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Systematic study of L-shell opacities with refined analysis validates @ S
experiment reliability and suggest necessary model refinements {aboratones

F At solar interior T, 1,
W FData
S F Model

= Fe L-shell opacity is measured at solar interior
conditions and revealed severe model-data
discrepancy

- Is opacity theory wrong? Is experiment flawed?

" Refined analysis improved shot-to-shot reproducibility, |
demonstrating opacity experiment reliability :

= Systematic measurement of Cr, Fe, and Ni opacities
suggests model refinements in three areas

. . _ . Window 1 lLine |
= Window: Challenge associated with open L-shell config. | | shape
= BB: Inaccurate treatment of density effects _

= Continuum: Peculiar dependence on atomic number

Continuum

High reproducibility qualifies SNL to be a unique HED-opacity-benchmark facility




Modeled solar structure disagrees with observations

) =
National
Laboratories

Simulation: Standard solar model

Inputs:
 Abundance * Opacity
* EOS * Etc.

Measurements: Helioseismology

Analysis of 2D-resolved
pulsation reveals the solar
structure




Modeled solar structure disagrees with observations
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Modeled solar structure disagrees with observations
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Modeled solar structure disagrees with observations
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17% mean-opacity increase in the solar model is needed to @m
o . Laboratories
resolve this discrepancy

Opacity: K,

e Quantifies radiation absorption

* (T, ng) ... input for solar models

Convection zone e Opacity models have never been
base (CZB) tested
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[1] Basu et al., J Phys: Conf Ser 440, 012017 (2013). [2] M. Asplund et al., Annu. Rev. Astro. Astrophys. 47, 481 (2009).



17% mean-opacity increase in the solar model is needed to @m
o . Laboratories
resolve this discrepancy

Opacity: K,

* Quantifies radiation absorption

* K,(T., ng) ... input for solar models

CZB condition: ¢ Opacity models have never been
1,=182 eV g
n,=9x1022 cm-3 teste
Solar mixture opacity at Convection Zone Base (CZB)
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C. Blancard et al., The Astrophysical Journal 745, 10 (2012)



17% mean-opacity increase in the solar model is needed to @m
o . Laboratories
resolve this discrepancy

Opacity: K, Fe is a likely suspect:
* Quantifies radiation absorption « 2" |argest contribution
L3 * K,(T., ng) ... input for solar models * Most difficult to model
CZB condition: ¢ Opacity models have never been
T,=182 eV
n,=9x10%2 cm3 tested

Solar mixture opacity at Convection Zone Base (CZB)
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The Z machine uses 27 million Amperes to create x-rays National

P4~ 220TW (+10%), Y..,~ 1.6 MJ (+7%)

Sanford, PoP (2002); Bailey et al., PoP (2006); Slutz et al., PoP (2006); Rochau et al., PPCF (2007)



The Z x-ray source both heats and backlights samples to St
stellar interior conditions.

Sampleis:
* Heated during plasma implosion spectrometers
* Backlit at plasma stagnation I

— opacity sample

X-ray
source

P4~ 220TW (+10%), Y..,~ 1.6 MJ (+7%)

Sanford, PoP (2002); Bailey et al., PoP (2006); Slutz et al., PoP (2006); Rochau et al., PPCF (2007)



High-temperature Fe opacities are measured using the Z-Pinch @m
opacity science platform

Requirements

* Uniform heating
e Mitigating self emission

 Condition measurements

Z-pinch radiation source

[2] Nagayama et al., Phys Plasmas 21, 056502 (2014)

[1] Bailey et al., Phys Plasmas 16, 058101 (2009)




High-temperature Fe opacities are measured using the Z-Pinch @m
opacity science platform

Requirements

* Uniform heating

* Mitigating self emission

] . ° ° e, s
Z-pinch radiation source Condition measurements

[2] Nagayama et al., Phys Plasmas 21, 056502 (2014)

