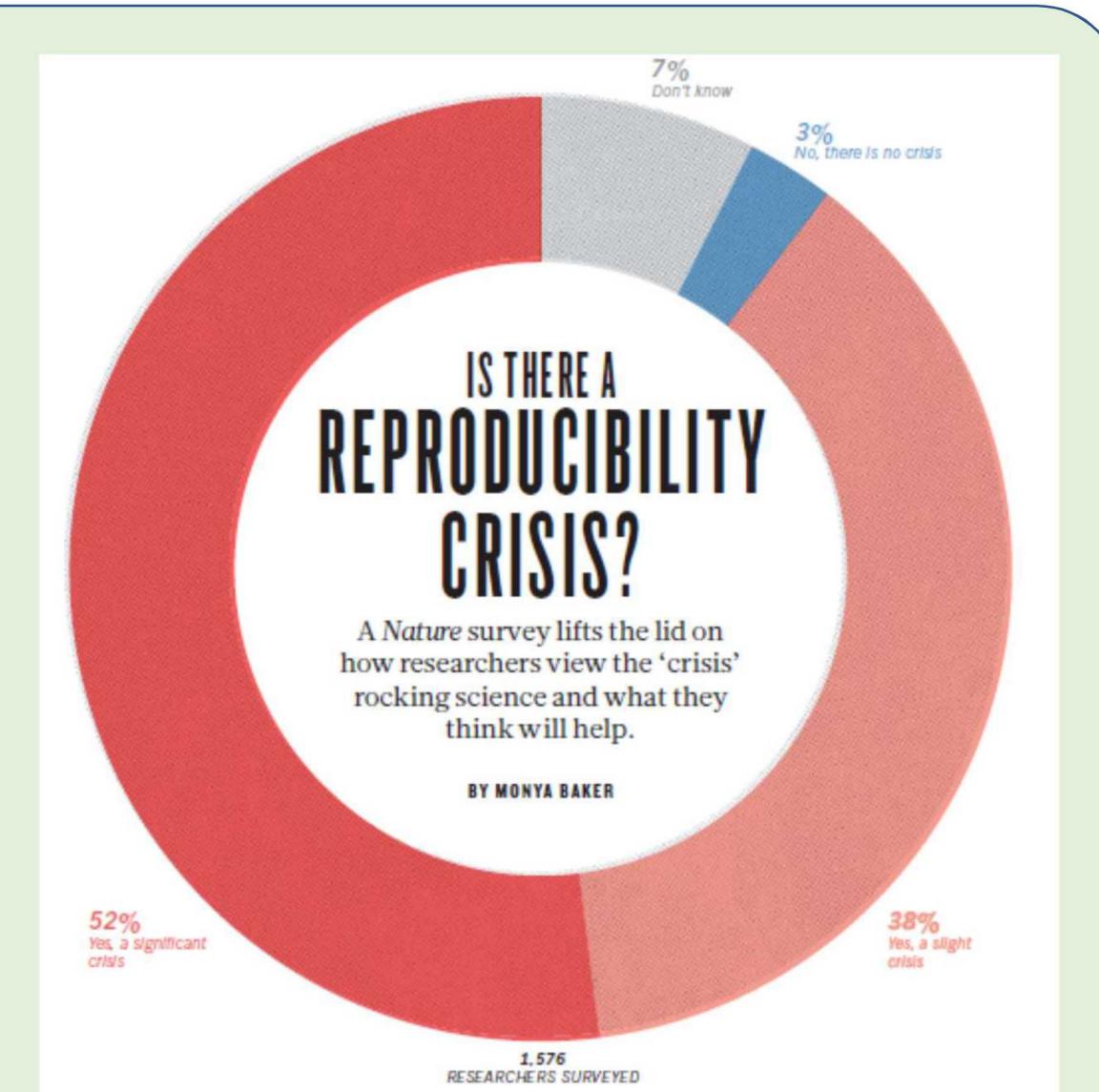
