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Introduction to Ferroelectric Hf & Zr Oxides
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T.S. Boscke et al., APL, 99, 102903, (2011).
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Observation of a polarization of MIM Cap ( TiN/HfO2/TiN) occurring
under ideal conditions, can induce a orthorhombic phase to emerge from a
tetragonal or monoclinic phase. This amazing discovery lead to the idea
of mixtures (S102, ZrO2) and dopants (Si, Gd, La, Y) to improve the
ferroelectric response. However, only very specific sets of electrodes
were observed to enable this transformation suggesting a close link to the
nucleation of the needed phase to the electrodes.
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J. Muller et al., Nano Lett., 12, 4318-4223, (2017).



4 | Addition of ZrO, to HfO, — TiN electrodes

30-|'|'|- T 1 T r 1T ] " r 1T~ 1r~J7 "r-~r~rr[7  "r-"-rrr°

P (uCl/cm’) >
2 o

: LW
50- C 20 I v I b x I N l_

%" - 2 5[ :
30F - - -)(\ v o of '

HfO, 25 50 75 Zr0,
ZrOz-content (mol%)

! - e —— - .

20.1-!.!':.]."l".ln.l.l.l.nl.l.l-.I.l.l. %:A
4 2 0 2 4 2 0 2 4 2 0 2 %4 -2 0 2 #4 -2 0 2 T 1808
Electric Field (MV/cm) 35 ] so.g
. | o

As ZrO, is mixed into the ALD process, an improvement in P, is observed as a stronger w 30 140 |
ferroelectric phase emerges (ortho). Note ZrO, goes antiferroelectric. 25'_ ] 50 %
| {2

20} \.\o——g; {0 2 |

J. Muller et al., Nano Lett., 12, 4318-4223, (2017).




5 I Phase Control and ldentification of Hf Zr, O, with TaN Electrodes
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Knowing which phase is present is seen using GIXRD. As
films are pressed from HfO,, a transition occurs from
monoclinic to tetragonal and orthorhombic.
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6 I Utilizing NbN Electrodes for Hf; sZr, O, (NbN/HZO/NbN)

Cryo measurements performed in a LakeShore open
flow probe station utilizing a LakeShore 331 stage
temperature controller and Precision Multiferroic II.
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Using a 20 nm HZO film, a clear ferroelectric phase is observed at P il WL
room temperature and under cryogenic conditions. ik
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ALD growth was done in an Ultratech Savannah flow-through style ALD reactor.

.. . ) . g . . . Electric Field (MV/cm
Tetrakis(dimethylamino)hafnium and tetrakis(dimethylamino)zirconium, each at 75 °C, ( )

were used as the precursors with water used as the oxidant and N2 as the carrier gas. M.D. Henry et al., APL, in submission (2018).




7 I Superconductivity with NbN/HZO/NbN
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The 150 nm thick, NbN top electrode was reactively r’"
sputtered in a Denton Discovery deposition tool using a ‘20_2

99.5% pure Nb target, Ar and N, at room temperature.

M. D. Henry et al., IEEE Trans. Appl. Supercond., 27, (4), (2017).
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8 I Variation of NbN/HZO/NbN Ferroelectric Response over Temperature
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Extraction of remanent polarization separates the dielectric effect from the ferroelectric effect. When performed over
temperature a slight decrease in polarization is observed. Approximately a 30 uC/m?K decrease should occur and we measure
about 100 uC/m?K; however this method does not isolate the pure pyroelectric phase.



9 I Wake-up Effects of NbN/HZO/NbN at Room Temperature
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The wake-up effect is observed when the device is cycled from positive (3 or 4 V) to negative at relatively low frequencies. The
regime is governed by a phase transformation from monoclinic to orthorhombic (Grimley et al-2016). A secondary effect is a
reduction of a non-uniform defect rich tetragonal phase near the metal interface.



10 | Wake-up Effects of NbN/HZO/NbN at Room Temperature
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Wake up in a 77 um radius NbN/HfZrO2/NbN ferroelectric capacitor with a 20
nm film thickness using a 4 volt, 10 Hz cycle.
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This wake-up 1s quickly observed by extracting the remanent polarization (at 0 volts) as polarization sweeps and square wave
cycling of the film are intermixed.



11 I Wake-up Effects of NbN/HZO/NbN from Capacitance / Permittivity RT
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12 I Wake-up Effects of NbN/HZO/NbN — Cryo WU vs RT WU

20

S
wn

[
=

Polarization (uC/cmz)
=

Oxygen vacancies at the top and bottom electrodes are speculated to be the source of the wake-up effect. At cryogenic

This offers the intriguing potential for further studies of vacancy migration and possibilities for extending device life.
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temperatures, their mobility seems to freeze out at 4K.




13 I Conclusions

*This work has demonstrated ferroelectricity of HZO on
superconducting NbN.

*Ferroelectricity of the films remain (no surprise) at 4 K however
vacancy migration freezes out suppressing wake-up effects.

*Oxygen vacancy freeze out occurs suggesting a mechanism to study
the wakeup effect.

*Potential applications in cryogenic or superconducting memory.
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