[1] Bailey et al., Phys Plasmas 16, 058101 (2009)




High-temperature Fe opacities are measured using the Z-Pinch @m
opacity science platform

Half-moon \Ci»
sample

Requirements

* Uniform heating

e Mitigating self emission

[ ] Y . . .
Z-pinch radiation source Condition measurements

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



High-temperature Fe opacities are measured using the Z-Pinch @m
opacity science platform

p
Cross-sectional view

CH

FeMg
/ y

Requirements

Half-moon CH

sample \\

* Uniform heating

e Mitigating self emission

[ ] Y . . .
Z-pinch radiation source Condition measurements

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



High-temperature Fe opacities are measured using the Z-Pinch @m
opacity science platform

Half-moon \Ci»
sample

Requirements

* Uniform heating

e Mitigating self emission

[ ] Y . . .
Z-pinch radiation source Condition measurements

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



High-temperature Fe opacities are measured using the Z-Pinch @m
opacity science platform

Half-moon @
sample

hv > 600 eV

Requirements

* Uniform heating
* Mitigating self emission

[ ] Y . . .
Z-pinch radiation source Condition measurements

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



High-temperature Fe opacities are measured using the Z-Pinch @m
opacity science platform

Half-moon CH m
sample \_\

Requirements
hv > 600 eV

* Uniform heating
* Mitigating self emission

[ ] Y . . .
Z-pinch radiation source Condition measurements

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



High-temperature Fe opacities are measured using the Z-Pinch @m
opacity science platform

Half-moon @
sample

hv > 600 eV

Requirements SNL Z satisfies:

* Uniform heating » Volumetric heating

e Mitigating self emission

[ ] Y . . .
Z-pinch radiation source Condition measurements

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



High-temperature Fe opacities are measured using the Z-Pinch @m
opacity science platform

Half-moon @
sample

Requirements SNL Z satisfies:

* Uniform heating » Volumetric heating

e Mitigating self emission

i iati . ndition m remen
Z-pinch radiation source Condition measurements

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



High-temperature Fe opacities are measured using the Z-Pinch @m
opacity science platform

Half-moon @
sample

Requirements SNL Z satisfies:

* Uniform heating » Volumetric heating

e Mitigating self emission

i iati . ndition m remen
Z-pinch radiation source Condition measurements

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



High-temperature Fe opacities are measured using the Z-Pinch @m
opacity science platform

Half-moon @
sample

Requirements SNL Z satisfies:

* Uniform heating » Volumetric heating

* Mitigating self emission ———3 350 eV Planckian backlight

i iati . ndition m remen
Z-pinch radiation source Condition measurements

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



High-temperature Fe opacities are measured using the Z-Pinch @m

opacity science platform
KAP crystal Z-axis

X-ray film A 90' o A
- +

Slits

Aperture

Half-moon C\-I I
sample |

Requirements SNL Z satisfies:

* Uniform heating » Volumetric heating
* Mitigating self emission ———3 350 eV Planckian backlight

i iati . ndition m remen
Z-pinch radiation source Condition measurements

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



High-temperature Fe opacities are measured using the Z-Pinch @m
opacity science platform
KAP crystal Z-axis

X-ray film A 90' o A
- +

Slits

Intensity [J/str/A]

Aperture
8 9 10 11 12 13 14
Wavelength [A]

Half-moon
sample

-

| Requirements SNL Z satisfies:

* Uniform heating » Volumetric heating

* Mitigating self emission ———3 350 eV Planckian backlight

i iati . ndition m rements
Z-pinch radiation source Condition measureme

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



High-temperature Fe opacities are measured using the Z-Pinch @m

opacity science platform
KAP crystal Z-axis 1.2

X-ray film A 0o ! o0 A 10 f

0.8

Slits 0.6

Transmission

0.4

Tv= ]v+9 / 1\}-9
0.2

Aperture

10 11 12 13 14
Wavelength [A]