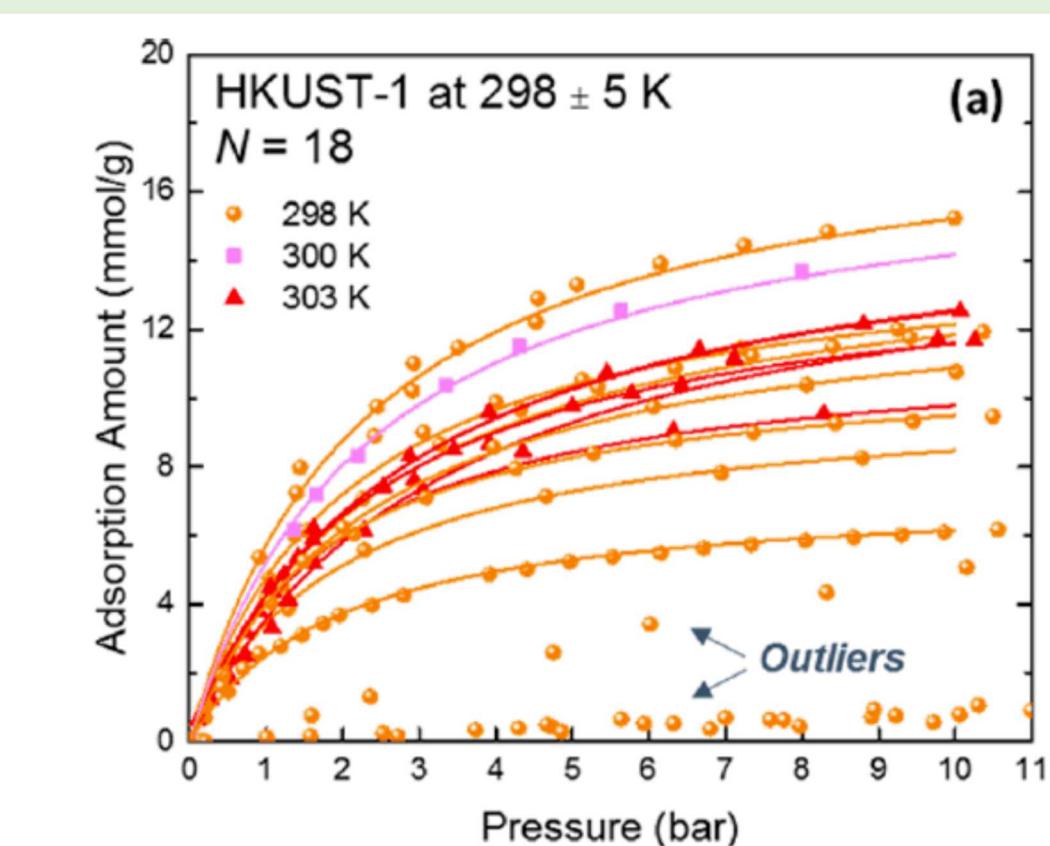


