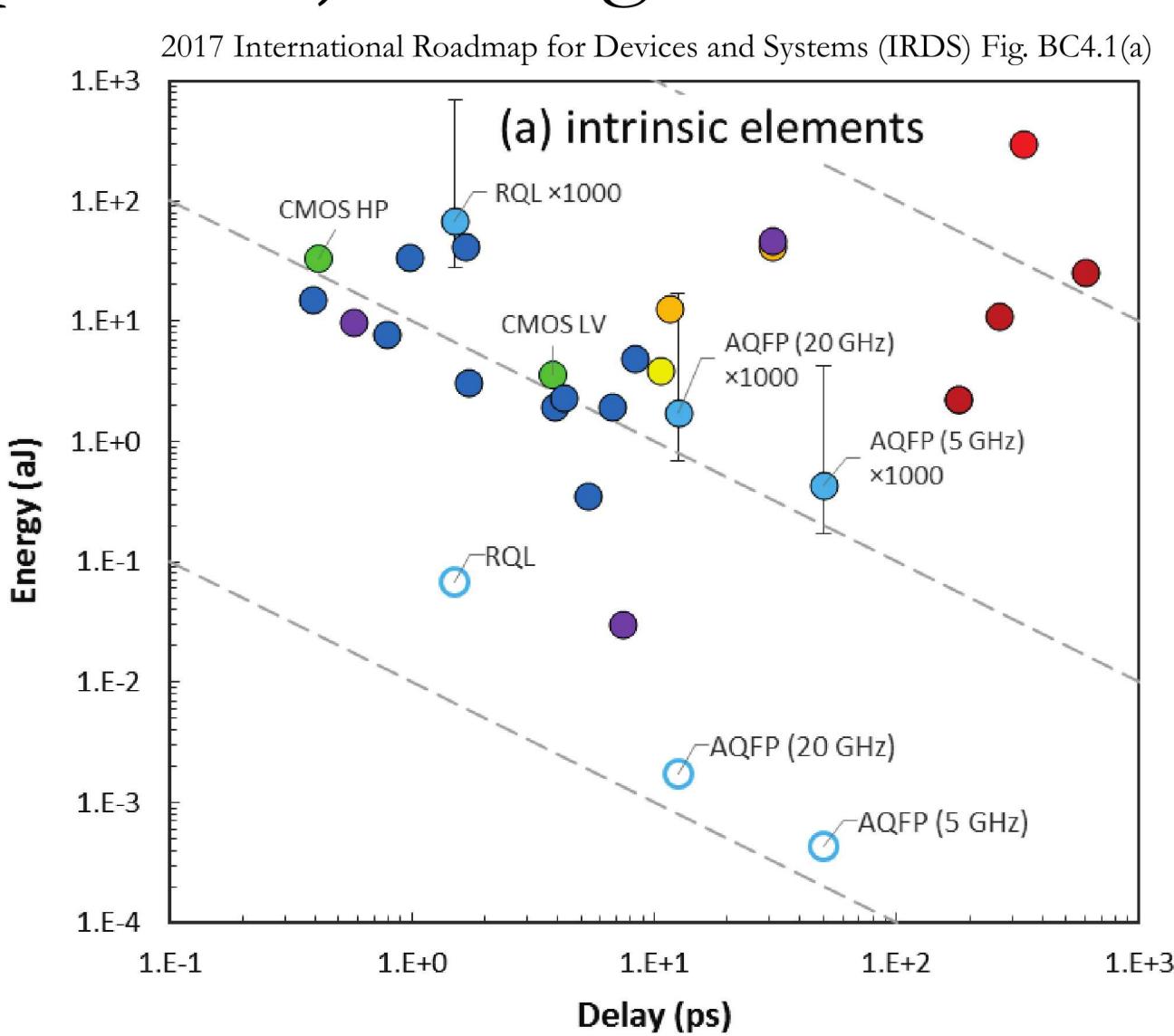


Asynchronous Ballistic Reversible Fluxon Logic

Michael P. Frank, Rupert M. Lewis, Nancy A. Missert, Matthias A. Wolak, and Michael D. Henry