Half-moon
sample

Requirements SNL Z satisfies:

* Uniform heating » Volumetric heating

* Mitigating self emission ———3 350 eV Planckian backlight

i iati . ndition m remen
Z-pinch radiation source Condition measurements

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



High-temperature Fe opacities are measured using the Z-Pinch @m
opacity science platform

KAP crystal Z-axis 1.2
. | '
X-ray film ~
- | o A . 1.0
I 2 0.8
! £
Slits ! » 0.6
I &
1 — 0.4 _ +9 9
: 02 T,=1"/I
Aperture , '

10 11 12 13 14
Wavelength [A]

Half-moon
sample

Requirements SNL Z satisfies:

* Uniform heating » Volumetric heating

* Mitigating self emission ———3 350 eV Planckian backlight

Z-pinch radiation source * Condition measurements ——— Mg K-shell spectroscopy

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



High-temperature Fe opacities are measured using the Z-Pinch @m
opacity science platform

KAP crystal Z-axis
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* Uniform heating » Volumetric heating

* Mitigating self emission ——

. . . ° 141 n
Z-pinch radiation source Condition measurements ———»

350 eV Planckian backlight
Mg K-shell spectroscopy

[1] Bailey et al., Phys Plasmas 16, 058101 (2009)

[2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



High-temperature Fe opacities are measured using the Z-Pinch @m
opacity science platform
KAP crystal Z-axis

w
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Requirements SNL Z satisfies:
e Uniform heating » Volumetric heating
* Mitigating self emission ———3 350 eV Planckian backlight
Z-pinch radiation source * Condition measurements ——— Mg K-shell spectroscopy

[1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



Modeled opacity shows severe disagreement as T, and n, @m
approach solar interior conditions

Convection Zone Base: T,=185 eV, n, = 90e21 e/cc

2L e e R M R
Data at T,.=156 eV, n_=7e21 e/cc

Calculated opacity*
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* PrismSPECT: MacFarlane et al, JQSRT (2003)

[1] Bailey et al., Nature 517, 56 (2015) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



Modeled opacity shows severe disagreement as T, and n, @m
approach solar interior conditions

Convection Zone Base: T,=185 eV, n, = 90e21 e/cc

2L e e e
Data at T,.=156 eV, n_=7e21 e/cc
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Calculated opacity*
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. J If measured Fe opacity is correct, it would increase the solar mean opacity by ~7%.

[1] Bailey et al., Nature 517, 56 (2015) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)



Reported opacity discrepancy is complex and deserves further @m
scrutiny

Z iron data?
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[1] Seaton et al., MNRAS (1994)




Reported opacity discrepancy is complex and deserves further @m
scrutiny abortones

5 Z iron data?
=) Calculated opacity[1] l
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[1] Seaton et al., MNRAS (1994)




Reported opacity discrepancy is complex and deserves further @m
scrutiny abortones
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Reported opacity discrepancy is complex and deserves further @m
scrutiny

Z iron data?
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Is opacity theory inaccurate?
Is opacity experiment flawed?

[1] Seaton et al., MNRAS (1994)




No systematic error has been found that explains the @m
model-data discrepancies abortones

Random error:
— Average over many spectra from multiple experiments

Systematic error evaluation:
— Evaluated with experiments and simulations

* Plasma T, and n, errors
 Sample areal density errors
* Transmission errors

e Spatial non-uniformities
 Temporal non-uniformities
 Departures from LTE

* Fe self emission
 Tamper self emission
e Extraneous background

e Sample contamination

 Tamper transmission difference
——



No systematic error has been found that explains the @m
model-data discrepancies abortones

Random error:
— Average over many spectra from multiple experiments

Systematic error evaluation:
— Evaluated with experiments and simulations Experimental evidence

v

* Plasma T, and n, errors
 Sample areal density errors
* Transmission errors
e Spatial non-uniformities
 Temporal non-uniformities

