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Abstract Small-Signal Gain and High-Frequency
Performance

Performance prediction, especially linearity, for a novel high-power RF ;
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because performance parameters are design-dependent and are function Vee200V o0

of bias and power level. This paper presents a method for high-power RF : gzlggoxv |

performance calculation, which was applied to Aluminum Gallium Nitride 50 - ik 40 =

(AlGaN) channel High Electron Mobility Transistors (HEMTs) to obtain an = I AR, Vo:=-400V )

estimate for power and linearity performance. The emerging Al-rich g - 34dB gain at 3 E 20!

AlGaN-channel HEMTs have the potential to greatly exceed the power e i 11 11 | :

handling capability of today’s AlGaN/GaN HEMTs. To assess the high- : | N f6GHz
power RF performance, a combination of TCAD simulations and a } "__max ~230GE d Bil BE, RS
MATLAB-based algorithm was used. The simulation results indicate that a e e 10% 10% 1010 101l 101
saturated power density of 18 W/mm with 55% PAE and OIP3 over 40 Frequency [Hz] Frequency [Hz]

dBm can be achieved for this class of device. Furthermore, this method
provides a way to refine the device design, and can be applicable to other
novel high-frequency, high-power technologies.

Large-Signal Gain and Linearity

Ib-Vp Characteristics and Load-line Vout vs.Vin transfer curve
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Motivation

Ultra-Wide-Bandgap (UWBG) semiconductors have attractive properties
for power switching and RF applications, particularly at high T,
* High critical electric field (E-) for improved unipolar Figure of Merit
* Saturation velocity comparable to binary alloys (GaN, AIN)
* High-temperature operation
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The V_,, vs. V., transfer curve was obtained from DC sweep simulations using a

resistive load-line and a Q-point selected for maximum output voltage swing.

Input and Output Voltage Waveform
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(b) Output Voltage vs. Frequency

=
o wun

Device Structure and Geometry
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2D TCAD Model IP'VG atVp = ‘!OV, S!‘IOWI‘I for 10 20 30 40 50 60 70 80 90 100
different barrier thicknesses Frequency (GHz)
s 50.8 .
H —a(tom e A MATLAB-based algorithm was used to calculate the output power waveforms for
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2] < - aoem| 2
> . R et e
T ) o o ‘ J0.4 g . -
Source — Passivation | .o g 2F _ . cneomy | | P L Estimated Linearity and Power Performance
. arrier: AIN = . 2 60 100
: C @
o o
Channel: 70% AlGaN s b 1y = . Pout_30GHz_dBm 0
& : 3 —
02 Back-barrier: 78% AlGaN - | 3 = Pout_30GHz_dBm 80
, : : s 4 Extrapolated Pout_30GHz
s—— 0.4 0.2 0 0.2 0.4 0.6 - 0,-',| 1 | | | 70 3 70
X 6 4 2 0 2 = 30 Extrapolated Pout_90GHz -
Gate Voltage (V) S PAE e\_o_
. . : © 20 50
Physics-based TCAD model for Al-rich AlGaN channel HEMT, created in the - -
Sentaurus® simulation platform, was used for device simulation. A design of 2 10 W a
experiments based on small-signal TCAD simulation results was used for & 30
device optimization. 20
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