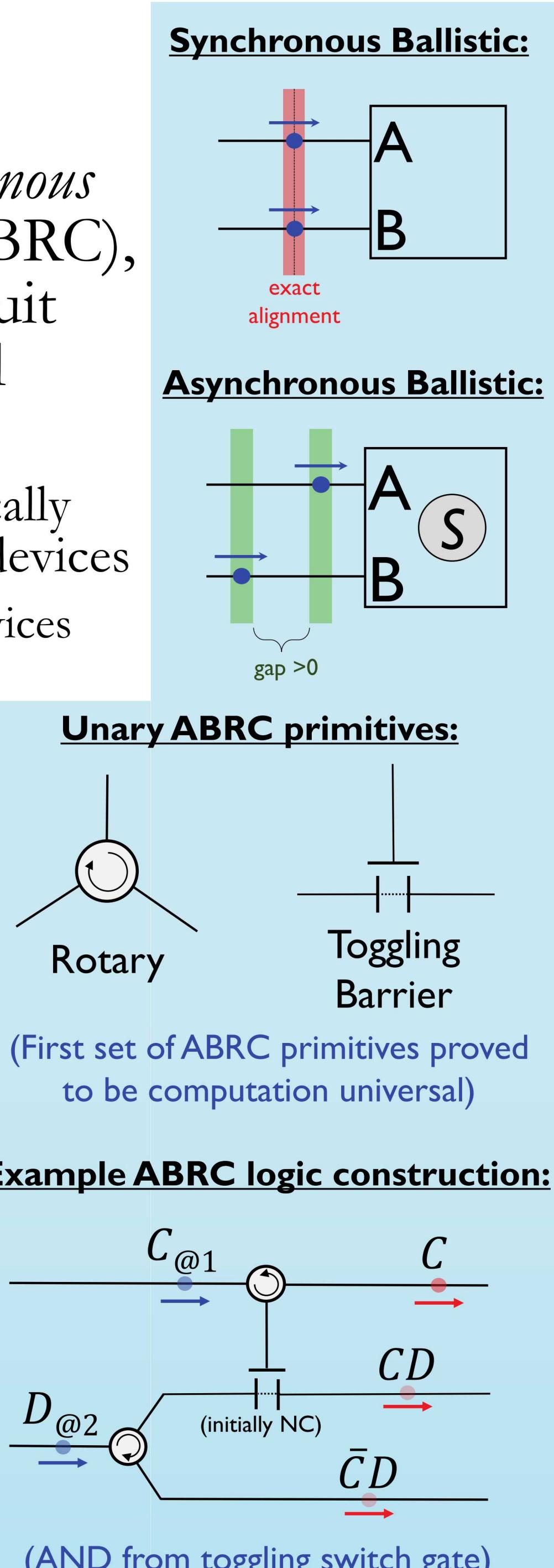
I. Background

- Cost-effective high-performance computing (HPC) requires high *computational energy efficiency*, at any given device performance level, in datacenter (room-temperature) settings.
- Existing SCE logic technologies are **not competitive** by such energy-delay metrics after accounting for specific power consumption of cryo-coolers.
- Improving computational energy efficiency requires approaching the ideal of *reversible computing*, but existing adiabatic approaches for reversible logic in SCE (PQ, nSQUIDS, RQFP) impose substantial clocking-related overheads.
 - High-efficiency clock generation, distribution, and energy recovery is a difficult engineering challenge!
- Problem Statement:** *Investigate whether/how reversible computing can alternatively be implemented in SCE without externally-driven adiabatic transitions*



II. Previous work

- Frank '17 introduced *Asynchronous Ballistic Reversible Computing* (ABRC), the first *general* theoretical circuit model of unclocked, universal reversible computation.
 - Data pulses propagate ballistically and asynchronously between devices
 - And elastically scatter off devices*
 - Local device state updates reversibly on pulse arrival



Research Question: *Can the abstract ABRC model be implemented using ballistically-propagating flux quanta (fluxons) as the signal pulses, and stationary (but mutable) trapped fluxons to register the internal device state?*