N N et o " aYe “:{T:"ﬂ 'al aa T ‘:_
Departures from LTE

+49% and +25%, respectively [1]

RBS measurements agree with Mg spectroscopy
Transmission analysis on null shot shows +5%
Al and Mg spectroscopy

Backlight radiation lasts 3ns

A 4

A 4

A 4

A 4

e Fe self emission Measurement do not show Fe self-emission
 Tamper self emission

e Extraneous background

v

v

Quantified amount do not explain the discrepancy

A 4

e Sample contamination RBS measurements show no contamination

lamper transmission ditrrerence
i

s o) | -

Condition reproducibility: [1] Nagayama et al, Phys Plasmas (2014)



No systematic error has been found that explains the @m
model-data discrepancies abortones

Random error:
— Average over many spectra from multiple experiments

Systematic error evaluation:
— Evaluated with experiments and simulations Numerical evidence

* Plasma T, and n, errors » Suggested n, error did not explain the discrepancy

C 1 oy
SaAarmNnil,os A NANCIT\! AOrrNnrc
Sample areal density errors

Nagayama et al, High Energ Dens Phys (2016)
Iglesias et al, High Energ Dens Phys (2016)

[ransmission errors
e Spatial non-uniformities
 Temporal non-uniformities

 Departures from LTE

* Fe self emission » Simulation found they were negligible

 Tamper self emission
. ‘ Nagayama et al, Phys Rev E 93, 023202 (2016)

Extraneous background
el atRal ¥ Nagayama et al, Phys Rev E 95, 063206 (2017)

 Tamper transmission difference —
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Reported opacity discrepancy is complex and deserves further @m
scrutiny

Z iron data?
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Is opacity theory inaccurate?
Is opacity experiment flawed?

[1] Seaton et al., MNRAS (1994)




Discrepancy is further scrutinized by i) refining analysis method and ii) @ Sanda
systematically measuring opacity of Cr, Fe, and Ni {aboratores




Transmission error is dominated by error in unattenuated @m
spectrum B

KXInT

10% opacity accuracy requires 2% transmission accuracy
— Opacity error is dominated by transmission error




Transmission error is dominated by error in unattenuated @m
spectrum B
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Transmission error is dominated by error in unattenuated @m
Laboratories

spectrum
P 200 What is its unatteuated spectrum?

150

Sl

Intensity (J/str/A)

o)
o

o

Wavelength (A)

Unattenuated spectrum = If you did not have FeMg, what would you have measured?




Transmission error is dominated by error in unattenuated @m
spectrum abortes

What is its unatteuated spectrum?

200

150

o

100

Intensity (J/str/A)

o)
o

o

Wavelength (A)

Unattenuated spectrum = If you did not have FeMg, what would you have measured?




Transmission error is dominated by error in unattenuated @m
spectrum B

200
150

~—"
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Intensity (J/str/A)
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8 9 10 11 12
Wavelength (A)

Unattenuated spectrum = If you did not have FeMg, what would you have measured?




Transmission error is dominated by error in unattenuated @m
spectrum abortes
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Unattenuated spectrum = If you did not have FeMg, what would you have measured?




Transmission error is dominated by error in unattenuated Sanda

National

Laboratories

spectrum
200 p==rm ) 1.0 ]
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Unattenuated spectrum = If you did not have FeMg, what would you have measured?

