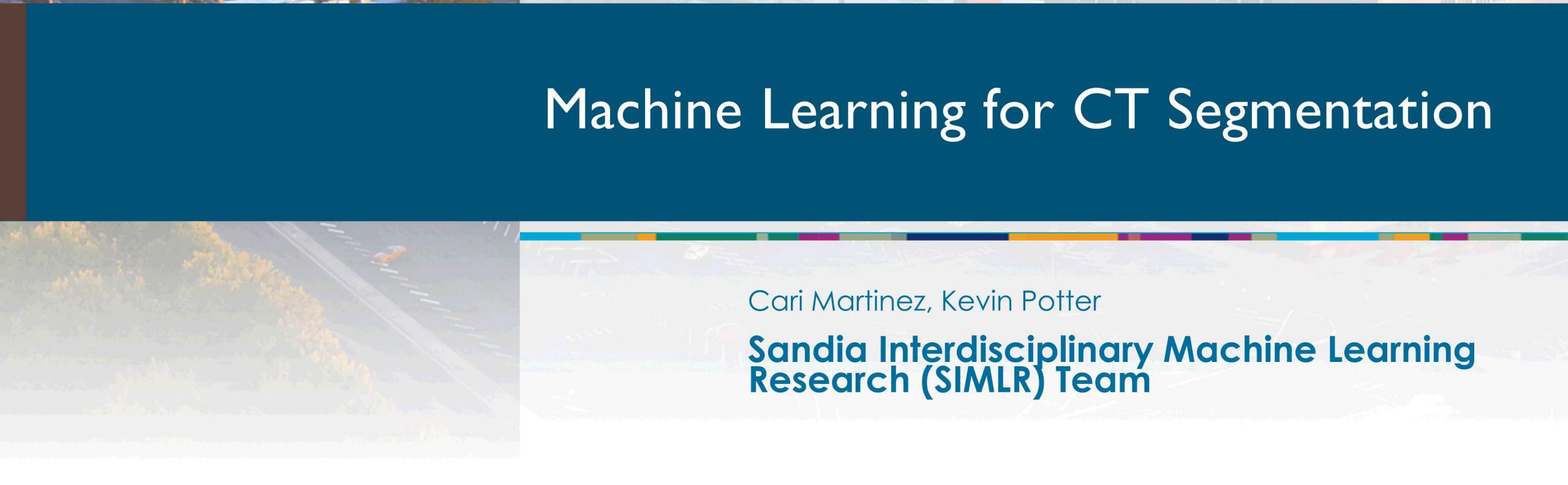
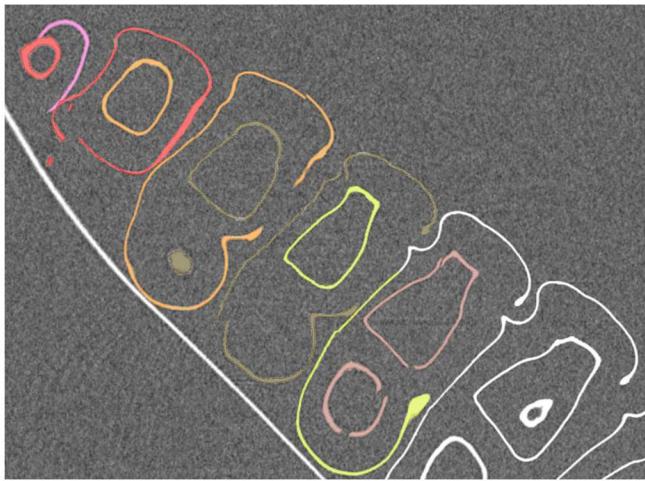
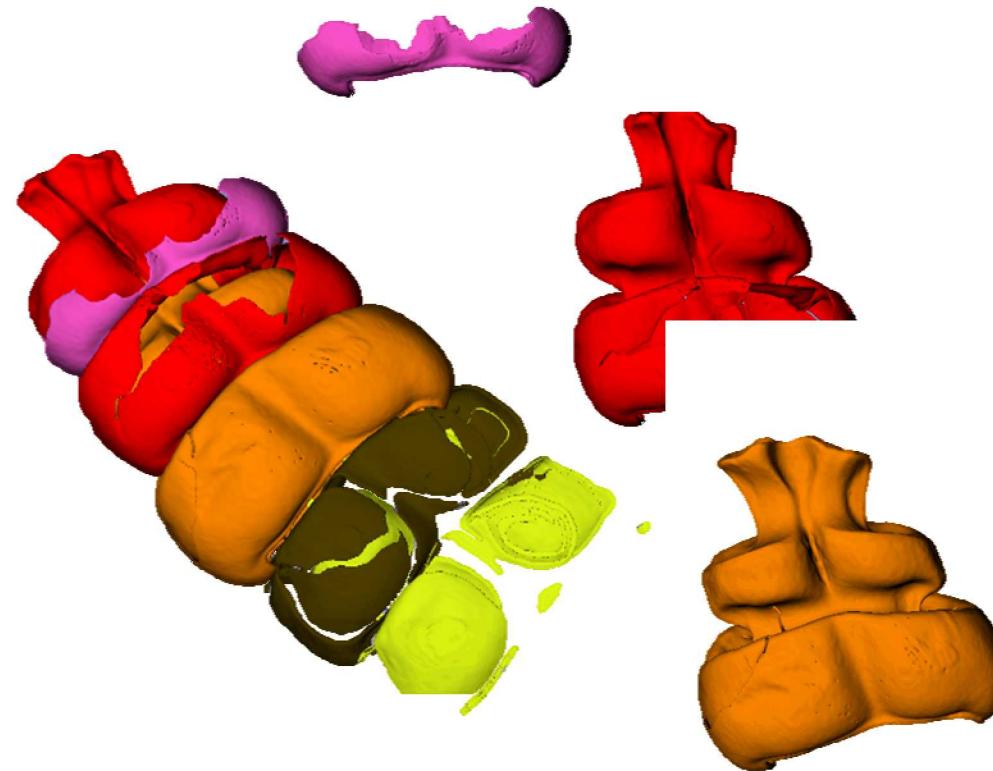


