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ABSTRACT: Fiber optic based distributed acoustic sensors (DAS) provide a new approach for monitoring signals of
interest in the subsurface with unprecedented spatiotemporal resolution. These sensors produce measurements that are fundamentally
different from their traditional counterparts, such as geophones, and produce significantly larger volumes of data. To interpret
these data, we begin by using the physics-based thermal-hydraulic-mechanical (THM) model in the GEOS code to simulate
synthetic DAS measurements for a range of subsurface conditions (fracture propagation, fault slip, etc.) and sensor configurations
(e.g.: horizontal or vertical well deployments). These synthetic DAS measurements are then algorithmically labeled based
upon features of interest within their parent models, such as the extent of any generated hydraulic fractures or the distribution
of proppant particles, and are compiled into a database. The synthetic database can be used to train and test an initial
deep neural network (DNN) representation of the subsurface, which can then be optimized by incorporating any available
field measurements through transfer learning. This hybrid, physics informed DNN model is capable of interpreting DAS
measurements in near-real time, making it a useful tool for decision making by field engineers, and works under both data-rich
and data-poor conditions. To demonstrate this approach, we consider the problem of imaging hydraulic fracture propagation in
an unconventional oil and gas reservoir. Our results indicate that we are can use a trained DNN model to accurately estimate the
extents of a hydraulic fracture using the location information and DAS measurements for a single fiber-optic sensor as inputs.

1. INTRODUCTION

The development of fiber-optic distributed sensor technology provides an avenue for measuring signals of interest ranging from
acoustic and seismic waves (DAS) to temperature (DTS). These sensors operate by sending a sequence of laser pulses down
the fiber that interact with imperfections in the glass, backscatter towards the source, and are recorded by an interferometer. In
the case of DAS, variations in the phase of the return signal are used to estimate the strain (or strain-rate) parallel to the fiber.
These measurements occur at regular intervals (typically on the order of a meter) along the length of the fiber (up to several
kilometers), and represent a spatial average over a gague length (typically 1 to 10 m) (Daley et al., 2013; Mateeva et al., 2014;
Hartog, 2017). Because these sensors provide unparalleled resolution, are relatively inexpensive, an can be deployed inside or
outside a well casing, they are often deployed to monitor subsurface processes. Low-frequency DAS measurements have been
particularly useful for monitoring psuedostatic processes such as hydraulic fracturing (Hull et al., 2017; Jin and Roy, 2017;
Karrenbach et al., 2017).

Because these sensors produce measurements that are fundamentally different from conventional geophysical sensors (e.g.:
geophones), it is necessary to develop new strategies for processing and interpreting their data. Recent advances in machine
learning (ML) provide an avenue for doing so in an efficient, data-driven manner. Because DAS provides an inherently
two-dimensional measurement, advances in image-recognition using deep neural network (DNN) analysis (e.g.: Krizhevsky et
al., 2012) are particularly relevant to this problem.

2. METHODOLOGY

Instead of simply re-purposing an existing network, the goal of this work is to develop a physics-informed framework to
interpret DAS measurements and to monitor subsurface processes. To demonstrate this, we focus on the problem of monitoring
the development of hydraulic fractures using low-frequency DAS. In the following, we discuss our numerical model of the
subsurface, the datasets we use for training and testing, and the DNN design.

2.1. Numerical Model

A key component of a supervised ML analysis is labeled training data. While there are a large number of DAS measurements
recorded during hydraulic stimulations available (data), direct measurements of fracture extent (labels) are rare. Instead of
using field data, we use a method for modeling DAS using the 3D thermo-hydro-mechanical (THM) code GEOS (Sherman et
al., 2018; Settgast et al., 2016).

To simulate DAS measurements, we construct models of the subsurface in which we generate a single, vertical hydraulic
fracture. In each of these, we insert a set of virtual fiber-optic sensors throughout the model, oriented both vertically and



horizontally. After each stimulation, we algorithmically label each dataset with key observations: the position of the fiber with
respect to the fracture (dx, dy, dz), the global height (H) and top (T) of the fracture, and the height (H_local) and top (T_local)
of the fracture nearest to the sensor.

