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The stellar opacity collaboration involves universities, U.S. national labs, a
private company, the French CEA, and the Israeli NRCN laboratories
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Systematic study of L-shell opacities with refined analysis validates
experiment reliability and suggest necessary model refinements

• Fe L-shell opacity is measured at solar interior
conditions and revealed severe model-data
discrepancy

4 Is opacity theory wrong? Is experiment flawed?

• Refined analysis improved shot-to-shot reproducibility,
demonstrating opacity experiment reliability

• Systematic measurement of Cr, Fe, and Ni opacities
suggests model refinements in three areas

• Window: Challenge associated with open L-shell config.

• BB: Inaccurate treatment of density effects

• Continuum: Peculiar dependence on atomic number
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High reproducibility qualifies SNL to be a unique HED-opacity-benchmark facility



Modeled solar structure disagrees with observations
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National
Laboratories

• Simulation: Standard solar model
Inputs: 

• Abundance • Opacity
• EOS • Etc.

• Measurements: Helioseismology

Analysis of 2D-resolved
pulsation reveals the solar
structure



Modeled solar structure disagrees with observations
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Modeled solar structure disagrees with observations
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Modeled solar structure di aerees with observations
Convection zone
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17% mean-opacity increase in the solar model is needed to
resolve this discrepancy
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Opacity: lcv

• Quantifies radiation absorption

• Kv(Te, n e) ... input for solar models

• Opacity models have never been

tested
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l [1] Basu et al., J Phys: Conf Ser 440, 012017 (2013). [2] M. Asplund et al., Annu. Rev. Astro. Astrophys. 47, 481 (2009)1



17% mean-opacity increase in the solar model is needed to
resolve this discrepancy
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17% mean-opacity increase in the solar model is needed to
resolve this discrepancy
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Fe is a likely suspect: 

• 2nd largest contribution

• Most difficult to model

Solar mixture opacity at Convection Zone Base (CZB)
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The Z machine uses 27 million Amperes to create x-rays

4 cm

Prad r%j 220TW (±10%), Yrad 1.6 MJ (±7%)
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l Sanford, PoP (2002); Bailey et al., PoP (2006); Slutz et al., PoP (2006); Rochau et al., PPCF (2007)



i
. opacity sample

The Z x-ray source both heats and backlights samples to
stellar interior conditions.

Sample is: 
• Heated during plasma implosion
• Backlit at plasma stagnation

spectrometers

x-ray
source

Prad r%j 220TW (±10%), Yrad ri 1.6 MJ (±7%)
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High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform

Requirements 

• Uniform heating

• Mitigating self emission

• Condition measurements

Z-pinch radiation source

Sandia
National
Laboratories

1 Baile et al., Ph s Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)
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High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform
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l [1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)1



High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform

Half-moon
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Cross-sectional view
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Requirements 

• Uniform heating

• Mitigating self emission

• Condition measurements
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High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform

Half-moon

sample

hv > 600 eV

Z-pinch radiation source

Requirements 

• Uniform heating

• Mitigating self emission

• Condition measurements
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High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform

Half-moon

sample

hv > 600 eVP.MW

Z-pinch radiation source

Requirements 

• Uniform heating

• Mitigating self emission

• Condition measurements

Sandia
National
Laboratories

l [1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)1



High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform

Half-moon

sample

Z-pinch radiation source

Requirements SNL Z satisfies: 

• Uniform heating   Volumetric heating
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High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform

Half-moon

sample

Z-pinch radiation source
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Requirements SNL Z satisfies: 

• Uniform heating   Volumetric heating

• Mitigating self emission 350 eV Planckian backlight

• Condition measurements

l [1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)1



High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform
KAP crystal Z-axis

X-ray film
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Requirements SNL Z satisfies: 

• Uniform heating   Volumetric heating

• Mitigating self emission 350 eV Planckian backlight

• Condition measurements

l [1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)1



High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform
KAP crystal
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Requirements SNL Z satisfies: 

