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SANDIA NATIONAL LABORATORIES OVERVIEW
SANDIA'S HISTORY IS TRACED TO THE
MANHATTAN PROJECT

n my opiniopy... have ...ere an
apporiuniO, rribarwrceptiona/
service in the national inierest.
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• I loneywell: 2017—present
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Subsurface Energy Activities

• Subsurface energy technologies typically involve the change of fluid
flow, stress, thermal, chemical (aka THMC) status in fractured and
porous media

• Unconventional resources recovery

• Disposal of wastewater and nuclear waste

• Subsurface carbon and compressed gas storage

• To improve modern energy activities and reduce adverse risks (e.g.,
induced seismicity and environmental impact), current
understanding of poromechanics, averaging conceptual models
(e.g., cubic law and biot effective stress), and coupled effects on
flow paths needs to be improved

• Mesoscale analysis — Iinking discrete and complex pore-scale
behavior to continuum (macroscale) reservoir response — is key, yet
remains elusive as a result of the extreme heterogeneity and
resulting scale dependence.
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Induced Seismicity Potential in
ENERGY TECHNOLOGIES

NRC, 2013

Controlling Subsurface Fractures and
Fluid Flow: A Basic Research Agenda

DOE BES Report, 2015



Multiscale Heterogeneity in Compositions,

Pore structure, and Mechanical Properties

► Understand how heterogeneity, pores, cracks, flaws etc. contribute to
shale poromechanics over scales and provide physical basis for core-scale
measured deformational and transport constitutive behavior

► Develop novel techniques and workflow for a linked imaging,
experimental, and modeling-based advancement of shale poromechanics
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Multiscale characterization of physical, chemical,
and mechanical heterogeneity of nano-porous geomaterials

Macroscopic and
microscopic lithofacies
(optical petrography)

Optical and Confocal Microscopy

3D multiscale microCT
X-ray probe and QEMSCAN for mineralogy

mSEM, Maps Mineralogy

Focused-Ion Beam & Broad-
Ion Beam for milling

SEM, EDS

Electron Microscopy

(Ultra) Small Angle Neutron Scattering
1 0-3rn 19-6m



Approach

• 40 cm diameter core of Mancos Shale
— Interlaminated fine mud, medium/ coarse
mud, and very fine sand
— 1-3 mm laminae
— Parallel lamina, wavy lenticular
lamina, ripple forms, and bioturbation

• Mineralogical and textural
characterization

— Macroscopic
— Optical petrography/microscopy
— Micro-CT
— FIB-SEM
— BSE
— MAPS Mineralogy

• Mechanical tests
— Uni-/Tri-axial compression (1x2")
— Brazilian Test (1x0.5")
— Nanoindentation

• Computational modeling

B Face of XRD
Cut A

XRD cut A

0 Brazilian and
High Bay

> High Bay
Tests

10 cmBrazilian Tests  

Yoon et al. (AAPG, Memoir 2019, in press)
Dewers et al. (AGU, Monograph, 2019, in press)



MAPS Mineralogy

• SEM-based automated mineralogical
measurement, analysis, data integration

— Collection, overlay and re-registration of
multiple images from different modalities
— SEM, SEM-EDS, optical, CL, EBSD
— QEMSCAN measurement algorithms

• Mineral identification
— Spectral matching
— Each pixel — single/multiple minerals
— Elemental substitutions
— Simultaneous mineral element and count maps
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Mineralogy Mapping

lon-milling polished Mancos
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Mineralogy Mapping:
Scale/methods dependent
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Mineralogy Mapping:
Scale/methods dependent
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Influence of geological attributes on mechanical

Micro-
lithofacies
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QFPs

Carbonate

Clay

Organics

Conceptual Model of Anisotropic
Layered System
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Axisymmetric Compression Testing
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15B CMS (50) Parallel 113.00 42.20 61.31

28A CMS (50) Perpendicular 110.64 42.80 58.75

12B CMS (100) Parallel 209.59 96.09 98.30

25A CMS (100) Perpendicular 195.07 96.20 85.62

14B CMS (200) Parallel 376.37 193.42 158.44

22A CMS (160) Perpendicular 288.64 160.31 111.14

CMS: Constant Mean Stress
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Yoon et al. (AAPG, Memoir 2019, in press)



Axisymmetric Compression Testing
Horizontal slice
through the central
part of sample

One primary &
two secondary
fractu res

Curved main
fracture

A. Loaded parallel to bedding (15B)

B. Loaded perpendicular to bedding (28A)

Fracture intersection &
bifurcation with small
aperture microfractures

M icrofractu re
propagation in between
quartz grains

Microfracture patterns
in between quartz
grains
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Indirect Tension Results