* Advantage: what we care is relative accuracy
* Challenge: it’s impossible to answer this perfectly
- We have to rely on reproducibility




We have various ways to approximate the unattenuated @ Sanda
. . Laboratories
spectrum within 20%

KAP crystal Z-a>|<i5 Unattenuated spectra recorded at +9° over 12 calibration shots

X-rayfiImA_90|+9oA °MNe———j——7—T7—T—T— 77— 77T
Shot-to-shot: +20%
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Z-pinch radiation source




We have various ways to approximate the unattenuated @ -
spectrum within 20% B

KAP crystal Z-a>|<i5 Unattenuated spectra recorded at +9° over 12 calibration shots
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We have various ways to approximate the unattenuated @ -
spectrum within 20% B

KAP crystal Z-a>|<i5 Unattenuated spectra recorded at +9° over 12 calibration shots

X-ray film £§~ | 'éQ 250 — 77— — 77— T
_90 +90

Shot-to-shot: +20%

At +9°: +20%
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We have various ways to approximate the unattenuated @ -
spectrum within 20% B

KAP crystal Z-a>|<i5 Unattenuated spectra recorded at +9° over 12 calibration shots
X-ray fil — — — — —
ray film A 90 : - A 250 T T T T T
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Wavelength (A)

Single shot transmission error is reduced to ~ 10% by averaging multiple methods ‘
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Paradigm shift:

Spatial shape is more constraining




The data is resolved not only spectrally but also spatially; @m
(] (] ) ] I.mmbs
spatial profile provides more constraints
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The data is resolved not only spectrally but also spatially; Sanda
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The data is resolved not only spectrally but also spatially; Sanda
spatial profile provides more constraints
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Observing finite-area backlighter through half-moon |
sample at +9° produces complicated spatial shape |
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Observing finite-area backlighter through half-moon |
sample at +9° produces complicated spatial shape |
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Advantage 1: Level of transmission is imprinted on |
spatial profile itself |
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We can study reproducibility of spatial shape and
brightness from our calibration shots
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Advantage 2: Transmission is analyzed for +9° data
independently on a equal footing |
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Transmission PDF is converted to opacity PDF using |

Monte-Carlo technique, propagating various uncertainties )
1.0
> Transmission PDF* as a function of 4 _ _ ‘
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How do we know if the method is accurate?




Synthetic data is created by multiplying calibration-
shot data by calculated transmission
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Synthetic data is created by multiplying calibration- |

shot data by calculated transmission )
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I Attenuated spatial profiles are analyzed to produce |
transmission PDF as a function of A |
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Attenuated spatial profiles are analyzed to produce |

transmission PDF as a function of A |
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Both refined analysis and more experiments helped to @m
improve shot-to-shot agreement on Anchor2 Fe '
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Analysis from 2015 showed 2x higher quasi-continuum Sandia
opacity than astrophysical opacity-model prediction
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Analysis from 2015 showed 2x higher quasi-continuum Sandia
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New analysis reduced the quasi-continuum disagreement Saia
from 2.0x to 1.6x, approaching to cold Fe opacity limit
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New analysis reduced the quasi-continuum disagreement Saia
from 2.0x to 1.6x, approaching to cold Fe opacity limit
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Different elements interact with plasma differently, providing @m

unprecedented constraints for testing theory and experiments
Closed L-shell vacancy iron (Z=26)
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Different elements interact with plasma differently, providing @m

unprecedented constraints for testing theory and experiments

Closed L-shell | vacancy Wum (2=24) iron (Z=26) nickel (2=28)
O

Population

6 12
# of bound electrons

Questioning Theory: L-shell vacancies

e Atomic data? :
# of excited states
* Population? More Less
* Density effects? Density effects
<

* Missing physics?




Excellent reproducibility is confirmed from all three elements, @m

demonstrating experiment/analysis reliabilit
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First systematic study of high-temperature L-shell opacities
were performed for Cr, Fe, and Ni at two conditions

* T, and n, are diagnosed independently

* Reproducibility is confirmed

o

- Anchorl: T, ~ 165 eV, n, ~ 7 X 10?1 cm~3 . Anchor2: T, ~ 180 eV, n, ~ 30 x 10?1 cm™—3
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* Opacities are measured at T, > 150 eV

—Systematically performed for Cr, Fe, Ni at two conditions




Anchorl: Modeled and measured opacities agree reasonably @m
well at lower temperature and density
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Anchor2: Interesting element-dependent disagreement @m
appears as approaching to stellar interior conditions

[ T, ~ 180 eV, n, ~ 30 x 10?1 cm™3 ]
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Window: Filled window observed from Cr and Fe, but not Ni @:.""f?";&m
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[1] SCRAM: S. Hansen et al, High Energ Dens Phys 3 (2007) 109.