• Uniform heating   Volumetric heating

• Mitigating self emission 350 eV Planckian backlight

• Condition measurements

l [1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)1



High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform
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• Uniform heating   Volumetric heating

• Mitigating self emission 350 eV Planckian backlight

• Condition measurements Mg K-shell spectroscopy
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High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform
KAP crystal Z-axis

X-ray film
_90

At
Slits \\I i 1 1,/

INAperture

Half-moon

sample

4

Z-pinch radiation source

Sandia
National
Laboratories

30 770721 25 7 Mg Hectg 20 :_
-

0
. & •

InTic  v
v (PL)RBs i

=

M

MI
ml

i
8 9 10 11 12

Wavelength [A]
13 14

Requirements SNL Z satisfies: 

• Uniform heating   Volumetric heating

• Mitigating self emission 350 eV Planckian backlight

• Condition measurements Mg K-shell spectroscopy

l [1] Bailey et al., Phys Plasmas 16, 058101 (2009) [2] Nagayama et al., Phys Plasmas 21, 056502 (2014)1



High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform
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Requirements SNL Z satisfies: 

• Uniform heating   Volumetric heating

• Mitigating self emission 350 eV Planckian backlight

• Condition measurements Mg K-shell spectroscopy
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Modeled opacity shows severe disagreement as Te and ne
approach solar interior conditions
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Data at Te=156 eV, ne= 7e21 e/cc

Calculated opacity*

• . .

EA...............e.......„.„.........„,%.

Data at Te=182 eV, ne= 38e21 e/cc

Calculated opacity*

0 
8 9

. • . .

* PrismSPECT: MacFarlane et al, JQSRT (2003)

1 0
Wavelength [A]

1 1 1 2

I [1] Bai ey et a ., a ure [2] Nagayama et al., Phys Plasmas 21, 056502 (2014) I



Modeled opacity shows severe disagreement as Te and ne
approach solar interior conditions

Convection Zone Base: Te=185 eV, ne = 90e21 e/cc
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Data at Te=156 eV, ne= 7e21 e/cc

Calculated opacity*
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Data at Te=182 eV, ne= 38e21 e/cc

Calculated opacity*

. . . .

If measured Fe opacity is correct, it would increase the solar mean opacity by —7%.

I [1] Bailey et al., Nature 517, 56 (2015 [2] Nagayama et al., Phys Plasmas 21, 056502 (2014) I



Reported opacity discrepancy is complex and deserves further
scrutiny
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Reported opacity discrepancy is complex and deserves further
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Reported opacity discrepancy is complex and deserves further
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Reported opacity discrepancy is complex and deserves further
scrutiny
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No systematic error has been found that explains the
model-data discrepancies
Random error:
4 Average over many spectra from multiple experiments

Systematic error evaluation:
4 Evaluated with experiments and simulations

• Plasma Te and ne errors
• Sample areal density errors
• Transmission errors
• Spatial non-uniformities
• Temporal non-uniformities
• Departures from LTE

• Fe self emission
• Tamper self emission
• Extraneous background

• Sample contamination
• Tamper transmission difference
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No systematic error has been found that explains the
model-data discrepancies
Random error:
4 Average over many spectra from multiple experiments

Systematic error evaluation:
4 Evaluated with experiments and simulations Experimental evidence 
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• Plasma Te and ne errors  • +4% and +25%, respectively [1]
• Sample areal density errors RBS measurements agree with Mg spectroscopy
• Transmission errors  . Transmission analysis on null shot shows +5%
• Spatial non-uniformities . Al and Mg spectroscopy
• Temporal non-uniformities Backlight radiation lasts 3ns
• 1.JFiartur CJ fru.. LIE

• Fe self emission  . Measurement do not show Fe self-emission
• Tamper self emission
• Extraneous background

• Sample contamination  

 • Quantified amount do not explain the discrepancy

IcillIper transiiiissioi i difference
. RBS measurements show no contamination

Condition reproducibility: [1] Nagayama et al, Phys Plasmas (2014)



