-/Tri-axial compression (1x2")
— Brazilian Test (1x0.5")
— Nanoindentation
e Computational modeling

B Face of XRD
CutA

Tests

< 55 0c
e » Brazilian Tests

[ === ]

Yoon et al. (AAPG, Memoir 2019, in press)
Dewers et al. (AGU, Monograph, 2019, in press)



MAPS Mineralogy

e SEM-based automated mineralogical

measurement, analysis, data integration
— Collection, overlay and re-registration of
multiple images from different modalities
— SEM, SEM-EDS, optical, CL, EBSD
— QEMSCAN measurement algorithms
e Mineral identification
— Spectral matching
— Each pixel — single/multiple minerals
— Elemental substitutions
— Simultaneous mineral element and count maps

X: 5978, Y: 60547, 287k counts, lllite-Smectite: 68.63%, lllite:31.37%,

— Measured
lllite-Smectite
lllite

¥ Chamosite
™ Zircon

¥ Sphalerite
™ Fut



Mineralogy Mapping

lon-milling polished Mancos
(1 inch diameter)

v Quartz [Silical
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¥ Pyrite
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Yellow Box (1.45 x 1.98 cm): BSE @ 1um & MAPS @ 10um
Red box (0.18 x 1.98 cm): BSE @ 0.2um & MAPS @ 2um



Mineralogy Mapping:
Scale/methods dependent
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Mineralogy Mapping:
Scale/methods dependent

B Mapsmineralogy
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Influence of geological attributes on mechanical
properties
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Conceptual Model of Anisotropic
Layered System
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Axisymmetric Compression Testing
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Yoon et al. (AAPG, Memoir 2019, in press)



Axisymmetric Compression Testing

Horizontal slice
through the central
part of sample A. Loaded parallel to bedding (15B)
115 Fracture intersection &
bifurcation with small
One primary & aperture microfractures
two secondary

fractures Microfracture

propagation in between
quartz grains

Microfracture patterns
in between quartz

Curved main .
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Indirect Tension Results
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Tensile Strain Distribution
(Digital Image Correlation)
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Numerical Simulations of Brittle Fracturing

= Phase field model for crack <60 %
representation (Heister et al,2015) - ~40 %
= Shale is modeled as two- Stiff J -
constituent brittle materials laye Soft (%)
with stiff and soft layers: 62.5%
= Young’'s Modulus D154
= (Pore pressure)
= (Chemo-mechanical
. 75.0%
coupling) N ! 25.0%
Crack phase
field (o)
40.5%

Differential Equations Analysis
Library.Il (Bangerth et al., 2007; 2013)
DEAL.Il Open Source Finite Fully
Element Library Cracked

0 Phase Field (o) 0.3

‘ﬂiiﬂllliilliliiiill



Effective Properties of Heterogeneous

Materials

Transversely isotropic effective medium for elastic parameters (Berryman, 1998)

= Spatial homogenization procedure leads to much simpler crack patterns than

those from the layered isotropic materials

= Crack paths in the effective medium are less tortuous due to (probably)
filtering out mesoscopic information via homogenization

= Smaller surface area created by the fracture process yields the reduced
tortuous crack paths with a diminished amount of energy dissipation

(much higher effective fracture toughness)

(a) Transversely isotropic
(horizontal)

(b) Transversely isotropic
(inclined)

(c) Transversely isotropic
(vertical)

Bulk Energy (J)
o

0 0.05 0.1 0.15
Displacement (mm)

glad
0 002 004 006 008 01 012
Displacement (mm)

Transversely
Isotropic

Layered
Isotropic

Na et al.
(JGR 2017)



Nanolndentation

e Depth sensing/instrumented indentation Berkovich
— highly accurate load-displacement record indenter
— Analytical models to determine modulus,
hardness and other mechanical properties using
the load-displacement data

e Analytical concept LOADING
— Purely elastic deformation upon initial unloading
— Contact between a rigid indenter and S| Unosome
homogeneous isotropic elastic half spacing
— Compliance of the sample and indenter tip — e c
springs in series —
— Hardness = load/contact area he For g=1 // \ h,.