Machine Learning for CT Segmentation



Cari Martinez, Kevin Potter

**Sandia Interdisciplinary Machine Learning
Research (SIMLR) Team**

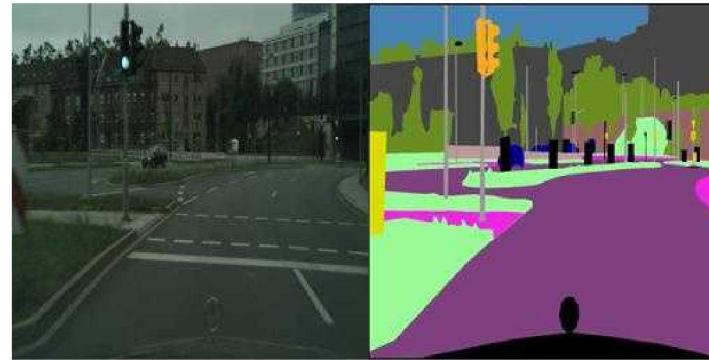


Using ML to save time and effort while improving accuracy

CT SEGMENTATION

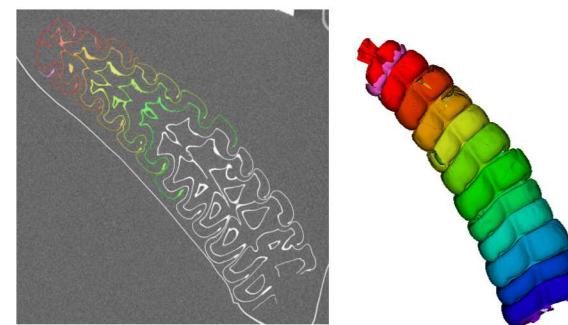
Segmentation is a classic computer vision problem

