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molybdenum disulphide
1=0.02-0.06 (inert@ 1N)
H=0.15-0.25 (humid air @ 1N)

@ Molybdenum

(A) Depiction of the layered structure of MoS, lamellae stacked upon one
another. (B) Hexagonal stack lattice structure of MoS, with atomic spacing
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Friction
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Friction: Amontonian v. Non-Amontonian

Amontonian Friction

@ F; does not depend on contact
area

@ Kinetic Friction does not depend
on sliding speed
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Friction Experiments
oce (e}

Friction: Amontonian v. Non-Amontonian

I.L. Singer et al., Appl. Phys. Lett. 50, 995 (1990)
Amontonian Friction 020
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o = m §= So‘l-OéP, where P = FN/Areal

@ F; does not depend on contact Ff = SoAreal + aFn

area p=a+S5,/P
2
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@ Kinetic Friction does not depend o FO = 87 <E) FNé

on sliding speed
S, = 25 MPa at 300 K
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T-dependence u

Experiments
L]

w(T, P) and S = S(T') via MoSy Friction
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A Toy Model in

terms of energy barriers (mechanisms to sliding)

The probability and failure
to overcome a barrier n
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S(T) = Spfuu(T)

S(T) =St (1 — exp (————-AEIQ;A,ET) — exp (— ﬁ}ff) + exp (————AE,:B*Q%EC))

What is 5.7
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Friction Experiments Model
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The model and scaled data from S(T) = S f...(T)

S(T) =5 (1 — exp (—7AEIQ;$ET) — exp (— ﬁfﬁ) —+ exp (—7AEIQ;’$EC)>
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The model and scaled data from S(T) = S f...(T)

S(T) =St (1 — exp (—7AE];::%ET> — exp (— f}ff) + exp <—7AE;€’;L$EC>>

experiments
o simulations
60 @ Dunckleetal, 2011
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The model and scaled data from S(T) = S f...(T)

S(T)= 5L (1 — exp (—%) — exp (—ﬁfﬁ) + exp <—%)>

- .
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@ Dunckleetal, 2011
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Atomistic Origins of Temperature-Dependent Shear Strength in 2D
Materials

John F. Curry,*’i‘-l" Adam R. Hinkle, " Tomas F. Babuska,””* Mark A. Wilson,” Michael T. Dugger,Jr
Brandon A. Krick,*® Nicolas Axgibay,*’+"3" and Michael Chandross*'"

"Material, Physical and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
$Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States

ABSTRACT: We present a model that predicts the macroscale MD Simulation of MoS, Shear
temperature-dependent interfacial shear strength of 2D materials like
MoS, based on isti hanisms and getic barriers to sliding.
Atomistic simulations were used to ically d the lamellar
size-dependent rotation and translation energy barriers, that were used
to accurately predict a broad range of experimental data. This framework
provides insight about the origins of characteristic shear strengths of 2D
materials.
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temperature
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