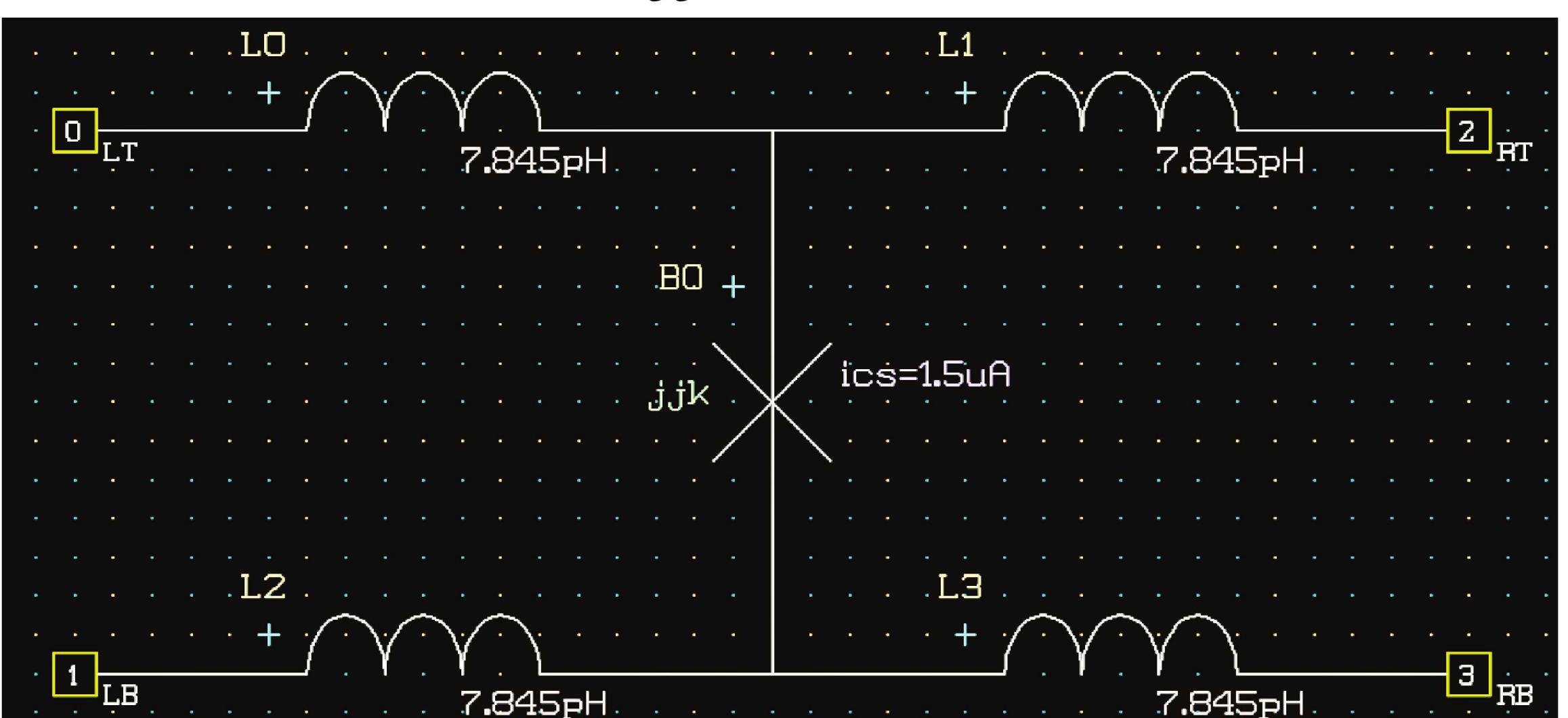
While dissipating much less than the fluxon energy per scattering/ state-update event?