- Image segmentation is well studied
 - Small files
 - Large training sets
- Volumetric segmentation is different
 - Big data
 - Class imbalance (lots of background)
 - Small training sets with “bad” human labels
 - Humans can’t label billions of voxels
- Medical researchers are leading this work toward Deep Learning solutions



<https://www.cityscapes-dataset.com/>

Cityscape
(~1e5 pixels)

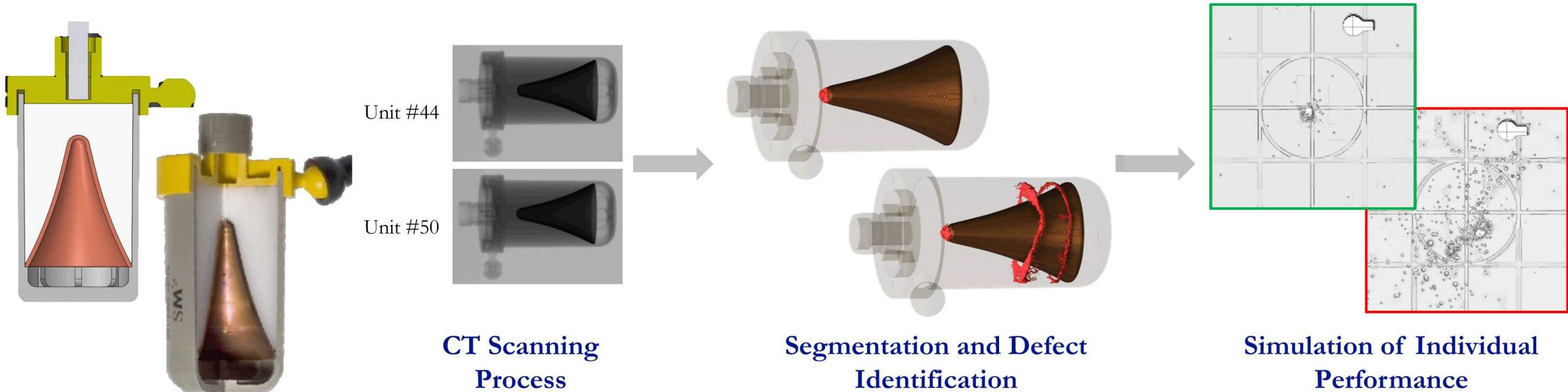


Rattlesnake Tail
(~1e9 voxels)

Digital Twins are a bold concept

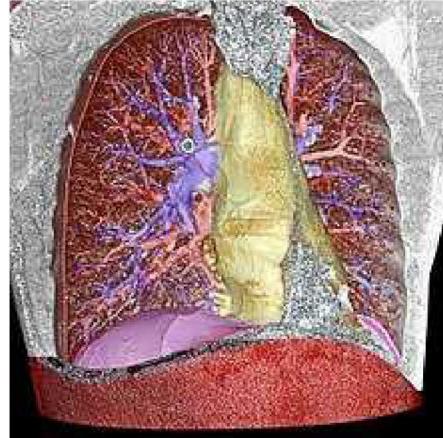
Collaborators – John Korbin & David Peterson

- Takes human expert 8 hours to segment
- Deep Learning can play a large role across the full pipeline