Literature Perspectives on Reproducibility Issues


Donald R. Baer¹ and James A. (Tony) Ohlhausen²

¹Pacific Northwest National Laboratory, Richland WA, USA 99352

²Sandia National Laboratories, Albuquerque, NM 87185


Is there a crisis?

Nature report of 1,576 Researchers surveyed in 2016
90% Indicated there was a reproducibility crisis in science
3% Said no crises
7% Didn't know

Baker, *Nature* 533 (2016) 452

Isotherm measurements in metal-organic frameworks (MOFs) are not very reproducible!

Jongwoo Park, Joshua D. Howe, and David S. Sholl, *Chemistry of Materials* 2017

"In the limited examples for which enough data exist to assess the existence of outliers, approximately 20% of isotherms in the literature were classified as outliers."
• Often only one measurement was made
• "Error bars are not standard in this field."

"Scientific progress is severely impeded if experimental measurements are not reproducible. Materials chemistry and related fields commonly report new materials with limited attention paid to reproducibility."

Systemic drivers of non-reproducibility.

Multidisciplinary and multimethod nature of modern science

- Expertise limitations and/or lack of resources to address all critical areas and methods
- Insufficient cooperative/collaborative research

Increased complexity of systems, science questions and tools applied

- Limitations to research design
- Need for increasingly large range of analysis tools
- Large amounts of data and "black box" data analysis
- Publication, peer review, and record taking/reporting limitations
- Over reliance on "purchased" supplies without characterization or understanding

High competition for limited resources

- Grant sizes have not increased and are hard to get
- Hyper competitive research environment

Baer and Gilmore, *JVSTA* Nov/Dec

C&E News Editorial: Reproducibility Issues

Richard Harris Nov 2017 *C&E News* [95 (2017) 2]

Conversations about the "reproducibility crisis" in science often focus on preclinical medical research and social psychology experiments. Judging by the problems that drive reproducibility issues, problems exist everywhere.

Multiple layers of causes:

- First is that scientists put too much faith in the ingredients they use.
- Another huge area of trouble is experimental design and statistical analysis.
- A root cause is that scientists are human beings, and we tend to see what we want (or expect) to see
- Another common driver in science is the hypercompetitive world of academia.

So what's a careful scientist to do?

- First and foremost, be aware of the conditions around you that may increase the risk of irreproducible results, behavior. Also take heart. This reproducibility "crisis" isn't really a crisis at all.
- These are not new problems. We need to recognize that a problem exists before we can seek solutions.

Nano-object reproducibility difficulties are increasingly recognized

From journal articles

- "Common pitfalls in nanotechnology..."
- "The characterization bottleneck."
- "Discriminating the states of matter in metallic nanoparticle transformations: What are we missing?"
- "Core-shell nanoparticles as prodrugs: Possible cytotoxicological and biomedical impacts of batch-to-batch inconsistencies"

From editorials and commentaries

- "The problem with determining atomic structure at the nanoscale,"
- "Where are we heading in nanotechnology environmental health and safety and materials characterization?"

Scientific news articles

- "Particle size matters"
- "Tiny traits cause big headaches..."

