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The promise of Li-air batteries

Grid Scale Transportation
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Portable Electronics

Lighter, smaller batteries

Microelectronics/sensors



Why Li-air/Li-oxygen?

• Conversion chemistry

• Energy density 2-3X state-of-the-art

• Low self discharge

Reversible

Chemistries
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Pb-acid 41, 30-50 70 4-6%

Ni-Cd 1.2 45-80 100 15-20%

Ni-MH Mr
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400
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1.4-1.6 300-400 1500 severe

Li-S 1.7-2.5 500-600 350 ?

ME- 2.5-3.0 —1006. ?

Kwabi, D. G. et al. MRS Bull. 39, 443-452 (2014).

Oxygen Reduction (Discharge)
(1) 02 + e- 4 02-

(2) 02- + Li+ 4 Li02
(3a) 2Li02 4 Li202 + 02
(3b) Li02 + Li+ + e- 4 Li202

Oxygen Evolution (Charge) 
(4) Li02 4 Li+ + 02 + e
(5) Li202 4 2Li+ + 02 + 2e



Why not Li-air?

Poor safety characteristics

— lithium dendrite

(relevant to all Li battery)

Contamination from H20, air

— Iithium protection
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Low solve t stability
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Increasing rate 4-

Charge (mAhlg)

Low cycle life

••......

Cycle Number < 100

Chemical instability
• 0,- vs. Carbonate solvents
• Li202 vs. Carbon electrodes

Reaction kinetics
• Oxygen reduction reaction

3—
• Oxygen evolution reaction

Transport kinetics
• Li. and 02 in electrolyte

• Li' and e- in Li202

Y-C. Lu, et al. Energy & Environmental Science., 2013, 6, 750-768.



The ideal Li-air system

Ceramic-coated Li electrode

Lithium Anode
Stable interface 4 long shelf life

Non-reactive with electrolyte

• Low volatility

• Low flash point

• Protect Li anode

Packaging
Lightweight, small and

flexible/conformal

e

Discharge

1
1
Charge

Li202 k

Li202

Electrolyte
lonically conductive

Stable to electrochemistry

Minimal evaporation

Solubility of 02 and Li+

Good safety profile

Cathode
High surface area

Good conductivity

Non-reactive

Carbon paper electrode



Finding an optimal electrolyte

• Non-aqueous electrolyte
• Selection of solvent, anion and Li+

concentration
• Major physicochemical parameters:

• Electrochemical stability
• Volatility
• Viscosity or diffusivity
• Solvation; Li+, anion, 02- interactions

• Critical questions
• How does reactant diffusion relate to
power and energy density?

• How important is solubility?
• How does solvation change kinetics?

• Large experimental screening

• Computational simulation

Gittleson, F. S. et al. Energy Environ. Sci. 2017, 10 (5), 1167-1179.

Strong Li+ solvation solvent

O2.-(sol)

2 (sol)

Cathode surface

Weak Li+ solvation solvent

Li+csoo+ °2 (sol) Li02.

Aurbach, D., et al. Nat. Energy, 2016,9, 16128.



Electrolyte transport: Li+

Co
nd

uc
ti

vi
ty

 (
m
S
/
c
m
)
 1 0

9

8

7

6

5

4

3

2

1

0

Conductivity/diffusivity of Li+ dictated by
concentration and solvent interactions
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Gittleson, F. S. et al. Energy Environ. Sci. 2017, 10 (5), 1167-1179.

Li+ transport is rate limiting at low Li concentrations in solvents
with high 02 diffusivity



Electrolyte transport: 02

• 02 diffusivity and
solubility (from air)
measured with
electrochemical
methods
• Two groups of solvent
• Different anions
• Different Li+
concentrations

1E 4

1E-5

1E-7

1E 8

02 diffusion is largely dependent on
organic solvent

=

: 0.1 M

- • 0.5 M
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Anion Gittleson, F. S. et al. Energy Environ. Sci. 2017, 10 (5), 1167-1179.

02 transport is rate limiting when using ambient pressure air
Anions affect 02 diffusion in less coordinating solvents



02 solubility

• Oxygen solubility varies
significantly with
electrolyte chemistry

• Electrostatics and
molecular packing
influence 02
concentration
• Salting-in/salting-out

• Confirmed by simulation

02 solubility directly related to ion size
in addition to solvent
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Gittleson, F. S. et al. Energy Environ. Sci. 2017, 10 (5), 1167-1179.

Larger (less polar) anions yield higher 02 solubility by disrupting
electrolyte structure



Power/energy dictated by 02 transport
Limiting current: maximum current to
avoid transport limitations

nFADC
=

n — electrons
F — Faraday's number
A — surface area
D — diffusion coefficient of 02
C — concentration of 02
60 — stagnant electrolyte layer thickness
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Gittleson, F. S. et al. Energy Environ. Sci. 2017, 10 (5), 1167-1179.

A combination of 02 diffusivity and solubility can be used to
screen and rank electrolytes in rate capability 10



Experiment to simulation
1. Target large set of

solvent-hsalt
combinations

2. Build rnolecular
structu res

3. Equilibrate mixtures

4. Validate with existing
data

5. Evaluate properties

6. Rank r downselect and
test

Experimental
properties

New materials Predict physical
selection properties

Validate role
of properties

Actua] battery
performance

Model predicts
battery function

feedback cycle augmented by in-
jections of reality (experirnental
data) 11



Structure: high-throughput molecule/electrolyte builder
). Structures: typically known via

spectroscopy 8.4 crystallography

■ interactions: general purpose
potential (CHARMM, AMBER,
OPL5). ,,E4e((  

c, re,,,
a 
)