III. Ballistic interconnects

- Two well-studied methods to propagate fluxons near-ballistically along passive interconnects:
 - Microstrip (or similar) *passive transmission lines (PTLs)*
 - Support fast pulse propagation velocities
 - Long Josephson junctions (LJJs)*
 - Support a soliton propagation mode
 - Described by the sine-Gordon equation
 - Can be continuous, or discretized (dLJJ)
- Our initial investigation is focusing on **dLJJ interconnects** for simplicity of modeling
 - Can be implemented in available Nb processes
 - E.g., Hypres S#45/100/200
- Example parameters for dLJJ unit cell:

Parameter description	Symbol	Value	Units
Junction critical current density	J_c	1	$\mu\text{A}/\mu\text{m}^2$
Unit Josephson junction area	A	1.5	μm^2
Unit JJ critical current	I_c	1.5	μA
Round JJ diameter	d	1.38	μm
Intrinsic JJ (shunt) capacitance	C_J	60	fF
JJ intrinsic inductance	$L_J(0)$	220	pH
JJ plasma frequency	ω_J	44	GHz
Drawn cell inductance	L	31.38	pH

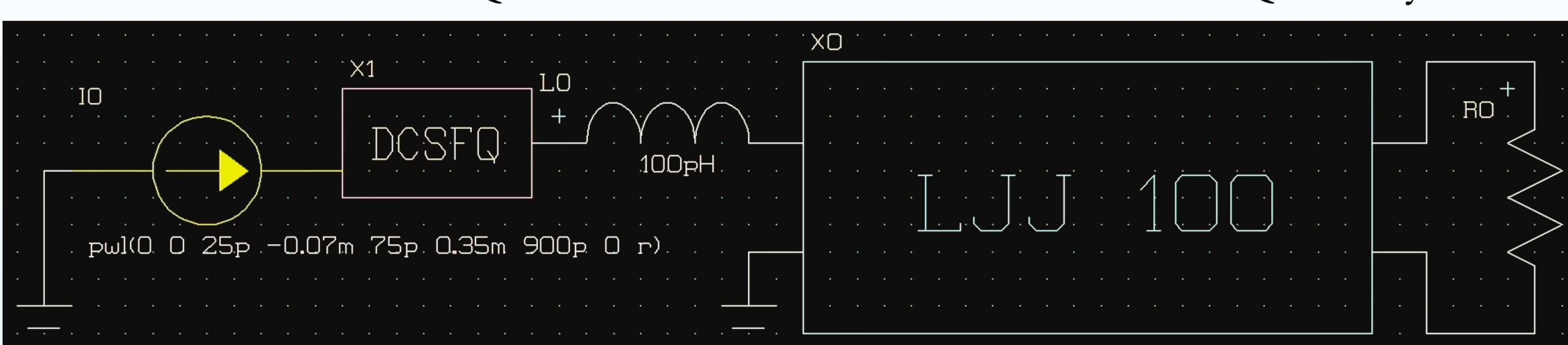
- XIC schematic for dLJJ unit cell:



- JJ model in XIC's model.lib file:

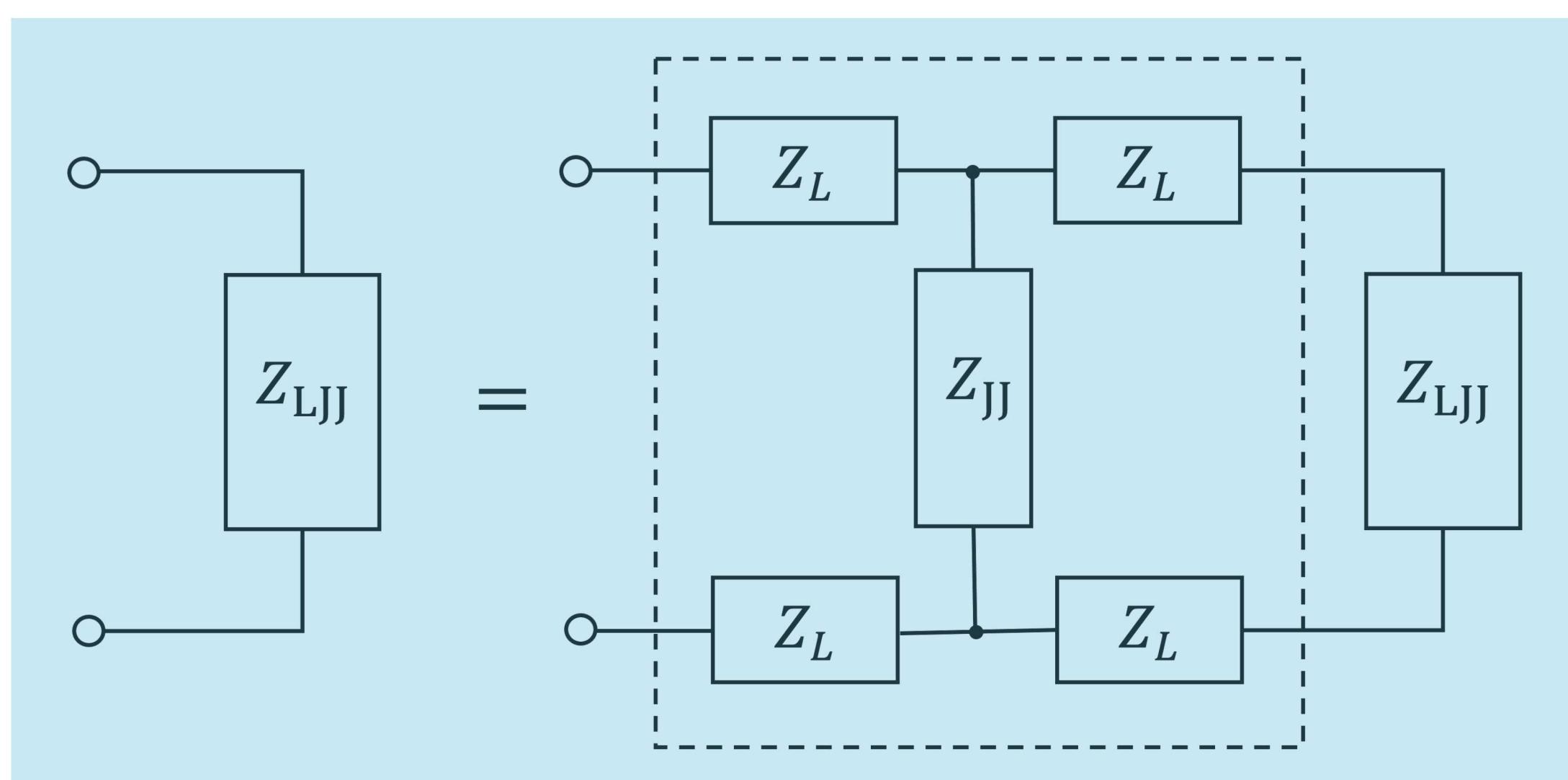
```
.model jjk jj (rtype=0, vg=2.8m,
+ icrit=1.5u, cap=60f)
```

- A simple test bench for dLJJ simulation in XIC
 - DC-SFQ converter is from the SUNY RSFQ library



IV. Impedance modeling of dLJJ

- Circuit equivalence for calculating small-signal impedance of a semi-infinite string of dLJJ cells:



- Recurrence relation corresponding to diagram:

$$Z_{LJJ} = 2Z_L + \frac{1}{\frac{1}{Z_{JJ}} + \frac{1}{2Z_L + Z_{LJJ}}} \quad (1)$$

- Solving eq. (1) for line impedance Z_{LJJ} gives us:

$$Z_{LJJ} = 2\sqrt{Z_L(Z_L + Z_{JJ})} \quad (2)$$

- Small-signal impedance Z_{JJ} of each JJ is given by:

$$\frac{1}{Z_{JJ}} = \frac{1}{Z_{JL}} + \frac{1}{Z_{JC}} \quad (3)$$

where:

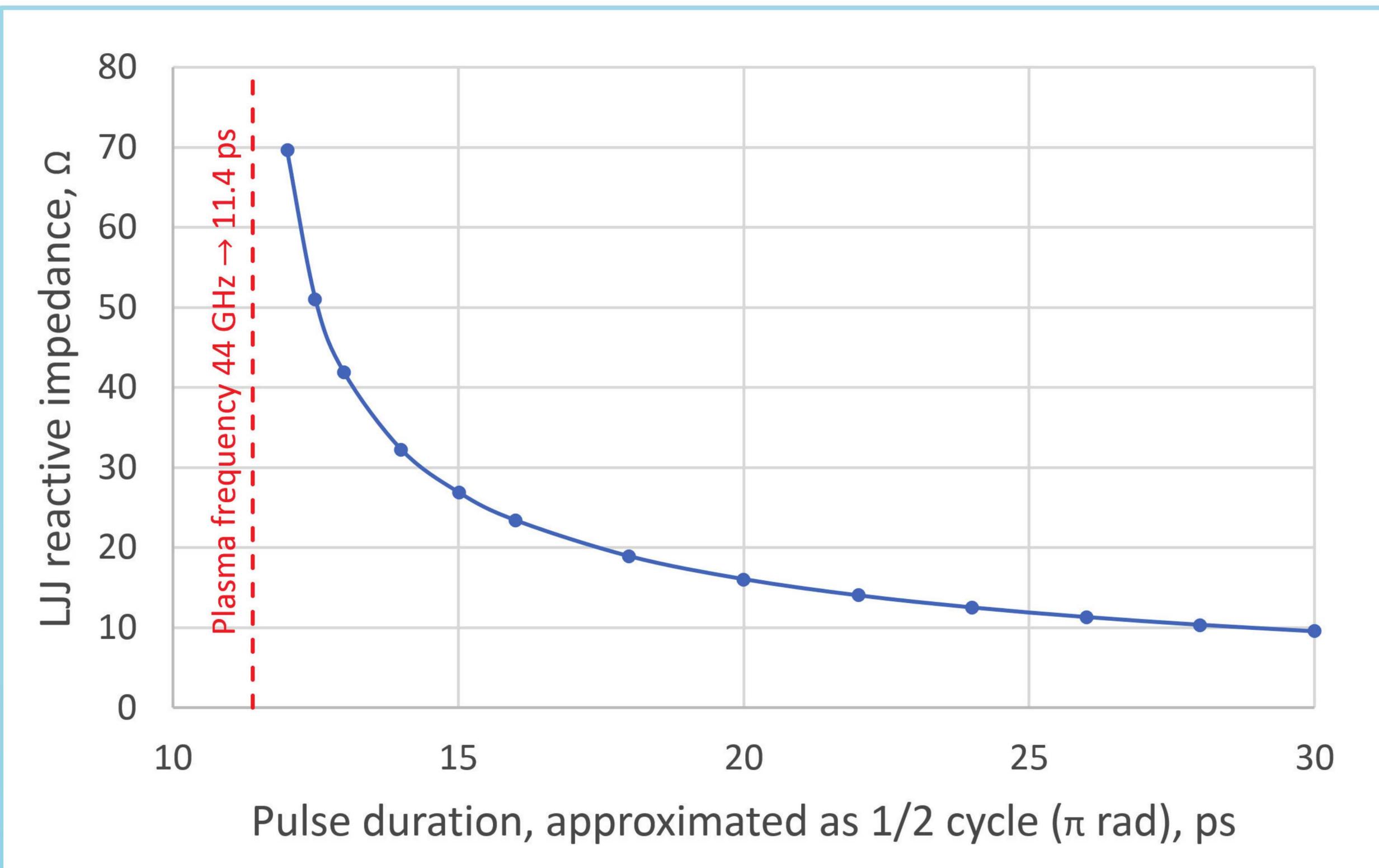
$$Z_{JL} = j\omega L_{JJ}(0), \quad Z_{JC} = -\frac{j}{\omega C_{JJ}} \quad (4)$$