CT Segmentation is hard for humans

- CT scans must be labeled by component for simulations



https://en.wikipedia.org/wiki/Image_segmentation

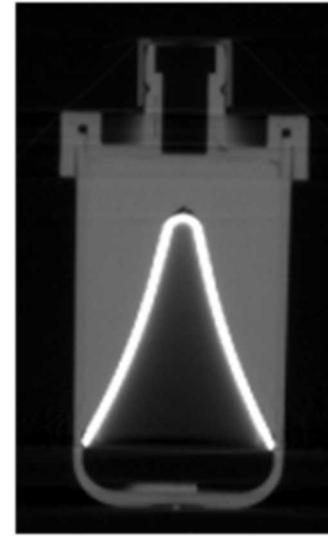
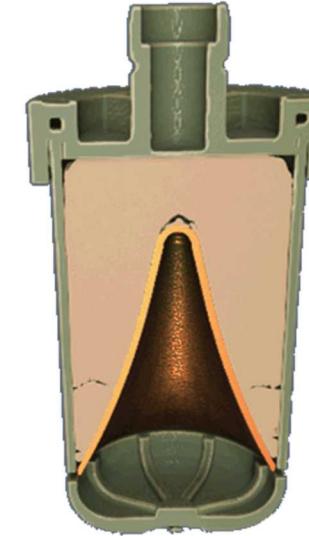
Labeling by hand does not scale

Deep Learning algorithms

- Find each component of the shaped charge by material
- Find any defects
- Pass this to a usable form for numerical simulations

Automated Segmentation presents challenges

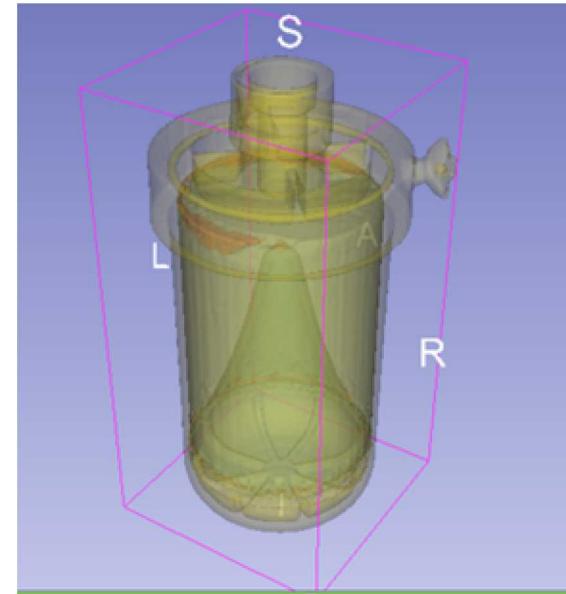
- CT scans are large
 - Medical literature: 128x128x64
 - Ours: 800x800x1600 (**~1000x more**)
 - Soon: 2000x2000x2000
- Class Imbalance
 - Empty space dominates the scan
 - Defects ~0.6% of volume
- Artifacts and noise
 - Difficult to separate materials of similar density
 - Shadow effects



SM33 Shaped Charge

Mitigating Challenges

- CT scans are large
 - Used 240x240x240 chunks of the volume
 - Optimized our model for GPU memory usage on GPU cluster
- Class Imbalance
 - Adjusted loss function that guides training
- Artifacts and noise
 - Selected Convolutional Neural Network (CNN) architecture with strength in shape recognition



Deep learning is big data and large networks

- “Deep learning is the first class of algorithms that is scalable... performance just keeps getting better as you feed them more data”

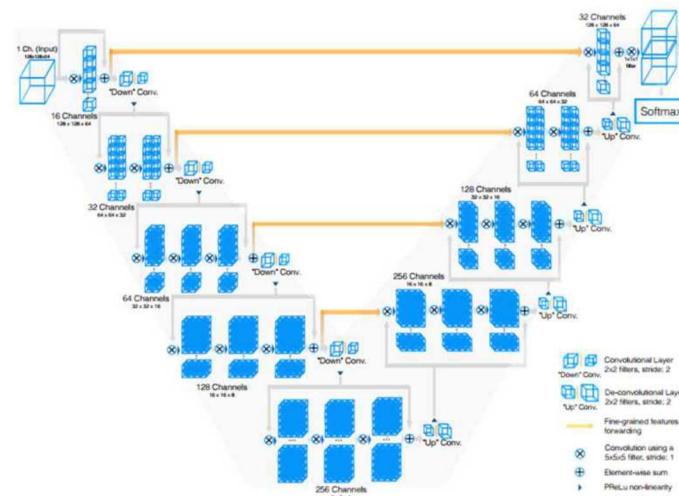
Andrew Ng, Founder of Google Brain

- U-net, a big advance in biomedical segmentation

- Olaf Ronneberger, Philipp Fischer, Thomas Brox , “U-Net: Convolutional Networks for Biomedical Image Segmentation”, in Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, LNCS, Vol.9351: 234–241, 2015