P. Short-range Lennard-Jones with
cross terms from mixing rules.

P. Long-range Coulomb with partial
charges from DFT.

P. Harmonic terms to enforce
covalent bonds/molecule
structure based on molecule
topology.

0- Equilibration: long relaxation due
to electrostatics & large molecules
near glass transition

12 ( roe ) 6 )
a 

+E Er

12



Transport: Green-Kubo methods

Generically, the transport coefficient L for flux J —LVti can be
determined from the temporal correlation (Onsager regression
hypothesis):

D =  1  r (J(0) 0 J(t)) dt
kB T

Many advantages of just observing not perturbing dynaniics:

► equilibriurn — no large
gradients 35

IP. minimal size dependence - 
30

25

srnall cells & multiple replicas 20

(error estirnates) 15

IP- full coefficient D tensor at 10

once

► rnultiple properties at once
(viscosity, dielectric, diffusion)
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correlation & integral

correlation
integral

2 4 6 8 10 12 14 16 18 20

TIME 13



Validation: LIX in DIV150

Validation with properties that
are: (a) easy to measure ex-
perimentally 8.4 (b) possibly cor-
related with the prediction prop-
erties, e.g. viscosity 8c diffusion
via Stokes-Einstein
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Transport: diffusion LiBF4 in PC/EC

Diffusion: Onsager coefficients for flux driven by a chernical 
potential gradient result frorn correlations of average species
velocities
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Transport: Onsager to Fick coefficients

Batteries are typically desigred with concentration driven diffusion
coefficients (Fick) vs chemical potential driven fluxes (Onsager)

There are a number of methods to calculate the thermodynarnic
factor matrix = ac °11`

11"' Monte Carlo based: Widom
energy change with particle
insertion

■ Box-in-box based on
Kirkwood-Buff theory

lot
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11"' Direct differentiation from
thermodynamic integration
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Experimental validation

• Diffusivity decreases as Li+
concentration increases

• Consistent with NMR self-
diffusion analysis

• Error introduced in calculating
Fickian diffusion coefficients

D
I
F
F
U
S
I
O
N
 C
O
E
F
F
I
C
I
E
N
T
 [
pi
m2
/s
1 

1000

100

10

1

NMR:Takeuchi(009)
NMR:Tsunekawa(2003)
MD:Takeuchi(2009)
MD:Postuona(2011)
MD:Soetens(1998)
MD:this work

.

0 0.5 1 2 2.5 3

Jones, R. E., Ward, D. K., Gittleson, F. S. & Foster, M. E. J. Electrochem. Soc. 2017, 164, A1258-A1267.

Diffusion estimates are accurate with EC:PC model electrolyte



Evaluating electrolyte solvation structures
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Radial density functions capture electrolyte interactions and
connect electrolyte structure to dynamics 18



Electrolyte structure in novel ionic liquids
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on Pyr14+ with increasing concentration
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Strong Li-anion coordination yields slow Li+ transport in ILs
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Full battery modeling
Battery components:

► Electrodes - electro-chemistry, structure
P"' Flat Li anode: ultimately determines

capacity. SEI/passivation formation
0. Porous cathode: typically carbon. Surface

area, clogging.

■ Electrolyte - transport, chemical stability
large combinatorial problem with greatest
impact on cell function

0. counter ions: BF4, BETI, TFSI,... and
concentration

0. solvent: dimethyl sulfoxide (DMSO), ionic
liquids, alkyl carbonates, crown ethers,
glymes (TEGME), esters, nitri!es, amides
(DMA), sulfones, ... pure, in blends,
segregated



Battery rnodel: parameters

▪ D diffusion matrix
m mobility

■ c oxygen solubility

■ s surface difFusion

■ k reaction coefficient

• a surface area density

► c porosity

IP. 7 tortuosity

cathode thickness

■ L separator thickness

Stable electrolytes
with required

ionic conductivity

Compatible
interface

membranes for
separations

(-.)-.6. tig. 
Oxygen

0 0••••• sg._as r.

Li+

1111"*I.

Sohd electrolyte to
stabilke the interface

Naroporous
carbons

for transport
and cooductivity

Catalysts for ma ki ng
and breaking Li-0
and 0-0 bonds

at specific energie5
21



Battery model: simplest
Prirnary reaction (irreversib[e)

02 is reduced in the cathode 84 is the mobile species of interest

Butler-Vollmer reaction model, dependent on: the potential
concentration c:

r = (A-k)cexp 
e;

kB T

Nerst-Planck expression for drift & diffusion species flux 1

= — = —DVc — mV0 ,

Governing reaction-difFusion equation:
1

= —V • -1 r
7

where o-: surface density, E: porosity 84 T: tortuosity

Boundary conditions, e.g. c = cequilibrium for 02 at the air boundary 22



Battery model: phenomenology

ln addition to providing insight to overall perforrnance, we obtain
spatial data from simulation not accessible by experirnent

10

6
0

oC

❑
F

Discharge

-0.2 -01 0 0.1

X-COORDINATE [rnrnj

Dirichlet open boundary
condition (common)

sIngu]arities at cathode boundaries

4

2

1

0,8

0.4

0,2

0
-0.3 0.2

4

2

1

0.8

0.6

0.4

0.2

0
-0.3 -0 2 -0.1 0 0.1

X-COORDINATE [rnrnj

Robin/limited surface difFusion
boundary condition

0.2 0.3

23



Summary

• Electrolyte selection and design
• Reactant transport (particularly 02) impacts

power/energy in Li-air systems
• Simulation helps to understand the role of

molecular interactions
• Screening and prediction of properties is possible

with experimental validation

• Suite of simulation tools to screen electrolytes
• Diffusivity — large scale molecular dynamics
• Solubility — free energy of solvation
• Electrolyte interactions — radial density functions
• Macro-distributions - finite element model

• Techniques applicable to Li-ion and other
beyond Li-ion chemistries
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