and

$$L_{JJ}(0) = \frac{\Phi_0}{2\pi I_c} \quad (5)$$

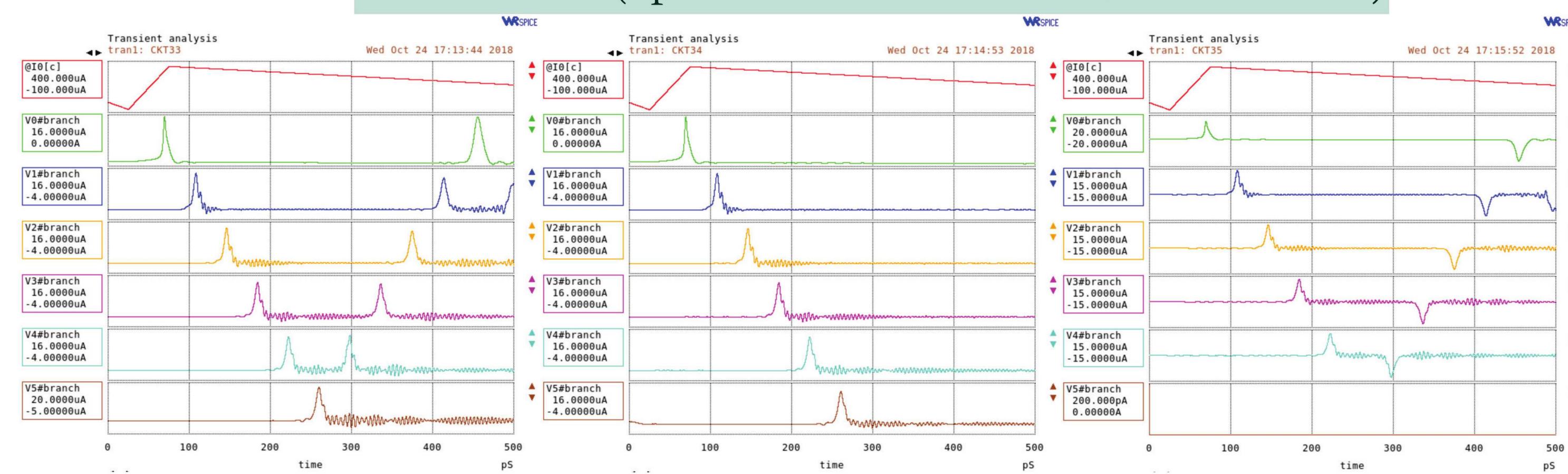
is the JJ intrinsic inductance $L_{JJ}(\varphi)$ for $\varphi \rightarrow 0$.

- Plotting $Z_{LJJ}(\omega)$ vs. approx. pulse width $\tau = \pi/\omega$:



V. WRSPICE simulations of dLJJ

- For different values of the terminating resistor R :
 - $R = 0 \Omega$ (closed-circuit termination; flux conserved)
 - $R = 16 \Omega = Z_{LJJ}$ for $\tau = 20$ ps wide pulses
 - $R = 1 \text{ G}\Omega$ (open-circuit termination; flux reverses)



- Note we observe a well-defined flux soliton
 - Pulse duration = 20 ps, width = 10.5 dLJJ cells
 - Traverses one dLJJ unit cell every 1.9 ps
 - At 1 pH/μm line inductance, $v \approx c/36$
 - Could probably be increased if desired

VI. Conservation/Symmetry Constraints

- Without considering these, the number of possible ABRC functions with polarized I/O pulses and states would be unmanageable:

No. of I/O Ports	Number of I/O Syndromes	Number of Fully Reversible Functions
1	6	$6! = 720$
2	12	$12! = 479,001,600$
3	18	$18! = 6,402,373,705,728,000$
4	24	$24! = 620,448,401,733,239,439,360,000$

- But: A planar circuit with a closed superconducting boundary conserves net flux threading the boundary
 - Due to Meissner-effect flux trapping
- And: Any circuit with only inductors, capacitors, and JJs is *time-reversal symmetric*
 - Dynamics is identical if all currents & fields reversed
- Such constraints limit the number of implementable 1-3 terminal ABRC functions to a relatively small subset, which will be detailed in future work
 - Example:** The only non-trivial 1-port operation is *Swap*, which exchanges external & internal fluxons, and acts as a reversible memory.

Input Syndrome	Output Syndrome
+1(+1)	$\rightarrow (+1)+1$
+1(-1)	$\rightarrow (+1)-1$
-1(+1)	$\rightarrow (-1)+1$
-1(-1)	$\rightarrow (-1)-1$

VII. Conclusion

- Preparatory work on this project is complete, and we are now ready to begin detailed design work to find JJ circuits that implement useful ABRC functions.