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3 Introduction to Ferroelectric Hf & Zr Oxides
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Observation of a polarization of MIM Cap ( TiN/Hf02/TiN) occurring
under ideal conditions, can induce a orthorhombic phase to emerge from a
tetragonal or monoclinic phase. This amazing discovery lead to the idea
of mixtures (Si02, Zr02) and dopants (Si, Gd, La, Y) to improve the
ferroelectric response. However, only very specific sets of electrodes

were observed to enable this transformation suggesting a close link to the
nucleation of the needed phase to the electrodes.
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T.S. Boscke et al., APL, 99, 102903, (2011). J. Muller et al., Nano Lett., 12, 4318-4223, (2017).



Addition of Zr02 to Hf02 — TiN electrodes
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As Zr02 is mixed into the ALD process, an improvement in Pr is observed as a stronger
ferroelectric phase emerges (ortho). Note Zr02 goes antiferroelectric.

J. Muller et al., Nano Lett., 12, 4318-4223, (2017).
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5 Phase Control and Identification of HfxZr 1,02with TaN Electrodes
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Knowing which phase is present is seen using GIXRD. As
films are pressed from Hf02, a transition occurs from

monoclinic to tetragonal and orthorhombic.
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6 I Utilizing NbN Electrodes for Hf05Zr0502 (NbN/HZO/NbN)

Cryo measurements performed in a LakeShore open
flow probe station utilizing a LakeShore 331 stage
temperature controller and Precision Multiferroic II.

Using a 20 nm HZO film, a clear ferroelectric phase is observed at
room temperature and under cryogenic conditions.

ALD growth was done in an Ultratech Savannah flow-through style ALD reactor.
Tetrakis(dimethylamino)hafnium and tetrakis(dimethylamino)zirconium, each at 75 °C,
were used as the precursors with water used as the oxidant and N2 as the carrier gas.
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7 Superconductivity with NbN/HZO/NbN
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The 150 nm thick, NbN top electrode was reactively
sputtered in a Denton Discovery deposition tool using a
99.5% pure Nb target, Ar and N2 at room temperature.
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M. D. Henry et al., IEEE Trans. Appl. Supercond., 27, (4), (2017).



8 I Variation of NbN/HZO/NbN Ferroelectric Response over Temperature
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Extraction of remanent polarization separates the dielectric effect from the ferroelectric effect. When performed over
temperature a slight decrease in polarization is observed. Approximately a 301.1C/m2K decrease should occur and we measure

about 100µC/m2K, however this method does not isolate the pure pyroelectric phase.



9 I Wake-up Effects of NbN/HZO/NbN at Room Temperature
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The wake-up effect is observed when the device is cycled from positive (3 or 4 V) to negative at relatively low frequencies. The
regime is governed by a phase transformation from monoclinic to orthorhombic (Grimley et al-2016). A secondary effect is a

reduction of a non-uniform defect rich tetragonal phase near the metal interface.



10 I Wake-up Effects of NbN/HZO/NbN at Room Temperature
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This wake-up is quickly observed by extracting the remanent polarization (at 0 volts) as polarization sweeps and square wave
cycling of the film are intermixed.



11 Wake-up Effects of NbN/HZO/NbN from Capacitance / Permittivity RT
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C Fm3m Er= 29...39 [2,48-51]

T P42/nmc Er = 28...70 [2,49,51]

0 (FE) Pca2, Er= 27...35 [2,48]

M P21/c Er = 16...20 [2,48-51]

E. D. Grimley et al., Adv. Elect. Mater., 2, 1600173, (2016).



12 I Wake-up Effects of NbN/HZO/NbN — Cryo WU vs RT WU
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Oxygen vacancies at the top and bottom electrodes are speculated to be the source of the wake-up effect. At cryogenic
temperatures, their mobility seems to freeze out at 4K.

This offers the intriguing potential for further studies of vacancy migration and possibilities for extending device life.



13 Conclusions

This work has demonstrated ferroelectricity of HZO on
superconducting NbN.

Ferroelectricity of the films remain (no surprise) at 4 K however
vacancy migration freezes out suppressing wake-up effects.

Oxygen vacancy freeze out occurs suggesting a mechanism to study
the wakeup effect.

Potential applications in cryogenic or superconducting memory.
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