— Elastic modulus determined by stiffness (S) heFor €=0.72
DISPLACEMENT, h

POSSIBLE
RANGE FOR

h

e Dynamic Modulus Analysis at nm scale Oliver & Pharr (1992)



Initial Indentation Results

Indentation array: 16 x 16, 20 um spacing
[Hysitron Tribolndenter 900]

Indentation strain rate = 0.1 (Oliver et al., 1997) -
- x . Quartz (Silica)

(current change in displacement/current total disp.) ZEZ=:

Maximum load = 10 mN < e

Zircon

Dolomites
Apatites
Monazite
Pyrite
: Sphalerte
Ti oxides

BT OTIT

E=5~100 GPa BN

-



Multiscale Indentation Testing

Loading-unloading cycle
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Indentation Modulus (GPa)

Multiscale Indentation Testing

Mancos Position A Mancos Position A

Indentation Modulus (GPa)
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Effect of Mineralogy on Mechanical
Properties
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Nanoindentation Impressions

Low-clay percentage samples.
(1&2): surface of pure quartz
and feldspar having higher
values of mechanical
properties such as elastic
modulus and hardness.

(3): dissolution surface of
feldspar

(4-6): grain-to-grain boundary
and edge-of-grain, which have
lower mechanical properties
values.

NOTE: Q=quartz, P=pyrite,
C=carbonate, F=feldspar, and
IL=illite)

Yoon et al. (in prep)



Effect of Compositions and textures on
Mechanical Properties
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ABAQUS FEA

3D Mechanistic Modeling
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Upscaling for Mechanical Properties

Phase field modeling for averaging mechanical properties

Spatial mineralogical mapping with compositional heterogeneity
Development of correlation with nanoindentation results

Evaluation of soft cement or multi-mineral regions on mechanical responses
with various conditions (e.g., defects, layering, anisotropy)
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Velocities of Mancos Shale lithofacies
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Other Ongoing Works



Chemo-mechanical Processes:
Chemical Flooding in Nano-porous Chalk

FIB-SEM
(~10 pm)
Mg

concentration

Chemically
Altered Plasma

zone £ oA R, FIB-SEM

1250 2500

Samples from Nermoen et al., (JGR,2015) Yoon et al. (In prep)



Experimental Simulations of Borehole Breakout @

Prepped Mancos Shale sample

Choens et al. (In prep)

80 —

Borehole breakouts used to 4
determine reservoir stress states 60 —

* Errors can be high as 30-40% (JASON,
2014)

Developed novel technique to
investigate behavior in laboratory

Experiments investigated chemistry

40 —
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Acoustic emission location in

Continue development to simulate  Sierra White Granite Experiment
hydraulic fracturing

Borehole breakout in Mancos Shale «x y

UItrasonic teIeViewer imége of
wellbore, Zoback et al., 2003

CT image from
experiment in granite




In-Situ Fracture Toughness

Novel testing apparatus capable of measuring fracture

toughness at in-situ conditions
Designed to fit inside of titanium pressure vessel

* Pressure, temperature, chemistry
Utilizes short rod geometry

* Investigated toughness in sandstone, shales

Measure fracture roughness with 3D surface profilometer
Demonstrated differences in fracture toughness for wet,

dry supercritical CO,
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Choens et al., 2017, EFRC Pl meeting i



‘ Geomechanical
characterization of
outcrop, core samples

= Pre-feasibility
study for CO,
sequestration for
Utah coal power
plants

= Measure surface
hardness, -
acoustic velocities j#
of cores, outcrop s

= Combine with sed £
facies =.

= [ntegrating core,
outcrop,
laboratory data

Velocity (m/s)

Outcrop of the Upper Navajo,

Buckhorn Wash, Utah
Choens et al. work

Schmidt Rebound Hardness

Outcrop Measurement
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Fracture Patterns: Borehole Breakout Test

diameter

S




Permeability Control and
Proppants’ Behavior in Fractures

Fractured/ ;
grain § - - Gasket
2 (1 mm thick)

Micro-CT image with proppants in a
fracture

3D printing applications

SAND 2017 report: Digital Rock Physics and 3D Printing for
Fractured Porous Media (Martinez et al., 2017)



Multiphysics Simulations

(b) Proppant loading = 1. 7

L | |
wf 1
| |
0.6 -! I I
& X
] | |
0.4} | |
l L k
x
’ 02t gul 'l
\ %
g 1" B N A
" L.l
0 0.5 1 1.5