- V-net follows as a natural extension

- F. Milletari, N. Navab, and S. A. Ahmadi, “V-net: Fully convolutional neural networks for volumetric medical image segmentation,” in 2016 Fourth International Conference on 3D Vision (3DV), Oct 2016, pp.565–571



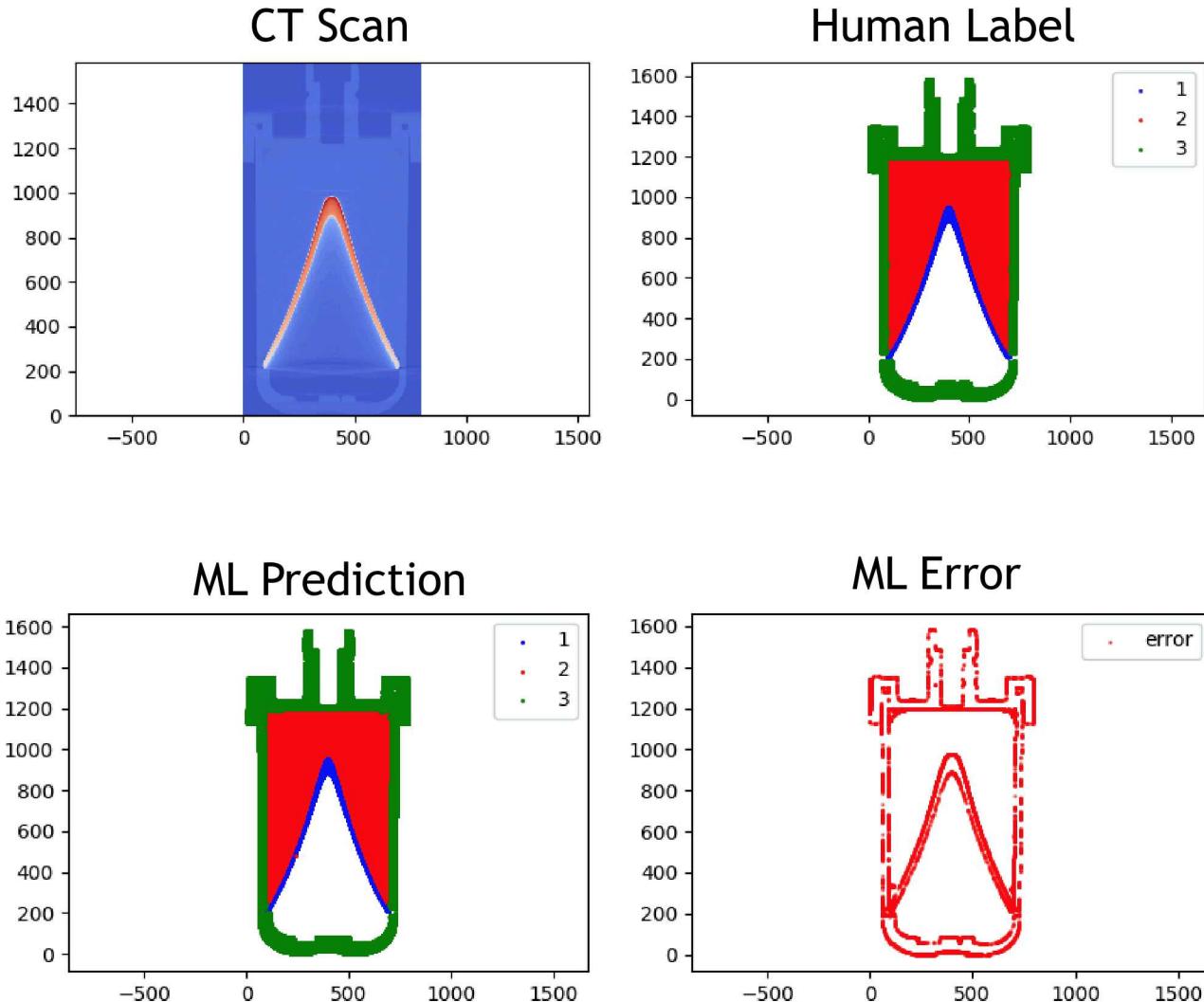
V-Net architecture for segmenting volumetric data (2016)