Problems widely reported in the literature

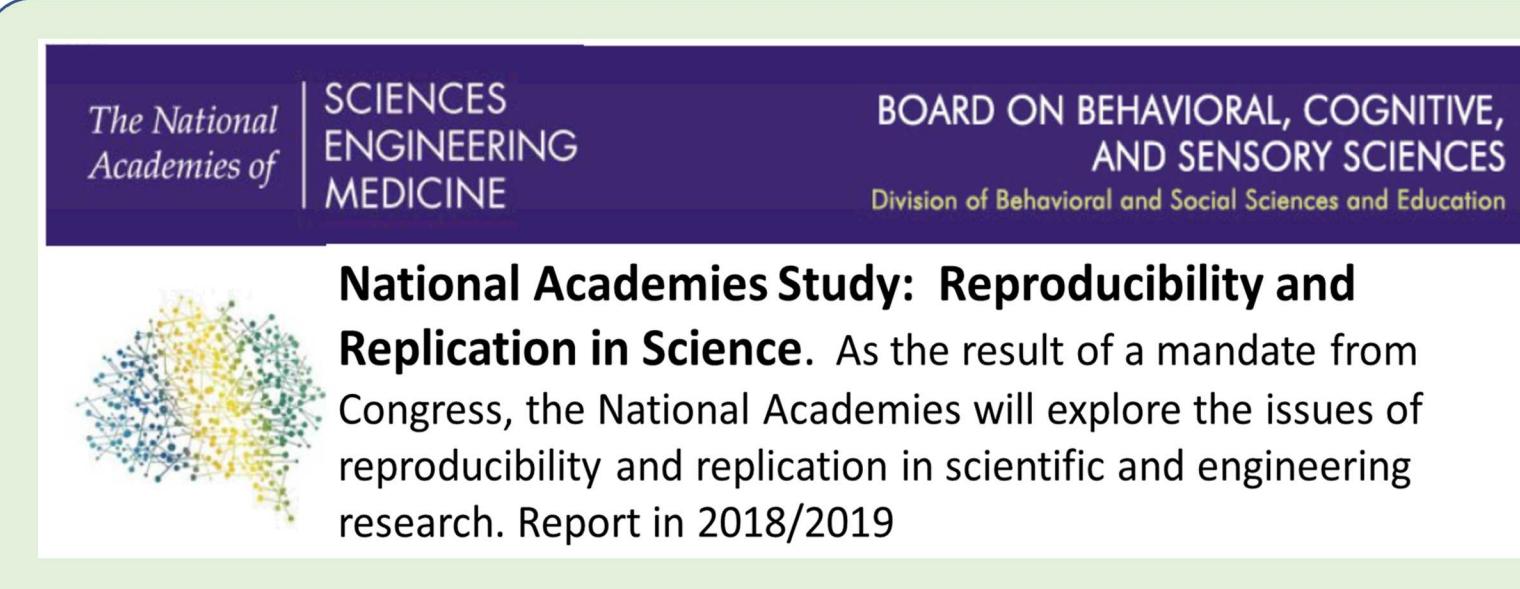
Virtual Issue on Best Practices for Reporting the Properties of Materials and Devices

Record Well, Repeat Often, Report Correctly

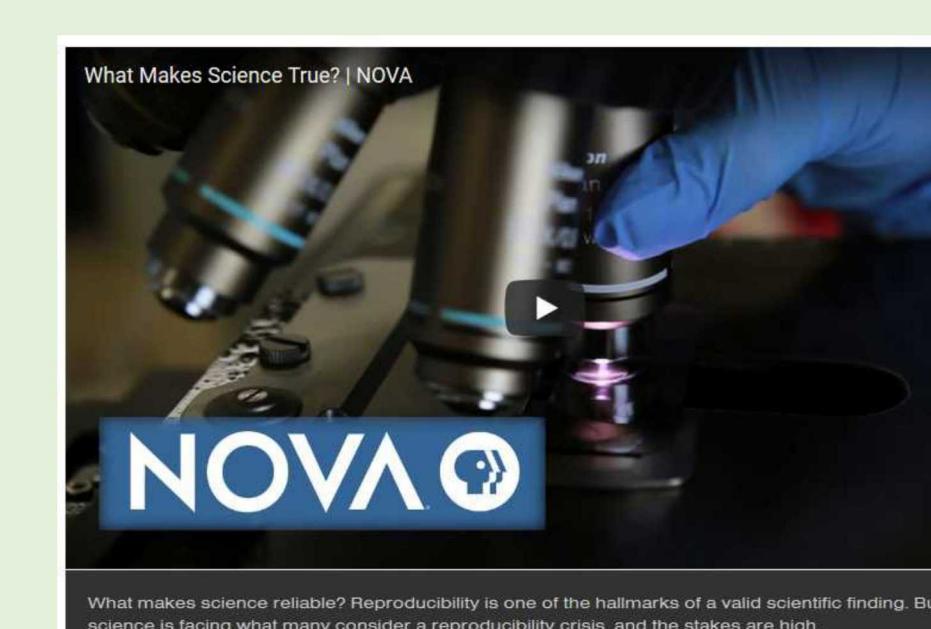
RESEARCH INTEGRITY
Fostering reproducibility in industry-academia research
Sharing can pose challenges for collaborations

Figuring out a handshake

How can we fix the replication crisis in science? Bruce Knutson offers a solution


Data Replication & Reproducibility

PERSPECTIVE


Reproducible Research in Computational Science

Roger D. Peng

Computational science has led to exciting new developments, but the nature of the work has exposed limitations in our ability to evaluate published findings. Reproducibility has the potential to serve as a minimum standard for judging scientific claims when full independent replication of a study is not possible.

