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Project Objective and desired outcomes
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• Develop and demonstrate the essential elements of MIF

• Validate simulation tools and models at fusion conditions with
driver scales differing by two orders of magnitude

• Mature scientific platforms and understanding enables rapid
development of technology

Potential to demonstrate fuel gain >1 (50-100 kJ DT)
on Z facility

- Provides strong MIF credibility and motivates
investments in M1F concepts as alternative to MCF
and ICF 0

z2708



Magnetized Liner Inertial Fusion (MagLIF) relies

on three stages to produce fusion relevant
conditions
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S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010).



We developed a scaled-down laser driven MagLIF
platform on OMEGA that enables key scaling keys
and rapid assessment of physics
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Accomplishments and ARPA-E Impact
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- Developed a laser driven MagLIF platform (OMEGA) and
successfully tested scaling at 1000x lower energy

- Significantly improved laser energy coupling to the fuel on Z
from -300J to 1.4kJ and developed a validated modeling
capability

- Demonstrated 6X improvement in fusion performance on Z

(2.5kJ DT equivalent)

- 11 publications in peer reviewed scientific journals
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Our initial experiments had significant
uncertainty in the coupled laser energy due to
poor beam quality

• No beam smoothing was
employed (Z-Beamlet only used
for radiography before MagLIF)

• Laser configuration produced
significant laser plasma

interactions (LPI) not modeled in
our codes

• Several independent laser

heating experiments suggested
low (200-500J) preheat coupling
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Beam Profile

filamentation

Stimulated Brillouin
Scattering: 900J !

M. Geissel et al., Proc. SPIE 9731 (2016); M. Geisel et al., Phys. Plasmas 22 (2018).



New laser heating protocols were developed for
Z-Beamlet that significantly reduced LPI and
modeling uncertainties
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Shadowgraphy imaging

Bulbous features could be
beam spray/filamentation or
SRS sidescatter or ???
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M. Geissel et al., Proc. SPIE 9731 (2016); M. Geisel et al., Phys. Plasmas 22 (2018).



OMEGA-EP experiments showed increased dwell
time between laser pre-pulse and main pulse was
needed
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Longer delay times were recently enabled by
co-injection of the Z Petawatt laser

• Utilize 10-20J Z-Petawatt laser
pulse to disassemble window

• Entire 6 ns ZBL laser window

available for fuel heating

• Significantly improved energy
coupling and reduced LPI effects
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A 6x increase in neutron yield (1.1e13 DD

neutrons) was observed due to improvements to
preheating and liner stability

z3236
(preheat 18A)
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- AR9 Coated/Stabilized Liner
- Higher density fuel (1.0 mg/cc)

- Lower convergence
- Greater coupled preheat energy

- 1.5kJ with co-injection

M. Weis, A. Harvey-Thompson



Initial laser driven MagLIF experiments showed

that the initial axial magnetic field was insufficient.
The field was increased to 27 T using 2 MIFEDS and

several design improvements

Old design single MIFEDS 9 T New design dual MIFEDS 27 T

111!-)7-'11'
VisRad from J. Peebles
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Optimum preheat is lower than expected and the
fall in yield above optimum preheat is faster than
expected
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Compared to Z experiments the yield
enhancements due to magnetization and
preheating are lower because the compression-
only baseline is more stable
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Future Plans
Sandia
National
laboratories

LLE

- Develop enhanced platform for testing scaling predictions on Z
(22 MA, 20-25T, 6kJ) by 2020. Demonstrate >50 kJ DT yield
equivalent on a time scale commensurate with funding

- Perform detailed physics and scaling tests (>35T) with laser
driven MagLIF platform, validate codes

- Develop science based scaling to support investment in a future
facility capable of large fusion yields and gain

- Evaluate alternative magnetization and preheat schemes that
are more suited to fusion energy

14



Our goal on Z is to produce a fusion yield of
fw100 kJ DT-equivalent

• 2D simulations indicate a
22+ MA and 25+ T with
6 kJ of preheat could
produce —100 kJ

• Presently, we cannot
produce these inputs
simultaneously.
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Preheat Energy = 6 kJ into 1.87 mg/cc DT

22.6 M

21.1 MA

17.4 MA S. A. Slutz et al.,
manuscript submitted.
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We are exploring alternative magnetization and
preheating schemes that are more suitable to
fusion energy

• Slotted helical auto-magnetizing
MagLIF liners (AutoMag) have
demonstrated —100 Tesla fields

• Motivation:

• Eliminate field coils! 

• higher initial magnetization

• increase current through lower
inductance

• lower cost
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We are developing new tools to address identified
shortcomings in simulation models

• PERSEUS — generalized Ohm's Law(XMHD),
FORTRAN90, Discontinuous Galerkin (DG) code,
originally developed at Cornell (Martin,Seyler) and
licensed to SNL with numerous publications
demonstrating the need for XMHD physics in the
modeling of pulsed power systems

• FLEXO — new C++ XMHD code (Flux Limited
EXtended Ohm's law) based on PERSEUS,
developed under SNL LDRD with new capabilities:
multi-material equation of state(EOS), adaptive
mesh refinement(AMR), and scalable DG radiation
transport, all compatible with advanced
architectures (GPU) to enable a predictive
simulation capability for design work on Z and future
pulsed power facilities

1) Feed plasma transport requires
XMHD due to low densities
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2) XMHD predicts helical
instability in 3D calculations
due to feed plasma driving
flux compression in MagLIF

3) Low density feed plasma (-10^18/cc) changes
morphology and stability of liner stagnation
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Development path towards commercial fusion UA
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• Demonstrate robust fusion gain

■ Take easy path, not necessary an optimized driver path.

■ Focus on physics and understanding of technical challenges.

■ Share key findings with MIF community

■ Fully develop alternative pre-heating and pre-
magnetization schemes more suitable for fusion energy

What's needed now?
• Improve Z platform capabilities, test target scaling
• Laser upgrades (improve energy coupling, LPI mitigation)
• Investigate physics scaling at OMEGA and validate simulation codes
• Invest in higher fidelity MHD (xMHD) and improve low beta physics in

simulation codes
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