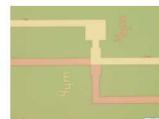
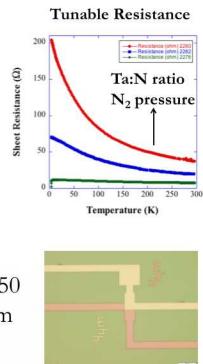
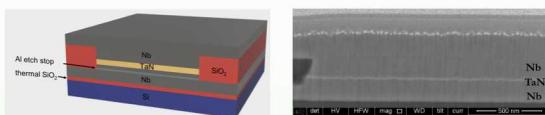


SNS Josephson junctions with tunable Ta_xN barriers

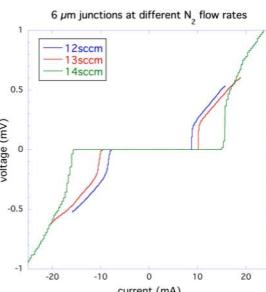


M. A. Wolak, N. Missett, M. D. Henry, R. Lewis, S. Wolfley, L. Brunke, J. A. Sierra Suarez
Sandia National Laboratories, Albuquerque, NM, USA

Motivation:

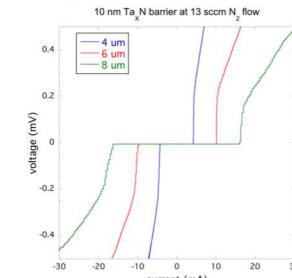
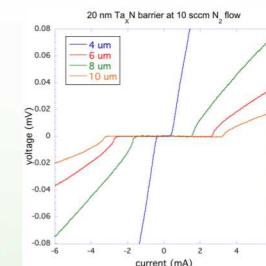

- Can Ta_xN offer advantages over AlO_x barriers?
- Thermal stability – can use optimized dielectric, potential for 3D scaling
- Barrier properties can be tuned – self shunting, may be less susceptible to electronic defects
- Explore Nb/ Ta_xN /Nb SNS JJs grown at ambient temperature on SiO_2 /Si substrates (for future scaling)
- Demonstrate avenue for ambient temperature, tunable, scalable process to address a variety of applications

Approach:

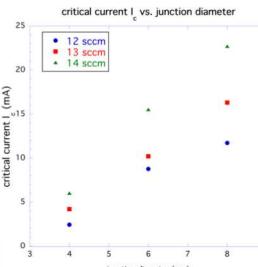
- High quality films and JJs previously demonstrated on crystalline substrates and/or with high temperature growth
- Single Ta_xN films on SiO_2 /Si substrates are smooth, single phase and have tunable electronic properties
- Process has been developed for 150 mm sized wafers, leading to uniform thin film and junction properties across the wafer



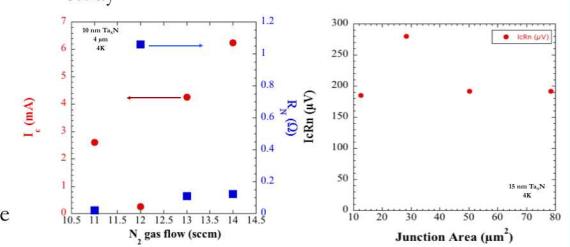
- Junctions with dimensions of 4 to 14 μm in diameter can be successfully fabricated, N_2 flow rates of 10-14 sccm during Ta_xN barrier growth with barrier thicknesses of 10-20 nm have been investigated

Low T Junction Properties:


- Critical current I_c of junctions is evidently dependent on junction size
- Critical currents of 20 mA and more can be achieved
- Resistance increases with lower junction size

- Nearly linear increase in I_c noticeable for various junction sizes and employed N_2 flow rates
- $I_c R_n$ products of on average 450 mV and up to 960 mV have been observed


- I_c , as well as the resistance, are also significantly dependent on the N_2 flow rate
- Junctions exhibit critical current densities of $6\text{kA}/\text{cm}^2$ for low N_2 flow rate samples to $12\text{kA}/\text{cm}^2$ for high flow rate samples

- I_c not only changes with N_2 flow rate and junction size, but also with barrier thickness
- Outliers occur on occasion as more statistical data is being collected (8 μm IV curve in left figure)

Future Directions:


- Overlap in properties between junctions with different N_2 flow rates and barrier thicknesses, as well as outliers, underlines issue in the ongoing study

- Junction resistance does not scale monotonically with N content
- Room temperature resistance, an indicator for N content in barrier shows overlap between junctions

- This suggests interfacial layers through the removal of N from the Ta_xN barrier and the formation of the more stable NbN

- This uncontrolled process would result in the addition of a random series resistance in the Nb/ Ta_xN /Nb stack

- Analysis of N distribution near interface using STEM/EDS cross-sectional imaging and SIMS depth profiling of possible interfacial layers is underway