6 -
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Tensile Strain Distribution

(Digital Image Correlation)
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Numerical Simulations of Brittle Fracturing
l e

• Phase field model for crack
representation (Heister et a1,2015)

Stiff Soft• Shale is modeled as two- 46

constituent brittle materials layeri layter

with stiff and soft layers:

• Young's Modulus

• (Pore pressure)

• (Chemo-mechanical
coupling)

Crack phase
field (y)

Differential Equations Analysis
Library. II (Bangerth et al., 2007; 2013)
DEAL.11 Open Source Finite Fully
Element Library Cracked

J3 ile1 1 ,E,

-60 %
-40 %

Stiff
Soft (%)

62.5%
37.5%

r4 0 oio 725..°0,

(B1) "s/B) /B3) j/B-

o Phase Field (9)
III

40.5%
59.5%



Effective Properties of Heterogeneous

Materials
• Transversely isotropic effective medium for elastic parameters (Berryman, 1998)

• Spatial homogenization procedure leads to much simpler crack patterns than

those from the layered isotropic materials

• Crack paths in the effective medium are less tortuous due to (probably)

filtering out mesoscopic information via homogenization

• Smaller surface area created by the fracture process yields the reduced

tortuous crack paths with a diminished amount of energy dissipation

(much higher effective fracture toughness)

(a) Transversely isotropic
(horizontal)

(b) Transversely isotropic
(inclined)

(c) Transversely isotropic
(vertical)

i
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- - -Vertical

5

4

:6. 3
a.)

11.1
• 2

0
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Displacement (mm)
0.15

—Ilorizontal layer
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- - - Vertical layer 

Transversely
Isotropic

Layered
Isotropic

Na et al.
(JGR 2017)



Nanolndentation

• Depth sensing/instrumented indentation
— highly accurate load-displacement record
— Analytical models to determine modulus,
hardness and other mechanical properties using
the load-displacement data

• Analytical concept
— Purely elastic deformation upon initial unloading Q-0
— Contact between a rigid indenter and 9
homogeneous isotropic elastic half spacing
— Compliance of the sample and indenter tip —
springs in series
— Hardness = load/contact area
— Elastic modulus determined by stiffness (S)

• Dynamic Modulus Analysis at nm scale

Berkovich
indenter

hc FCR E=1
h FOR E=0.72

DISPLACEMENT, h

POSSIBLE
RANGE FOR

hc

max

Oliver & Pharr (1992)



Initial Indentation Results

Indentation array: 16 x 16, 20 um spacing
[Hysitron Tribolndenter 900]
Indentation strain rate = 0.1 (Oliver et al., 1997)
(current change in displacement/current total disp.
Maximum load = 10 mN

•

Calcites

lig Dolomites

151 katites
151 Monazite
111 Pyte

111 Sphalete

-1E = 5 - 100 GPa 



Multiscale Indentation Testing

Loading-unloading cycle
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Nanoindentation Impressions

IL
,

2µm

Low-clay percentage samples.
(1&2): surface of pure quartz
and feldspar having higher
values of mechanical
properties such as elastic
modulus and hardness.
(3): dissolution surface of
feldspar
(4-6): grain-to-grain boundary
and edge-of-grain, which have
lower mechanical properties
values.

NOTE: Q=quartz, P=pyrite,
C=carbonate, F=feldspar, and
IL=illite)

bias frame mag 0 det HV curr HEW Ellt WO SEM Made 1-2 pm -I
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Yoon et al. (in prep)



Effect of Compositions and textures on
Mechanical Properties

High variability
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Upscaling for Mechanical Properties
• Phase field modeling for averaging mechanical properties

• Spatial mineralogical mapping with compositional heterogeneity

• Development of correlation with nanoindentation results

• Evaluation of soft cement or multi-mineral regions on mechanical responses
with various conditions (e.g., defects, layering, anisotropy)
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Velocities of Mancos Shale lithofacies
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Other Ongoing Works



Chemo-mechanical Processes:
Chemical Flooding in Nano-porous Chalk

Long-term (512 days) creep testing with chemical flooding (Liege Chalk)
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Flow
Samples from Nermoen et al., (JGR,2015) Yoon et al. (In prep)



I Experimental Simulations of Borehole Breakout

Prepped Mancos Shale sample

Choens et al. (In prep)

• Borehole breakouts used to
determine reservoir stress states
• Errors can be high as 30-40% (JASON,
2014)