Window: Filled window observed from Cr and Fe, but not Ni @sl;.""%?";&m
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[1] SCRAM: S. Hansen et al, High Energ Dens Phys 3 (2007) 109.




Window: Filled window observed from Cr and Fe, but not Ni @sﬁ.‘g"@
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Hypothesis: Challenge associated with open L-shell configuration
[1] SCRAM: S. Hansen et al, High Energ Dens Phys 3 (2007) 109.




, Sanda
Can we check accuracy of modeled line shapes? @ﬁ.‘f""@
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[1] SCRAM: S. Hansen et al, High Energ Dens Phys 3 (2007) 109.



, Sanda
Can we check accuracy of modeled line shapes? @ﬁ.‘f""@
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[1] SCRAM: S. Hansen et al, High Energ Dens Phys 3 (2007) 109.



, Sanda
Can we check accuracy of modeled line shapes? @"&.‘1""‘@
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[1] SCRAM: S. Hansen et al, High Energ Dens Phys 3 (2007) 109.




, Sanda
Can we check accuracy of modeled line shapes? @%

181 eV, 29 . 183 eV, 29e21 e/cc 187 eV, 29e21 e/cc
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* |solate

e Low continuum

We use n=2 — 4 lines from Ne-like Ni to assess the accuracy of calculated line shape

[1] SCRAM: S. Hansen et al, High Energ Dens Phys 3 (2007) 109.



Line-shape of Ne-like Ni 2p-4d is accurately measured and @m
appropriate to test approximations used in models

20

e This line-shape is reproduced by five

15 experiments

* Model employs simple approximations
for L-shell line shapes, which are not
tested.
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Line-shape of Ne-like Ni 2p-4d is accurately measured and @m
appropriate to test approximations used in models
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Sandia
Most models underestimate the L-shell line widths Laboraiores

Area-normalized
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Wavelength (A)

| Models need to refine treatment of atomic interaction with plasma and excited states. |




French CEA code, SCO-RCG, predicted the measured L-shell @m
line width reasonably well

50
Data
SCO-RCG
40
o o
O O
= N
‘© 30 ©
- g
O O
C C
o 20 ©
o P
< / <
10
//
9.94 9.96 9.98 10.00 10.02 9.94 9.96 9.98 10.00 10.02
Wavelength (A) Wavelength (A)

‘ Models need to refine treatment of atomic interaction with plasma and excited states. ‘




Refined analysis on Fe does not fully remove the reported @m
[ ] [ ] [ ] Imm
quasi-continuum disagreement
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e Reanalysis on Fe reduced data/<model>from 1.6 to 1.3
* Excellent reproducibility in all three elements suggests the differences are real

Any hypothesis has to explain not only why it enhances Fe opacity but also why it does
not affect Cr and Ni opacities




Systematic study of L-shell opacities with refined analysis validates @ S
experiment reliability and suggest necessary model refinements {aboratones

F At solar interior T, 1,
W FData
S F Model

= Fe L-shell opacity is measured at solar interior
conditions and revealed severe model-data
discrepancy

- Is opacity theory wrong? Is experiment flawed?

" Refined analysis improved shot-to-shot reproducibility, |
demonstrating opacity experiment reliability :

= Systematic measurement of Cr, Fe, and Ni opacities
suggests model refinements in three areas

. . _ . Window 1 lLine |
= Window: Challenge associated with open L-shell config. | | shape
= BB: Inaccurate treatment of density effects _

= Continuum: Peculiar dependence on atomic number

Continuum

High reproducibility qualifies SNL to be a unique HED-opacity-benchmark facility