’k Proppant loading (1b/ft?)
Multiphase flow _
Proppants’ behavior

(Bolintineanu et al., 2017,
IJRMMS)
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CFD simulation flow field ) Reactive Transport
02 04 0.6 ' 08

1.78e-012 1



Methane flow in kerogen “tubule”

5 nm = effective

size of pore throat 0.38 nm = one

methane molecule
1.7 nm = one C,,
molecule

O
Dewers et al. (2018, AGU monograph)



Seismic Signal Acquisition and Analysis

Full waveform measurements with AE
and seismic wave
transmission/reflection:

Delineate the stages of crack initiation and
propagation
Use bi-& tri-axial loading conditions and

crack orientations to achieve mixed-mode I- #
[I-11l loading with and without pore pressure

Experimental data will be analyzed in
conjunction with computer simulations:

Identify all possible components of the
signals (body wave, converted modes,
guided modes, etc.)

Interpret the hydraulic properties of
fractures

Develop the relationship between the
interpreted stiffness of the fractures and
fluid flow (w/ micro-CT images)

simulation of fluid-
injection scenarios
(Chang et al.,, BSSA
2018, JGR & GRL
(under review)
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Poroelastic coupling effect on injection-
induced seismicity

P Strike-slip fault(s) are modeled in a 2-D aerial-view domain including

poroelastic coupling with the single-phase flow

P Injection for 5 days with the rate of 0.1 [kg/m/s], simulation runs for
10 days to evaluate post shut-in behaviors

E:

P Coulomb stress change (At = fAp+(Ats+fAcn)) from the initial stress
state is obtained (normal stress: positive for tension)

Pore pressure fAp Coulomb stress At

Poroelastic stress

(a) 1

-

~~

N

(b)

L [km]

Mechanism of poroelastic behavior

Time derivative [Pa/day]

<10°
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|
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1 2 3 4 § 6
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(D During injection
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(2 Right after shut-in

(3) Post shut-in

Fault zone
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22"
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10°
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t,: characteristic relaxation time

P The seismicity rate R is estimated based on At (Segall & Lu, 2015)

dR

T: stressing rate (O=background)

P Sensitivity tests on locations and the number of the fault with
respect to the injection well show that

1. Closer to the injector, faster pressure buildup causes higher R

= location
where pressure
and stresses are
obtained

== contour value
of 0.3 MPa

15

10

x10*

Seismicity rate R

df=150 m
—df=300m
—df=450m
——df=600 m
——df=900 m

|
|
|
|
|
|
|
|
|
|
—

t [days]

df = distance
between fault
and injector

2. The additional high-permeability fault acts as a mechanical or
hydraulic cushion for pressure buildup while the low-
permeability (sealing) fault confines pore pressure propagation

(b)

(c)

- (d)

%10° L [km]

(Chang et al., BSSA 2018
Chang and Yoon, JGR & GRL, under review)



ANALYSIS




ML Challenges

Resource Recovery and : Physics-based
Management “ learning

Multi-modal/muilti-

Uncertaint
Induced Seismicity . /|nterpretatign




SANDIA’S MACHINE LEARNING
ENVIRONMENT

Combining Sandia’s Strength in Geoscience with Resources and Partnerships that
Enhance ML outcomes



PREDICTIVE DATA-DRIVEN
PLATFORM FOR SUBSURFACE
ENERGY PRODUCTION

Goal: Match production history + increase portability

Targets: multiscale, physics + data driven learning

Well systems

Fracture Networks
Pore Networks




Key Characteristics of Production from
Unconventional Reservoirs

Induced  Induced fractures/ Inorganic matrix
fractures  Natural fractures

Microfracture

% > ’\ o |

I:rac%

Gas Fractures y Gas

Pores
(~10-40 nm)

Pores
(~400 nm)

- Small pore sizes (nanoscale)
- Very tight formation (low flow permeability)
- Complex natural/induced fractures

Source: Reuters (National Geographic, Chesapeake Energy, EIA, USGS)



Production Uncertainty

Resources recovery limits
« Gas demand & supplies Physical, chemical, mechanical
* Market prices properties

* Estimation of total reserves « Hydraulic fracturing efficiency
e Cost reduction
- BEG Barnett BEG Fayetteville 1.E+06
— = == = E|A Barnett -« = E|A Fayetteville

