UNCLASSIFIED UNLIMITED RELEASE SAND2019- 14228R

Sandia
National
Laboratories

Final Letter Report for AEgis
Technologies NMSBA Project

Sheraline Lawles
Bobby D. Middleton

November 2019

UNCLASSIFIED UNLIMITED RELEASE

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525.

UNCLASSIFIED UNLIMITED RELEASE

2
UNCLASSIFIED UNLIMITED RELEASE

UNCLASSIFIED UNLIMITED RELEASE

CONTENTS

1. final letter report for AEpis technolopiss NMEba PROJOCEausmsowssmswmsssssmssssommseassmmssssmssssssmion 5
Anpendix A, Maltt APDEOATE TIS curmensussmssorsmmessessommmsmssnosssassnsnsvs oo sosmsmms 1855 eSS RITHR NS 7
LIST OF FIGURES

Figure 1-1. Figure Caption.......cccciiicuiiciniiiiiniiiinisssssssneenenes Error! Bookmark not defined.
LIST OF TABLES

Table 1-1. Table Captionccccoieueiviieriiiiieiiiriicesiseseeeenes Error! Bookmark not defined.

3

UNCLASSIFIED UNLIMITED RELEASE

UNCLASSIFIED UNLIMITED RELEASE

ACRONYMS AND DEFINITIONS

Click here, then press delete to remove guidance.

Delete this page if you do not have acronyms or definitions.

Abbreviation Definition

4

UNCLASSIFIED UNLIMITED RELEASE

UNCLASSIFIED UNLIMITED RELEASE

1. FINAL LETTER REPORT FOR AEGIS TECHNOLOGIES NMSBA
PROJECT

This letter report signals the end of the NMSBA project to help AEgis Technologies (AEGis) find a
way to solve a coupled heat transfer equation for a laser-heated Silicon wafer. Accompanying this
letter report is a MATLAB live script that documents the work done to date and provides a first
attempt at a solution.

The scope of work provided for Sandia National Laboratories (SNL) to document the problem in a
general form in this phase of the work, with the goal of applying for additional funding in Calendar
Year 2020 to attempt a complete solution. SNL staff analytically solved the differential heat equation
and found solutions that reproduce reasonable shapes for heat flux. However, the required
information to provide a complete solution is not available.

The problem is currently stated as two coupled differential heat equations.

dT,
Cljtl:q—Gls(T; —Ts)_Glz(J; _Tz)

dT,
CZT;:GIZ(T; _Tz)_st(Tz —Tv)

(0.1)

This form of the equation treats a single point on the experimental arrangement; this point is
assumed to be a temperature sensor. T is the temperature of the irradiated material (assumed to be
Silicon); T is the temperature of the FR4 composite substrate. However, the exact makeup of the
FR4 is unknown to either AEgis personnel or to SNL staff. Since C; and C; are heat capacity
constants, it is highly likely that the value for C, is suspect. The only other data that are available are
measured values for T taken at a measurement rate of 10 samples per second.

There are also data that have been collected for a different experiment (known as the free-standing
configuration) that allows for calculation of an upper bound on Gy,. This upper bound on G, was
found to be G = 0.0324 J/(cm*-sec-K). In the free-standing configuration, the only heat transfer is
from the silicon to air. In the coupled configuration, heat is also transferred via thermal contact to
the FR4 substrate. Since the conductance to the FR4 is much higher than from silicon to air, the
value for Gy, should be higher in the free-standing configuration.

The basic process for solving the two equations from (1.1) is to set q to zero and solve the coupled,
linear, homogeneous, ordinary differential equations (ODEs) via the use of their common
eigenvalues. This process is outlined in the accompanying MATLAB live script. These equations are
used to find the values for Gz and Gy in terms of G, Ci, and C,. Since only an upper bound is
known for G, a vector of values for Gis was calculated and the corresponding values for Gz and
G were then calculated. Since the equations (1.1) assume positive values for the constants, any
combinations with negative values were discarded as being physically irrelevant. For the MATLAB
live script, a value of 0.1*G was used for Gy, giving values of:

G, =0.0187

. (0.2)

G,, =0.0044
Fitting a curve to the T data for the time period that >0, MATLAB’s dso/ve function was used to
calculate T, during this same time. Once that calculation is performed, the result was then
substituted into the first equation to calculate q.