Watch the PBS NOVA episode on data reproducibility using the QR code below:

<https://youtu.be/NGFO0kdbZmk>

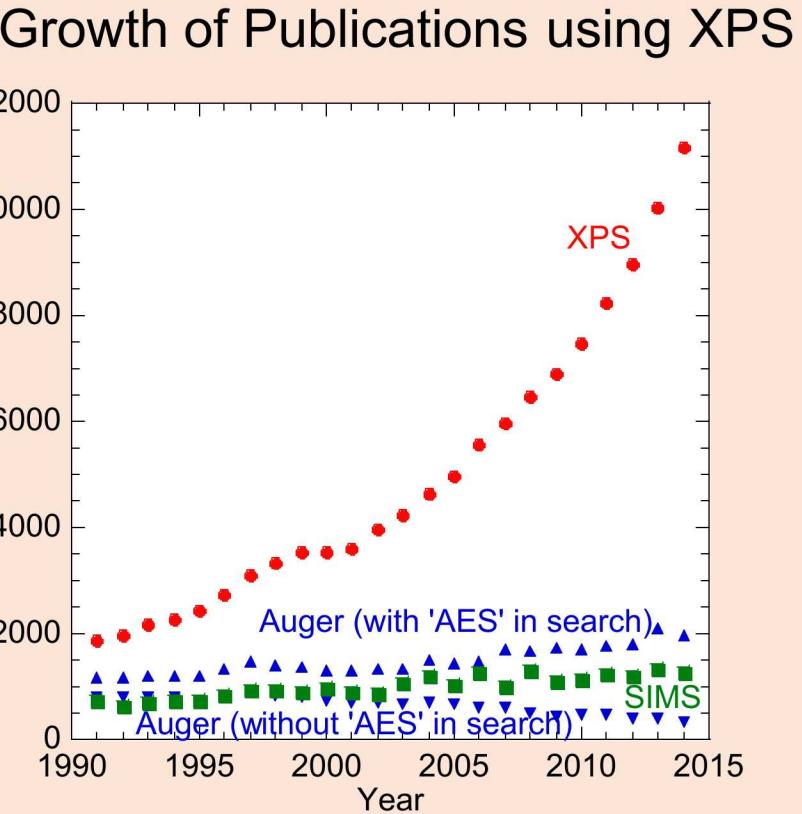
Why is this an issue now? What is new or different?