• Developed novel technique to
investigate behavior in laboratory

• Experiments investigated chemistry
and anisotropy effects on borehole
breakout

• Continue development to simulate
hydraulic fracturing

Borehole breakout in Mancos Shale
Ultrasonic televiewer image of
wellbore, Zoback et al., 2003
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1 In-Situ Fracture Toughness
• Novel testing apparatus capable of measuring fracture
toughness at in-situ conditions

• Designed to fit inside of titanium pressure vessel
• Pressure, temperature, chemistry

• Utilizes short rod geometry
• Investigated toughness in sandstone, shales

• Measure fracture roughness with 3D surface profilometer
• Demonstrated differences in fracture toughness for wet,

dry supercritical CO2
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Choens et al., 2017, EFRC PI meeting



I Geomechanical
characterization of
outcrop, core samples

• Pre-feasibility
study for CO2
sequestration for
Utah coal power
plants

• Measure surface
hardness,
acoustic velocities
of cores, outcrop

• Combine with sed
facies

• Integrating core,
outcrop,
laboratory data
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Fracture Patterns: Borehole Breakout Test

0.445" diameterit Fully penetrate

Experiment by R.C. Choens (SNL)



Permeability Control and
Proppants' Behavior in Fractures

detritus

Fractured

Shale .......„..---',

grain ------> <1.

..--------.7• 

• 

k. ir
bubbl

....,,..0,....e.,...
070nm

ractured

ainLgr 

Micro-CT image with proppants in a
fracture

3D printing applications

SAND 2017 report: Digital Rock Physics and 3D Printing for

a==a1

me
3D printed fracture

Fractured Porous Media (Martinez et al., 2017)



Multiphysics Simulations

T
11111111 r 111

Multiphase flow
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(Bolintineanu et al., 2017,

IJRMMS)

CFD simulation flow field Reactive Transport



Methane flow in kerogen "tubule"

5 nm = effective
size of pore throat

Pore throats are at molecular scale

0 0

0Kerogeno

o

I 0.38 nm = one
methane molecule
1.7 nm = one 020

molecule

0
Dewers et al. (2018, AGU monograph)



Seismic Signal Acquisition and Analysis

• Full waveform measurements with AE
and seismic wave
transmission/reflection:
• Delineate the stages of crack initiation and

propagation
• Use bi-& tri-axial loading conditions and

crack orientations to achieve mixed-mode
loading with and without pore pressure

• Experimental data will be analyzed in
conjunction with computer simulations:
• Identify all possible components of the

signals (body wave, converted modes,
guided modes, etc.)

• Interpret the hydraulic properties of
fractures

• Develop the relationship between the
interpreted stiffness of the fractures and
fluid flow (w/ micro-CT images)
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injection scenarios
(Chang et al., BSSA
2018, JGR & GRL
(under review)
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Poroelast
i
c coupling effect on injection-

induced seismicitv
■ Strike-slip fault(s) are modeled in a 2-D aerial-view domain including
poroelastic coupling with the single-phase flow
■ Injection for 5 days with the rate of 0.1 [kg/m/s], simulation runs for
10 days to evaluate post shut-in behaviors
■ Coulomb stress change (AT = fAp+(ATs+fAcrn)) from the initial stress
state is obtained (normal stress: positive for tension)

Pore pressure fAp Coulorrth stress AT „,o Poroelastic stress 
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► The seismicity rate R is estimated based on AT (Segall & Lu, 2015)

dR R (t ta: characteristic relaxation time

dt ta to
_ = — R) .

'I": stressing rate (0=background)

► Sensitivity tests on locations and the number of the fault with
respect to the injection well show that

1. Closer to the injector, faster pressure buildup causes higher R
= location

where pressure
and stresses are
obtained

— contour value
of 0.3 MPa
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hydraulic cushion for pressure buildup while the low-
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(Chang et al., BSSA 2018
Chang and Yoon, JGR & GRL, under review)
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Machine Learning INTRODUCTION

•

Hardware

Compute
Resources

New
Ideas

(1=1))s .
Technology

Multiscale
Multiphysics
Big/Complex

DATA

ANALYSIS

Visualization

Better Models

More Accurate
P Predictions
A

Patterns/Attributes

Reduce Latency

•



E CHALLENGES

Industry Challenges

Resource Recovery and
Management

Autonomous Monitoring Systems

Induced Seismicity

ML Challenges

Physics-based
learning

Multi-modal/multi-
scale

Uncertainty
/Interpretation



SANDIA'S MACHINE LEARNING

ENVIRONMENT

&Er

Combining Sandia's Strength in Geoscience with Resources and Partnerships that
Enhance ML outcomes