5
UNCLASSIFIED UNLIMITED RELEASE

UNCLASSIFIED UNLIMITED RELEASE

Although this outlines the basic process for calculating q, it is noted that the scope of work only
required that SNL set up the problem, not solve it completely. This is because discussions
determined that AEGis would likely apply for a second round of funding in CY 2020. As such, the
work produced thus far is actually beyond the original scope of work. The authors of this letter
report urge AEGis to apply for further funding in CY 2020.

Some ways to improve results include:

1. Finding a way to record temperature measurements on both the Silicon and the FR4
substrate.

2. Determining the exact makeup of the FR4 so the value of C; is accurate.

3. Ensuring that the reflectivity of the Silicon is known and provided to SNL for any future
analysis.

6
UNCLASSIFIED UNLIMITED RELEASE

UNCLASSIFIED UNLIMITED RELEASE

APPENDIX A. TEXT VERSION OF MATLAB CODE

Importing shot 37 data, a sample set from the thermally coupled sensor array, temperature data is

animated to help visualize it and choose a centrally located sensor to work with:
clear, clc, close all

load('TofT-Shot-37.mat")

T = RTD.T(1:20,1:20,1:293); % T1

% animated for visualization

tl = T(1:20,1:20,1);

figure(1)

h = image(tl);

colorbar

for i = 1:293
set(h, 'cdata', T(1:20,1:20,1))
pause(0.05)

end

Ambient temperature, T , is found by averaging the values before the signal, ¢, is turned on.

sig = RTD.trig;

for i=1:293
if sig(i) > @.001
sig(i) = 1;
else
sig(i) = o;
end
end

%figure; plot(sig*50)
firstsig = find(sig,1, 'first'); %first timestep of signal = 23
lastsig = find(sig,1, 'last'); %last timestep of signal = 123
Tavg = zeros(20);
for m = 1:20

for n = 1:20

Tavg(m,n) = nanmean(T(m,n,1:41));

end
end
Ts = nanmean(Tavg, 'all’);
Looking at a temperature stillshot of the last timestep when the signal is on, we find that a
reasonable 5x5 centroid range of sensors is found from (9,9) to (13,13). A plot of the temperature
data at sensor (9,9) and then for all centroid sensors is shown.
figure(2)
t146 = T(1:20,1:20,146); % 20x20 array at t = 146
image(t146)
colorbar
title('Sensor Array at t = 14.6(s)"')

7

UNCLASSIFIED UNLIMITED RELEASE

UNCLASSIFIED UNLIMITED RELEASE

Tsingle = squeeze(T(9,9,1:293));
figure(3)
plot(Tsingle); title('Raw Temperature at Centroid, (9,9)');

%Plot of temperature vectors for centroid sensors
figure(4)
for i=9:13
for j=9:13
sensorT = squeeze(T(i,j,:));
plot(sensorT)
hold on
end
end
title(' Temperature for Centroid Sensors (Raw), Shot 37')

Tcent = T(9:13,9:13,1:293); %temp at 5x5 of centroid sensors

We will be exploring a system of equations of the form:

CTy=q-G(T,—-T,) —G;,(T, - T))

G, =Gp(T) —Ty) — Go(T, - T))

(:i_t or T, at the centroid sensors is found using central differencing:
dTdt_cent = zeros(5,5,293);
%figure(5); title('dT/dt of Centroid Sensors (i=9:13, j=9:13)')
for m = 9:13
for n = 9:13
Tmn = squeeze(T(m,n,1:293));
dT = zeros(1,length(Tmn));
dt = 0.1;
for i=1:length(dT)
if i==1
dT(i)=2*(Tmn(i+1l) - Tmn(i));
elseif i==length(dT)
dT(i)=2*(Tmn(i) - Tmn(i-1));
else
dT(i)=Tmn(i+1l) - Tmn(i-1);
end
end
dTdt = (dT')./(2*dt);
dTdt_cent(m-8,n-8,1:293) = dTdt;
%plot(dTdt); hold on
end

8

UNCLASSIFIED UNLIMITED RELEASE

UNCLASSIFIED UNLIMITED RELEASE

end
Using only sensor (9,9) now as a starting point, we let AT, = T}, — T, and fit a two-term exponential
of the form ae® + ce® to the portion of AT, where ¢ = 0. The figure shows the raw cooling

temperature data, as well as the exponential fit.
deltaTcent = Tcent - Ts;