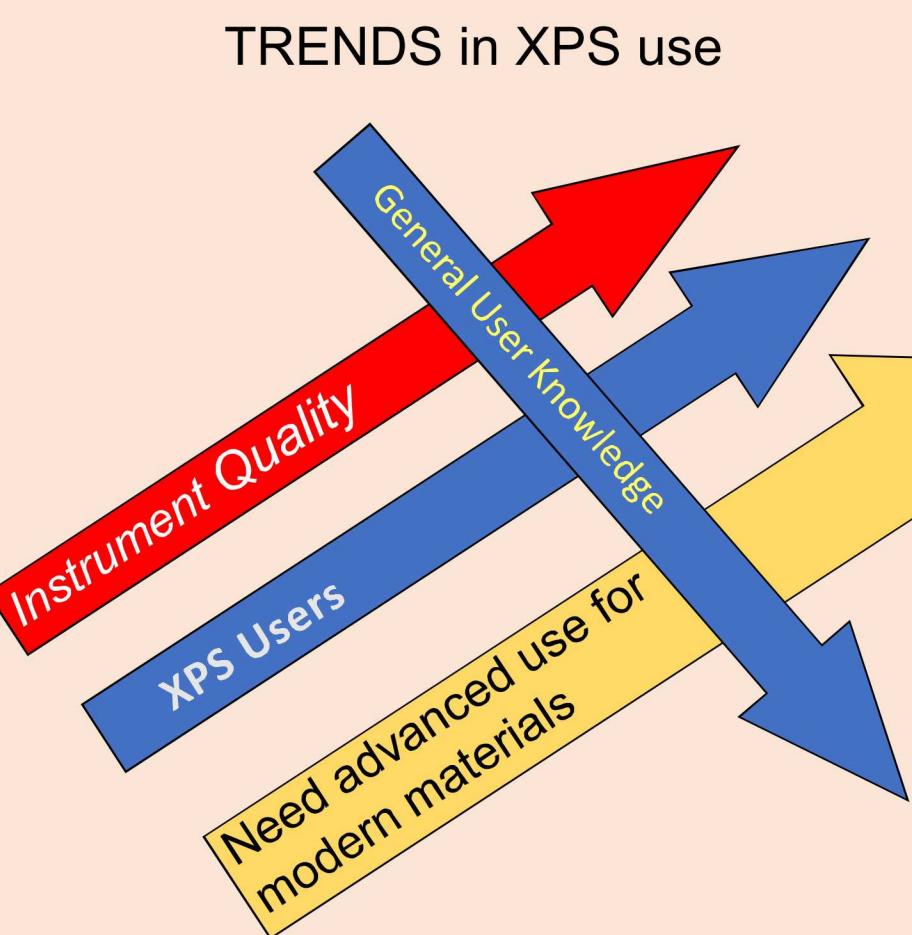
Scientists Aim To Pull Peer Review Out Of The 17th Century

Richard Harris *NPR* February 24, 2018 Weekend Edition Saturday

"WE JUST DON'T GET INVOLVED WITH THINGS LIKE DOUBLE-BlIND TESTS AND PEER REVIEW. WE'RE JUST A LITTLE RAW AND DIRTY." *Cartoonist.com*

My grant is too small, I


- "...peer review that is both necessary and antiquated. The fate of that paper rests on just two or three scientists. Imagine how this would feel if the matter in question were a consumer product."
- "...pen refill reviews on Amazon are more informative than what the current peer review system offers on scientific work costing millions of dollars."
- "If the only thing Amazon ever published were reviews of the first three people who bought a product, then we'd have a very ineffective system for knowing what was good and bad," says Michael Eisen, a Howard Hughes Medical Institute (HHMI) investigator at University of California, Berkeley.


Does it impact surface analysis?

Number of XPS users increase while expertise decreases

TRENDS in XPS use

From Cedric Powell NIST

What were they thinking?