Well systems

PREDICTIVE DATA-DRIVEN

PLATFORM FOR SUBSURFACE

ENERGY PRODUCTION
Goal: Match production history + increase portability

Targets: multiscale, physics + data driven learning

Fracture Networks

Pore Networks



Key Characteristics of Production from
Unconventional Reservoirs

Induced Induced fractures/ Inorganic matrix
fractures Natural fractures Microfracture

Pores
(-10-40 nm)

- Small pore sizes (nanoscale)

- Very tight formation (low flow permeability) Pores

- Complex natural/induced fractures 
(-400 nm)

Source: Reuters (National Geographic, Chesapeake Energy, EIA, USGS)



Production Uncertainty
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• Gas demand & supplies
• Market prices
• Estimation of total reserves
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• Resources recovery limits
• Physical, chemical, mechanical

properties
• Hydraulic fracturing efficiency
• Cost reduction
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Sweet Spot Characteristics

• Well & Frac Stage locations
• Favorable for geochemical, geomechanical and geological

parameters

Lithofacies
• Kerogen type, TOC
• Thermal maturity
• Fluid
• Depositional
environment

Geochemical

Continued Producibility
• Depth, thickness
• Lithology/Mineralogy
• Permeability/Porosity
• Pressure

#

_.....41p=now._

Geomechanical

Geological

Fracturability
• Anisotropy
• Stress regime
• Fractures/faults
• Brittleness

Source: Adapted from Usman Ahmed, 2014, Optimized Shale Resource Development using proper placement of Wells and Hydraulic Fracture Stages, SPE Distinguished Lecture



Avoid Sharp Production Decline

Source: Pointe, ARMA e-newsletter, Spring 2014

■ Discrete fracture network model
from the combined geomechanical
and geological model

■ Reservoir simulation model coupled
with flow and transport from nano-
Darcy shale rocks

■ Development of simulation tools for
multiple wells and stages

■ Integrated shale science approaches
to develop "shale engineering" for
economic evaluations



4 9 REAL-TIME SUBSURFACE EVENT

ASSESSMENT AND DETECTION
Goal: real-time monitoring of
changes in the subsurface

PHYSICS OF

FAILURE AND
DEGRADATION

SIGNALS
HARACTERIZAT1ON

UNCERTAINTY
QUANTIFICATIO

SENSOR TECHNOLOGIES -
Resilient, robust sensing

1 at tceocmh nmolong.cies.opnower and

MULTIPHYSICS DYNAMICS

SOURCE PHYSICS -
Comprehensive models of events
of interest

DATA SCIENCE - Real-time multi
stream signal processing and
event flagging



Multiscale network and flows with ROMs + ML

Horn River Shale Gas (CA)

• International collaboration with Korea Gas Corporation (KOGAS)
• Extensive Reservoir characteristics (3D seismic data & microseismic data, well

logs (gamma ray, resistivity, sonic, porosity, etc), core sample analysis)
• Integrated 3D reservoir model & geomechanical and geophysical model
• Dynamic production data
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Microseismic data

(courtesy from KOGAS) Ref: Kam et al. (2015, SPE-171611-PA)
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Summary
• Integrated multiscale imaging and mechanical testing with

numerical simulation provides a robust approach to advancing
our understanding of shale (poro-) mechanical behaviors

• Texture/mineralogical characterization
— Recent advances in mineralogical mapping with high resolution imaging
over the large area
— Multiscale mineralogical and geologic features lead to considerable
heterogeneity of mechanical properties

• Mechanical tests
— Macroscopic and microscopic lithofacies have distinctively different
mechanical properties
— Bulk properties/averaging theory may be misleading as they can
represent averages of mechanically heterogeneous rock
— Microscopic heterogeneity of mechanical properties can control the
spatial distribution of fractures
— This heterogeneity should be taken into account for realistic mechanical
modeling and can scale up by rigorous theoretical and numerical
modeling



Summary

■ Advances in production operations, completion, operational
design for unconventional shale plays over the past 5 years

■ Advances in Data Analysis in quantifying unconventional
reservoir characteristics

■ Low porosity & permeability, complex fractures, estimation of
stimulated reservoir volume (e.g., microseismic analysis), wide
commercial boundary

■ A "first principle" approach to unconventional resources has
been modestly adopted by industry

■ Flow and production mechanisms from nano-Darcy Shale

■ Physical, chemical, and mechanical properties of rocks

■ Their influence on hydrofracturing propagation

■ Development of robust discrete fractured networks

■ Alternatives to fracking fluids and mitigation of environmental impacts