2.2. Dataset Design

To generate the necessary dataset for the ML analysis, we constructed 100 distinct hydraulic fracturing models, each with 136
virtual fiber-optic sensors. To generate a wide variety of fracture shapes and sizes, we draw the individual model parameters
from a series of random-uniform distributions given in Table[I] A realization of the in-situ stress state and the pumping schedule
for a model in database are shown in Figures[Tand [2] The base in-situ stress model assumes a uniform density through the
model. Variations in the minimum horizontal stress (o) are sampled from a random fractal distribution. Each hydraulic
stimulation is designed in three stages (A, B, and C) with increasing fluid viscosity, a uniform flow rate, and proppant injection
beginning in stage B.

Table 1: The distribution of parameters used to generate each hydraulic fracturing simulation.

Model Parameter Min Max
oy, standard deviation (M Pa) | 1 2

oy, fractal dimension -0.25 0.25
Fluid injection rate (m?>/s) 0.0376 | 0.067
Fluid A injection time (min) | 20 40
Fluid A viscosity (cP) 1 5
Fluid B injection time (min) | 20 40
Fluid B viscosity (cP) 7.5 50
Fluid C injection time (min) | 20 40
Fluid C viscosity (cP) 75 500
Proppant volume fraction 0.1 0.2
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Figure 1: A realization of the in-situ stress state for a model in the database.

Approximately 500,000 cpu-core*hours were required to run all of the models in the dataset. As a post-processing step,
each of the DAS measurements are scaled by their maximum values and are re-sampled into 124x496 pixel images. The units
of the remaining data and labels are converted to pixels, and are scaled to conform to a standard normal distribution. Each of the
entries in the dataset are then randomly assigned to either the model training (85%) or testing (15%) datasets. To enhance the
training dataset, we add additional entries by considering model symmetry and by performing simple geometric transformations
to the data and labels.
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Figure 2: A realization of the fluid injection schedule for a model in the database.
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Figure 3: An overview of the DNN used to estimate the fracture extents from DAS measurements. The network is split into
several sub-networks which use either convolutional or fully-connected neurons to process the data. The numbers beneath each
sub-network indicate the size and number of neurons used in one realization of this model.

2.3.  DNN Design

A significant advantage of using a DNN to interpret data over traditional methods is that they provide a natural framework
for mapping arbitrary inputs to arbitrary outputs. For example, one of the most successful implementations of DNNs are
image-classification networks, which take a series of M x N arrays for each color channel as input, and output a class label
(Krizhevsky et al., 2012).

As part of our analysis, we designed and trained a group of DNNs to map the observed DAS measurements and known
geometric quantities (the distance from the fiber-optic sensor to the target fracture) to an array of scalar values that describe
the extents of the fracture (height, the top of the fracture, etc.). Because the DAS measurements are essentially monochrome
images, we adopt some of the structures commonly found within image-recognition networks to process the data. Figure [3]
gives an overview of the DNN topology, which is split into a series of sub-blocks:

e Input Layer - this is the entry point for the DNN. The top branch accepts the DAS measurements and the lower branch
accepts the geometric parameters as inputs.

e DAS CNN - this block uses a series of convolutional layers to process the 2D DAS measurements. Batch-normalization
and max-pooling layers are inserted between certain convolutional to improve training stability and avoid over-fitting.

e Geometric NN - this block uses a fully-connected neural network to process the geometric inputs. Similar to the DAS



CNN, dropout layers are inserted between certain layers to improve stability and avoid over-fitting.

e Merged NN - this block begins by flattening and concatenating the outputs of the DAS CNN and Geometric DNN into a
single 1D vector. It then processes these values using a series of fully-connected and dropout layers.

e Feature Layer - this is where the the features of interest are calculated.

The network is implemented in Python using the Keras module (Chollet, 2015) and the Tensoflow backend (Abadi et al.,
2015). We used the adam gradient-descent algorithm to train the network, with a momentum equal to 0.9 and epsilon equal
to le-6. With the exception of the feature layer, which used a linear activation function, each of the neurons in the network
used a ReLU activation function. Because the data labels are scalar values, we used a mean-squared-error loss function for the
network. Using a batch size of 256 points, the network was trained for several hours on a machine that holds two NVIDEA
Tesla GPUs. We record a copy of the network periodically during training for visualization and debugging purposes.

3. RESULTS

3.1. DNN Training

Figure 4] shows the loss function for the network during each epoch of training. Over this period, the loss tends to decrease in a
log-linear fashion. The brief spikes that occur during later epochs are likely due to the batched gradient descent algorithm used
to update the network. Using the independent testing dataset, we found that the average error of the network is approximately
0.2 pixels.