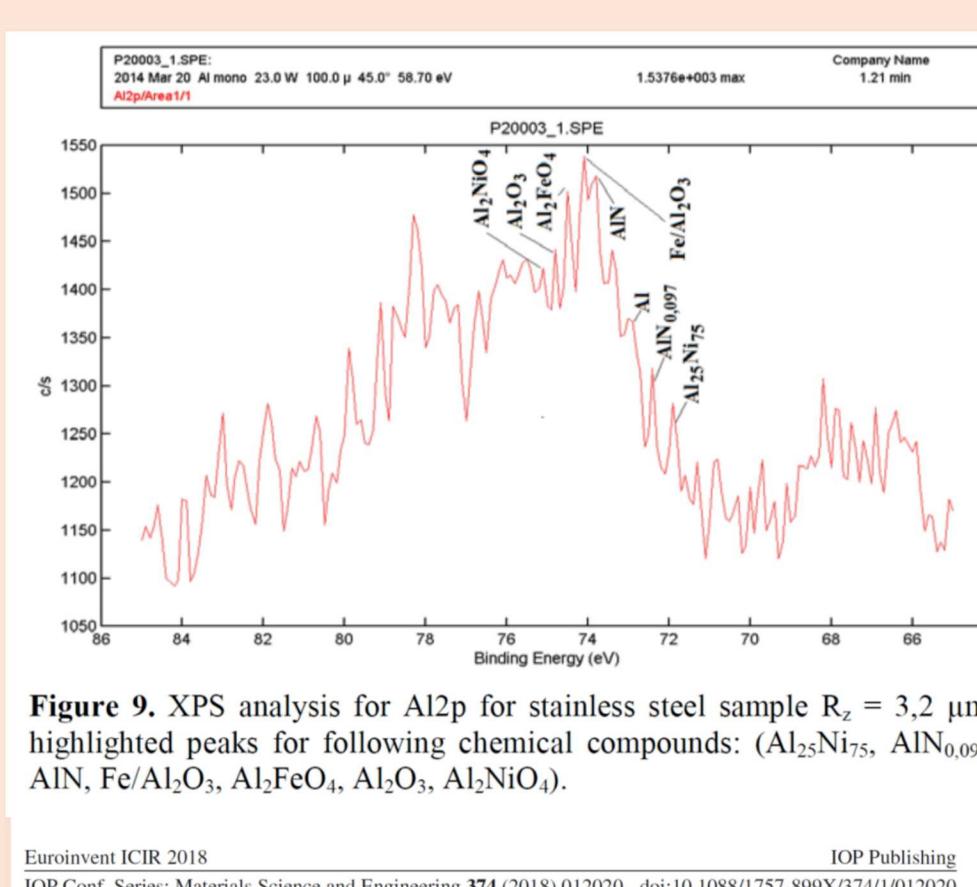


Figure 9. XPS analysis for Al2p for stainless steel sample. $R_s = 8.2 \mu\text{m}$. highlighted peaks for following chemical compounds: (Al, Ni, Fe, Al₂O₃, Al₂O₅, Al₂SiO₅, Al₂Si₂O₅, Al₂Si₃O₇, Al₂Si₅O₉, Al₂Si₆O₁₁, Al₂Si₇O₁₃, Al₂Si₈O₁₅, Al₂Si₉O₁₇, Al₂Si₁₀O₁₉, Al₂Si₁₁O₂₁, Al₂Si₁₂O₂₃, Al₂Si₁₃O₂₅, Al₂Si₁₄O₂₇, Al₂Si₁₅O₂₉, Al₂Si₁₆O₃₁, Al₂Si₁₇O₃₃, Al₂Si₁₈O₃₅, Al₂Si₁₉O₃₇, Al₂Si₂₀O₃₉, Al₂Si₂₁O₄₁, Al₂Si₂₂O₄₃, Al₂Si₂₃O₄₅, Al₂Si₂₄O₄₇, Al₂Si₂₅O₄₉, Al₂Si₂₆O₅₁, Al₂Si₂₇O₅₃, Al₂Si₂₈O₅₅, Al₂Si₂₉O₅₇, Al₂Si₃₀O₅₉, Al₂Si₃₁O₆₁, Al₂Si₃₂O₆₃, Al₂Si₃₃O₆₅, Al₂Si₃₄O₆₇, Al₂Si₃₅O₆₉, Al₂Si₃₆O₇₁, Al₂Si₃₇O₇₃, Al₂Si₃₈O₇₅, Al₂Si₃₉O₇₇, Al₂Si₄₀O₇₉, Al₂Si₄₁O₈₁, Al₂Si₄₂O₈₃, Al₂Si₄₃O₈₅, Al₂Si₄₄O₈₇, Al₂Si₄₅O₈₉, Al₂Si₄₆O₉₁, Al₂Si₄₇O₉₃, Al₂Si₄₈O₉₅, Al₂Si₄₉O₉₇, Al₂Si₅₀O₉₉, Al₂Si₅₁O₁₀₁, Al₂Si₅₂O₁₀₃, Al₂Si₅₃O₁₀₅, Al₂Si₅₄O₁₀₇, Al₂Si₅₅O₁₀₉, Al₂Si₅₆O₁₁₁, Al₂Si₅₇O₁₁₃, Al₂Si₅₈O₁₁₅, Al₂Si₅₉O₁₁₇, Al₂Si₆₀O₁₁₉, Al₂Si₆₁O₁₂₁, Al₂Si₆₂O₁₂₃, Al₂Si₆₃O₁₂₅, Al₂Si