No systematic error has been found that explains the
model-data discrepancies
Random error:

4 Average over many spectra from multiple experiments

Systematic error evaluation:

4 Evaluated with experiments and simulations Numerical evidence 
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• Plasma Te and ne errors  ► Suggested ne error did not explain the discrepancy
• Sample areal density errors

—ransmission errorr

• Spatial non-uniformities 

• Temporal non-uniformities 

• Departures from LTE  

• Fe self emission

• Tamper self emission
• Extraneous background

• Samnle contamination

• Tamper transmission difference

Nagayama et al, High Energ Dens Phys (2016)

Iglesias et al, High Energ Dens Phys (2016)

 ► Simulation found they were negligible

Nagayama et al, Phys Rev E 93, 023202 (2016)

Nagayama et al, Phys Rev E 95, 063206 (2017)



Reported opacity discrepancy is complex and deserves further
scrutiny
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Discrepancy is further scrutinized by i) refining analysis method and ii
systematically measuring opacity of Cr, Fe, and Ni
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Transmission error is dominated by error in unattenuated
spectrum

K 0C ln T

10% opacity accuracy requires 2% transmission accuracy
4 Opacity error is dominated by transmission error
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Transmission error is dominated by error in unattenuated
spectrum
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Transmission error is dominated by error in unattenuated
spectrum
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Unattenuated spectrum E If you did not have FeMg, what would you have measured?



Transmission error is dominated by error in unattenuated
spectrum
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Transmission error is dominated by error in unattenuated
spectrum
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Transmission error is dominated by error in unattenuated
spectrum

200

150
.c ..--'

td
—1

,?,.‘ 100
(7c
a)
'E'

50

0

--44"

1 I i i   i

8 9 10 11 12

Wavelength (A)

*

Tr
an

sm
is

si
on

 

1.0

0.8

0.6

0.4

0.2

0.0

Sandia
National
Laboratories

i 1 1

9 10
Wavelength (A)

11 12

Unattenuated spectrum E If you did not have FeMg, what would you have measured?



Transmission error is dominated by error in unattenuated
spectrum
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Unattenuated spectrum E If you did not have FeMg, what would you have measured?

• Advantage: what we care is relative accuracy
• Challenge: it's impossible to answer this perfectly

4 We have to rely on reproducibility



We have various ways to approximate the unattenuated
spectrum within 20%
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We have various ways to approximate the unattenuated
spectrum within 20%

KAP crystal

X-ray film

Slits

Aperture

Half-moon

sample

Z-axis

_9 0 n

/

Z-pinch radiation source

250

Sandia
National
Laboratories

Unattenuated spectra recorded at +9° over 12 calibration shots

Shot-to-shot: +20%
At ±9°: ±20%

What's causing the variation?

Spectrometer difference

Radiation transport detail

Alignment error

LOS dependent clipping

• . • .

8 10 12 14 16

Wavelength (A)



We have various ways to approximate the unattenuated
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Single shot transmission error is reduced to — 10% by averaging multiple methods
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Paradigm shift:

Spatial shape is more constraining



The data is resolved not only spectrally but also spatially;
spatial profile provides more constraints
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Advantage 1: Level of transmission is imprinted on
spatial profile itself I
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I We can study reproducibility of spatial shape andbrightness from our calibration shots
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Advantage 1: Level of transmission is imprinted on
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Advantage 2: Transmission is analyzed for ±9° data
independently on a equal footing 1
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Advantage 3: Transmission of each wavelength is analyzed
independently
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How do we know if the method is accurate?