& - a
= O ~
g 3 E 1.E+05 .
S = s Macro & micro
O o 15 -
F o ol fractures
w O E Macro fractures
© Qa 14 o 1.E+04 onl
©3 z ¥
g 5 0.5 5
(Zts i__i 2 1.E+03

0 e . . . . . |8 No Fractures

2000 2005 2010 2015 2020 2025 2030 2035 (8-

1.E+02 =
1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03
TIME, D

Source: Figure (left) adapted from lkonnikova S., Browning, J., Gulen, G. Smye, K. and S.W. Tinker, 2014, Factors influencing shale gas production forecasting: Empirical studies of Barnett, Fayetteville, Haynesville, and
Marcellus Shale plays, Economics of Energy & Environmental Policy, Vol. 4, No. 1. Figure (right): Apaydin et al. 2011, SPE



Sweet Spot Characteristics

« Well & Frac Stage locations
« Favorable for geochemical, geomechanical and geological

parameters
Lithofacies Fracturability
« Kerogen type, TOC * Anisotropy

* Stress regime
* Fractures/faults
* Brittleness

* Thermal maturity

* Fluid

* Depositional
environment

Continued Producibility
* Depth, thickness

* Lithology/Mineralogy

* Permeability/Porosity

* Pressure

Source: Adapted from Usman Ahmed, 2014, Optimized Shale Resource Development using proper placement of Wells and Hydraulic Fracture Stages, SPE Distinguished Lecture



Avoid Sharp Production Decline

Discrete fracture network model
from the combined geomechanical
and geological model

Reservoir simulation model coupled
with flow and transport from nano-
Darcy shale rocks

Development of simulation tools for
multiple wells and stages

Integrated shale science approaches
to develop “shale engineering” for
economic evaluations




* REAL-TIME SUBSUR
ASSESSMENT A

Goal: real-time monitoring of
changes in the subsurface

-

2,‘7\‘ >y

h L T
PHYSIC INFORMED
MACHINE LEARNING

7,

PHYSICS OF
FAILURE AND
DEGRADATION

SOURCE PHYSICS -
Comprehensive models of events
of interest

N

UNCERTAINTY
QUANTIFICATION

": ’

EARTH MODELS

DATA SCIENCE - Real-time multi
stream signal processing and
event flagging

CHARACTERIZATION




Multiscale network and flows with ROMs + ML

Horn River Shale Gas (CA)

International collaboration with Korea Gas Corporation (KOGAS)

Extensive Reservoir characteristics (3D seismic data & microseismic data, well
logs (gamma ray, resistivity, sonic, porosity, etc), core sample analysis)
Integrated 3D reservoir model & geomechanical and geophysical model
Dynamic production data

£ " Production
§ . data

Evie 1

Rates | Ml D)

~ vy
aaaaaa

il

2011-Aug-30 2013-Jan-11 2014-May-25 2015-Oct-08 20

Acud « simulated

Microseismic data
(Courtesy from KOGAS) Ref: Kam et al. (2015, SPE-171611-PA)



Summary

¢ Integrated multiscale imaging and mechanical testing with
numerical simulation provides a robust approach to advancing
our understanding of shale (poro-) mechanical behaviors

e Texture/mineralogical characterization

— Recent advances in mineralogical mapping with high resolution imaging
over the large area

— Multiscale mineralogical and geologic features lead to considerable
heterogeneity of mechanical properties

e Mechanical tests

— Macroscopic and microscopic lithofacies have distinctively different
mechanical properties

— Bulk properties/averaging theory may be misleading as they can
represent averages of mechanically heterogeneous rock

— Microscopic heterogeneity of mechanical properties can control the
spatial distribution of fractures

— This heterogeneity should be taken into account for realistic mechanical

modeling and can scale up by rigorous theoretical and numerical
modeling



Summary

= Advances in production operations, completion, operational
design for unconventional shale plays over the past 5 years

= Advances in Data Analysis in quantifying unconventional
reservoir characteristics

Low porosity & permeability, complex fractures, estimation of
stimulated reservoir volume (e.g., microseismic analysis), wide
commercial boundary

= A “first principle” approach to unconventional resources has
been modestly adopted by industry

Flow and production mechanisms from nano-Darcy Shale

Physical, chemical, and mechanical properties of rocks

Their influence on hydrofracturing propagation

Development of robust discrete fractured networks

Alternatives to fracking fluids and mitigation of environmental impacts