₆₄O₁₂₇, Al₂Si₆₅O₁₂₉, Al₂Si₆₆O₁₃₁, Al₂Si₆₇O₁₃₃, Al₂Si₆₈O₁₃₅, Al₂Si₆₉O₁₃₇, Al₂Si₇₀O₁₃₉, Al₂Si₇₁O₁₄₁, Al₂Si₇₂O₁₄₃, Al₂Si₇₃O₁₄₅, Al₂Si₇₄O₁₄₇, Al₂Si₇₅O₁₄₉, Al₂Si₇₆O₁₅₁, Al₂Si₇₇O₁₅₃, Al₂Si₇₈O₁₅₅, Al₂Si₇₉O₁₅₇, Al₂Si₈₀O₁₅₉, Al₂Si₈₁O₁₆₁, Al₂Si₈₂O₁₆₃, Al₂Si₈₃O₁₆₅, Al₂Si₈₄O₁₆₇, Al₂Si₈₅O₁₆₉, Al₂Si₈₆O₁₇₁, Al₂Si₈₇O₁₇₃, Al₂Si₈₈O₁₇₅, Al₂Si₈₉O₁₇₇, Al₂Si₉₀O₁₇₉, Al₂Si₉₁O₁₈₁, Al₂Si₉₂O₁₈₃, Al₂Si₉₃O₁₈₅, Al₂Si₉₄O₁₈₇, Al₂Si₉₅O₁₈₉, Al₂Si₉₆O₁₉₁, Al₂Si₉₇O₁₉₃, Al₂Si₉₈O₁₉₅, Al₂Si₉₉O₁₉₇, Al₂Si₁₀₀O₁₉₉, Al₂Si₁₀₁O₂₀₁, Al₂Si₁₀₂O₂₀₃, Al₂Si₁₀₃O₂₀₅, Al₂Si₁₀₄O₂₀₇, Al₂Si₁₀₅O₂₀₉, Al₂Si₁₀₆O₂₁₁, Al₂Si₁₀₇O₂₁₃, Al₂Si₁₀₈O₂₁₅, Al₂Si₁₀₉O₂₁₇, Al₂Si₁₁₀O₂₁₉, Al₂Si₁₁₁O₂₂₁, Al₂Si₁₁₂O₂₂₃, Al₂Si₁₁₃O₂₂₅, Al₂Si₁₁₄O₂₂₇, Al₂Si₁₁₅O₂₂₉, Al₂Si₁₁₆O₂₃₁, Al₂Si₁₁₇O₂₃₃, Al₂Si₁₁₈O₂₃₅, Al₂Si₁₁₉O₂₃₇, Al₂Si₁₂₀O₂₃₉, Al₂Si₁₂₁O₂₄₁, Al₂Si₁₂₂O₂₄₃, Al₂Si₁₂₃O₂₄₅, Al₂Si₁₂₄O₂₄₇, Al₂Si₁₂₅O₂₄₉, Al₂Si₁₂₆O₂₅₁, Al₂Si₁₂₇O₂₅₃, Al₂Si₁₂₈O₂₅₅, Al₂Si₁₂₉O₂₅₇, Al₂Si₁₃₀O₂₅₉, Al₂Si₁₃₁O₂₆₁, Al₂Si₁₃₂O₂₆₃, Al₂Si₁₃₃O₂₆₅, Al₂Si₁₃₄O₂₆₇, Al<