Synthetic data is created by multiplying calibration-
shot data by calculated transmission
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Synthetic data is created by multiplying calibration-
shot data by calculated transmission
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Attenuated spatial profiles are analyzed to produce
transmission PDF as a function of
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Attenuated spatial profiles are analyzed to produce
transmission PDF as a function of
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Both refined analysis and more experiments helped to
improve shot-to-shot agreement on Anchor2 Fe
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Analysis from 2015 showed 2x higher quasi-continuum
opacity than astrophysical opacity-model prediction
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Analysis from 2015 showed 2x higher quasi-continuum
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New analysis reduced the quasi-continuum disagreement
from 2.Ox to 1.6x, approaching to cold Fe opacity limit
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New analysis reduced the quasi-continuum disagreement
from 2.Ox to 1.6x, approaching to cold Fe opacity limit
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Different elements interact with plasma differently, providing
unprecedented constraints for testing theory and experiments
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Excellent reproducibility is confirmed from all three elements,
demonstrating experiment/analysis reliability
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First systematic study of high-temperature L-shell opacities
were performed for Cr, Fe, and Ni at two conditions
 ( Anchorl: Te — 165 eV, ne — 7 x 1021 cm— ) 
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Anchorl: Modeled and measured opacities agree reasonably
well at lower temperature and density
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Anchor2: Interesting element-dependent disagreement
appears as approaching to stellar interior conditions
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Window: Filled window observed from Cr and Fe, but not Ni
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Window: Filled window observed from Cr and Fe, but not Ni
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Window: Filled window observed from Cr and Fe, but not Ni
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Can we check accuracy of modeled line shapes?
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Can we check accuracy of modeled line shapes?

Cr

Data
Calculation'

. . 
1.0 11.5 12.0 12.5

181 eV, 2t
  Blended with

Wavelength (A)

adjacent lines 10

8

6

4

2
•
.

183 eV, 29e21 e/cc

0

  20

•
•

.
•

'

1

Sandia
National
Laboratories

187 eV, 29e21 e/cc

........................ O -
13. 0.0 10.5 11.0 11.5 12.0 12. 8.5

Wavelength (A)

Ni

• a . a • I . . - . - -
9.0 9.5 10.0

Wavelength (A)

" l_..i.
10.5

[1] SCRAM: S. Hansen et al, High Energ Dens Phys 3 (2007) 109.



Can we check accuracy of modeled line shapes?
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Can we check accuracy of modeled line shapes?
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[1] SCRAM: S. Hansen et al, High Energ Dens Phys 3 (2007) 109.



Line-shape of Ne-like Ni 2p-4d is accurately measured and
appropriate to test approximations used in models
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Wavelength (A)
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• This line-shape is reproduced by five
experiments
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• Model employs simple approximations
for L-shell line shapes, which are not
tested.



Line-shape of Ne-like Ni 2p-4d is accurately measured and
appropriate to test approximations used in models

9.95 10.00
Wavelength (A)

10.05

60

Sandia
National
Laboratories

_

0 
9.90

. . . . . 1
9.95 10.00

.

Wavelength (A)

ATOMIC

OPAS

SCO-RCG

SCRAM

.
10.05



Most models underestimate the L-shell line widths
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Models need to refine treatment of atomic interaction with plasma and excited states.



French CEA code, SCO-RCG, predicted the measured L-shell
line width reasonably well
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Refined analysis on Fe does not fully remove the reported
quasi-continuum disagreement
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• • •

6.5 7.0

• Reanalysis on Fe reduced datakmodel> from 1.6 to 1.3
• Excellent reproducibility in all three elements suggests the differences are real

7.5

Any hypothesis has to explain not only why it enhances Fe opacity but also why it does
not affect Cr and Ni opacities
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Systematic study of L-shell opacities with refined analysis validates
experiment reliability and suggest necessary model refinements

• Fe L-shell opacity is measured at solar interior
conditions and revealed severe model-data
discrepancy

4 Is opacity theory wrong? Is experiment flawed?

• Refined analysis improved shot-to-shot reproducibility,
demonstrating opacity experiment reliability

• Systematic measurement of Cr, Fe, and Ni opacities
suggests model refinements in three areas

• Window: Challenge associated with open L-shell config.

• BB: Inaccurate treatment of density effects

• Continuum: Peculiar dependence on atomic number
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At solar interior Te, Tie
-Data

Model

1 1 t

High reproducibility qualifies SNL to be a unique HED-opacity-benchmark facility