Figure [3] includes a series of images that represent the weights of the top-level convolutional neurons in the DAS CNN
block. Because they directly interact with the input DAS measurements, they are useful for understanding the structures that
the network is looking for in the data.

3.2. DNN Performance

To further explore the behavior of the trained DNN, we calculated the actual/predicted values for each of the models in the
testing dataset. Figure [] shows the distribution of error for each value. These results indicate that 80 to 90 % of the time the
network’s estimate will be within 1 pixel of the true value. In Figure[7} we plot each of these sets as a point cloud, and calculate
error bars within regular bins. These results indicate that the large majority of points are tightly grouped on the expected 1:1
trend-line, and that the prediction error does not vary significantly with the magnitude of the actual parameter. The outliers seen
in these charts tend to occur on fibers located near points where the fracture height rapidly changes.

3.3.  Hydraulic Fracture Example

To demonstrate the behavior of the DNN, we consider an individual example from the testing dataset (see Figures[8|and[9). The
fiber on which recorded DAS measurements was oriented vertically, and was offset 72 and -24 pixels in the x- and y-directions,
respectively from the origin of the target fracture. The actual/predicted values for each of the four geometric parameters
considered were: H (42/41), H_local (24/24), T (28/28), and T _local (24/23).

Looking at the DAS measurements alone, one might be able to recover the local extent values and the arrival of the fracture
tip. By incorporating the known geometric values into the network, the DNN is able to accurately estimate the global extents
of the fracture as well.

4. DISCUSSION

The results of our analysis demonstrate the potential for using ML and DNN analysis to monitor the growth of isolated hydraulic
fractures in the subsurface. A major benefit of this approach is that the trained DNN can be modified through transfer learning
to:

e Incorporate additional data as it becomes available. This could include more complicated numerical simulations or
labeled field data.

o Incorporate additional types of measurements in the subsurface (other fiber-optic sensors, geophones, etc.).

Estimate different parameters in the subsurface (e.g.: fracture aperture).

Monitor entirely different physical processes (e.g.: geothermal heat flow).



100 3
1071 3

1072 3

Loss

10°3 3

1074 T ———
100 10! 102
Epoch

Figure 4: The mean-squared-error loss function for the network during training.
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Figure 5: The weights for each of the twelve top-level convolutional neurons.

In our work we tested many different variations of the DNN we developed to process the DAS data. We found that while
specific numerical hyper-parameters such as the number of neurons do matter, the type and condition of input data are much
more important to the success of the network. Therefore, to make full use of ML approaches, one needs to both understand
how the underlying algorithms are implemented and the physics of the underlying system being analyzed.

The above subsection on the hydraulic fracture example demonstrates the importance of a physical understanding of the
system. The virtual fiber-optic sensor on which the data was collected is located a point where the local fracture height is
about 57% of the global value. We found that when we did not include the sub-block of the network that processes the known
geometric information (Geometric NN) that the network had some difficulty in estimating the global fracture height. From the
perspective of the physics that govern hydraulic fracturing, we expect that the rates of fracture height and length growth to be
balanced. While it is possible to extract the arrival time of the hydraulic fracture from the example DAS, it is not possible to
extract the rate of length growth for the fracture. This is a likely explanation for the reduced performance of the limited network,
because without this information, it would be difficult for the network to extrapolate back along the fracture and estimate its
maximum height.

5. CONCLUSION

In our work, we developed a framework for leveraging machine learning tools to monitor processes within the subsurface, and
illustrated why a physical understanding of the system is a key part of this analysis. Moving forward, we will be extending
our work to incorporate more complicated physical processes, such as problem of simultaneous fracture growth, and will be
experimenting with method to incorporate other physical measurements into the system.
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Figure 6: Histograms showing the error distribution for the features (a) H, (b) H-local, (c) T, and (d) T_local.
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Figure 7: Comparisons between the actual and predicted values for the features: (a) H, (b) H_local, (c) T, and (d) T_local. Each
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Figure 8: The hydraulic fracture generated during for a network test-case, showing the fracture aperture in color, and the
location of the target fiber as a black dashed line.
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Figure 9: The measured DAS for the target fiber.
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