We started with a V-Net and made improvements as necessary

Results on the SM33 shaped charge

- Training time on DGX-1: ~2 days
- Inference time on DGX-1: ~2 minutes
- Error: ~1.02% on average for held out test set
- Defects remain challenging -

Believed to be related to CT artifacts



Defect detection

- Our plan
 - Mask explosive using our prediction
 - Solve binary classification problem: “defect or no defect”
- Problems
 - Massive class imbalance
 - Defects are extremely difficult to see => human labels are unreliable
- New Plan: Generate better images

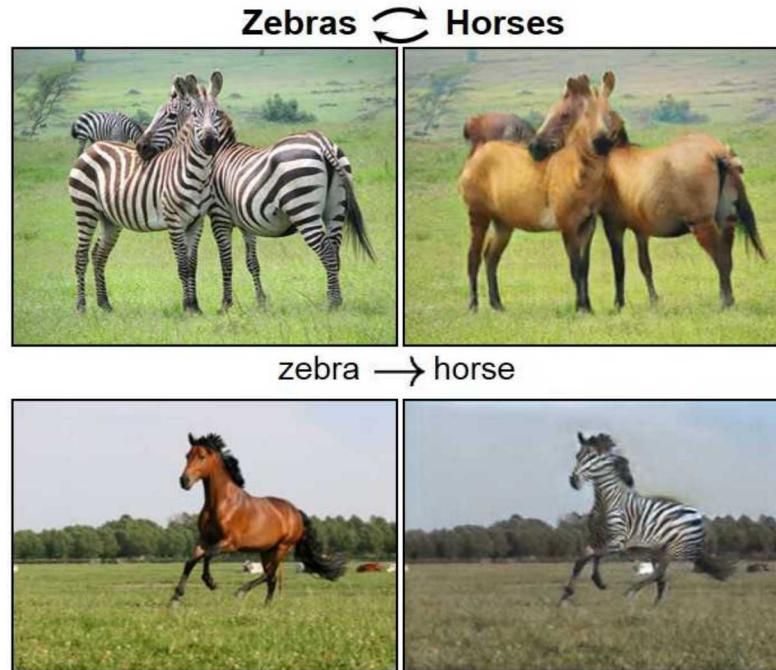


Using CycleGAN for automatic segmentation

SEMI-SUPERVISED LEARNING

CycleGAN translates images between domains

Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint.



Learns two functions:

$F(x) = \text{Horse to zebra}$

$G(x) = \text{Zebra to horse}$

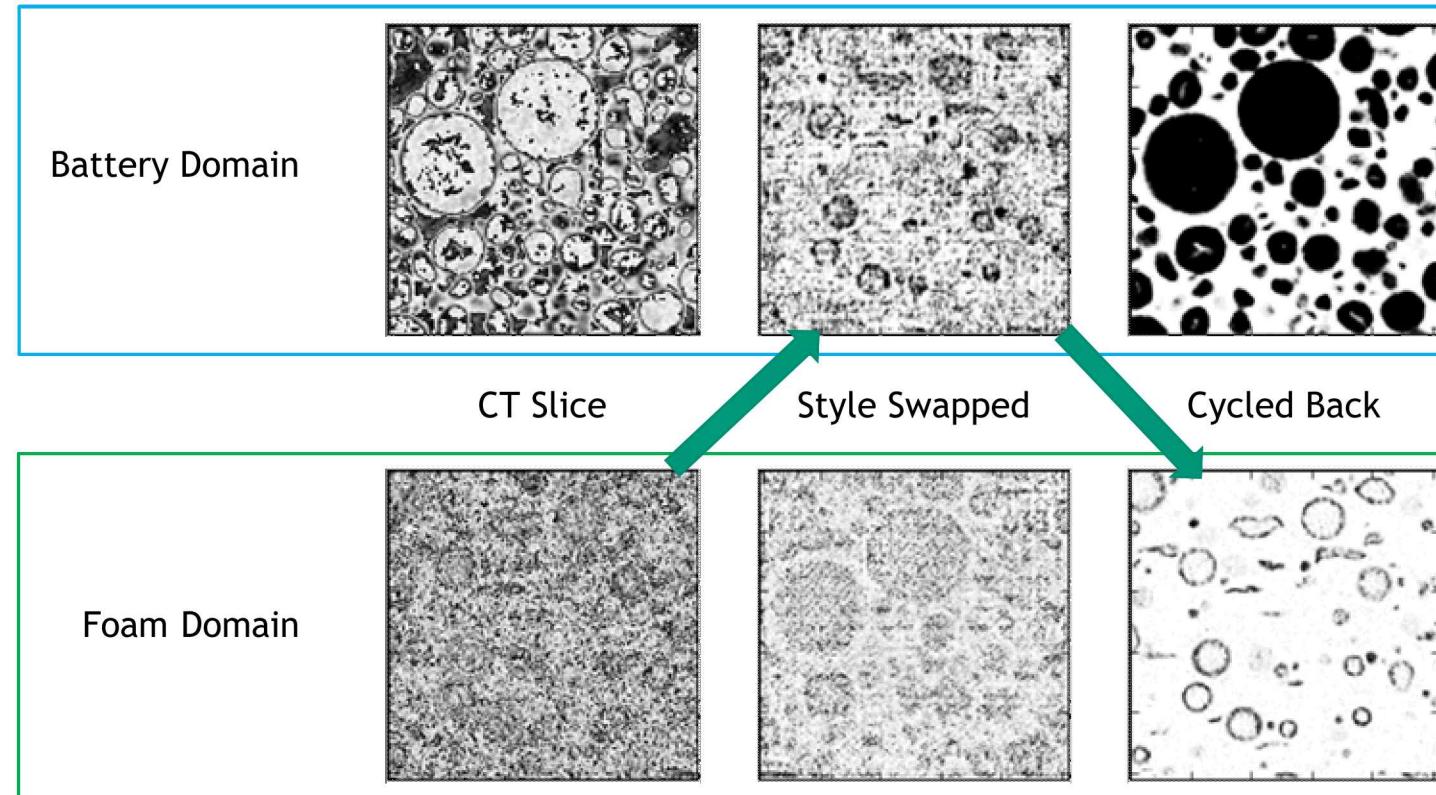
Cycles back to starting point
to learn without paired
examples

$$F(G(x)) = x$$

Generative adversarial networks are powerful new models that are widely applicable

Batteries to Foam — Leveraging existing datasets via CycleGAN

Collaborators – Kevin Long & Dan Bolintineanu



Domain Adaptation could reduce supervised labeling cost

Repurpose labels from one domain (battery) to another domain (glass micro balloon foam)

- CycleGAN transforms foam CTs into the “style” of battery labels
- Semi-supervised

Hand labeled small slices from 7 CT scans of foam

Used 2 labels to select stopping point

Inferred over remaining 5 volumes

Post-process (fill in gaps) with standard CV methods

Average 94.8% accuracy when compared with human labeled slices