CdeltaT = squeeze(deltaTcent(1,1,150:293));
t =[0.1:0.1:14.4]";

Fitl = fit(t,CdeltaT, 'exp2');

CE = coeffvalues(Fitl);

a = CE(1); b = CE(2); ¢ = CE(3); d = CE(4);
Fit2 = a*exp(b*t) + c*exp(d*t);

figure(6), plot(CdeltaT); hold on
plot(Fit2)

legend('data’', 'fit")

title('Curve Fit of Cooling Temperature at (9,9)")

Using our system of equations above, we let x =T, — T, and y =T, — T;. This also gives x =T},

_.Y:’I;z,and T]—T2=x—y.

For ¢ = 0, this gives us the following equations:

x:_<Gn+Gn>x+<Gn>y
C, C.)
()35,
. o G,)

This system can then be expressed as a matrix equation of the form:
_ G +Gyp G

x G G [x}
Gy _Gp+ Gy
G G

y

Analytically, the solution of this system is of the form:

X - -
[} = Ax,e ¥+ Bxe
y

where x, is the eigenvector (2x1) for scalar-valued 4, and x_is the eigenvector for 4_.
syms Gls G12 G2s C1 C2

all
al2

(G1ls + G12)/C1;
G12/C1;

9

UNCLASSIFIED UNLIMITED RELEASE

UNCLASSIFIED UNLIMITED RELEASE

a2l
a2

G12/C2;
(G2s + G12)/C2;

M = [-all, al2; a2l, -a22];

[V,D] = eig(M);

lambda_m = D(1,1); % eigenvalues as functions of G- and C-values
lambda_p = D(2,2);

x_m=V(:,1); %eigenvectors as functions of G- and C-values

X_p =V(:,2);

The components of this solution correspond with the coefficients of the curve fit for cooling AT, as

follows:
A_=b
Ay=d

B=4

b
Il
+><L|° Tl

eqgnl

b == lambda_m;

egn2 = d == lambda_p;

egns [egnl, eqgn2];

vars = [G1l2, G2s];

S = solve(eqgns,vars);

The above code solves for G|, and G, in terms of C,, C,, and Gy;.
C, and C, are calculated using the following values:

rhol = 2.33; %g/cm”3, density

thkl = 0.05; %cm, thickness of sensor (Vol/Area)

cpl = 0.71; %J/gK, avg. specific heat for Silicon in temperature range
Cl = cpl*rhol*thkil;

rho2 = 1.8; %g/cm”3 or 1800 kg/m”3 (what Jim is using)

thk2 = 0.159; %cm

cp2 = 0.8; %J/gK

C2 = cp2*rho2*thk2;

G, is calculated as a fraction of the G value computed in shot 25. The matrix Gcompare outputs
pairs of G, and G,, corresponding to values of G, calculated as j = G for ;from 0.1 to 1.0 in

increments of 0.1.

G = 0.0324; % from shot 25, rounded to 4 decimals
G12 = zeros(1,10);

G2s = zeros(1,10);

for i = 1:10

10

UNCLASSIFIED UNLIMITED RELEASE

UNCLASSIFIED UNLIMITED RELEASE

Gls = 0.1*i*G;
G12(i) = double(subs(S.G12(1,:))); % gives numeric solutions for G12 and G2s
G2s(i) = double(subs(S.G2s(1,:)));

end
Gcompare = [G12;G2s]

Gls = 0.1*G; %manually chosen from Gcompare
G12 = Gcompare(1,1);
G2s = Gcompare(2,1); % for results (A), set G2s = Gls

Values for 4_,4,,x_, and x, are now calculated by substituting in numeric values for
C, (), Gy, Gy, and Gy, . The solutions, x =T, — T, and y = T, — T, are calculated and plotted.

lambda_m = double(subs(lambda_m)); %gives numeric eigenvalues
lambda_p = double(subs(lambda_p));
lambda_m = lambda_m(1); lambda_p = lambda_p(1);

X_m
X_p

double(subs(x_m)); %gives numeric eigenvectors
double(subs(x_p));

B = a/x_m(1); %gives A & B values
A = c/x_p(1);

t = [0.1:0.1:14.4];
A*x_p(1)*exp(lambda_p*t) + B*x_m(1l)*exp(lambda_m*t);
y = A*x_p(2)*exp(lambda_p*t) + B*x_m(2)*exp(lambda_m*t);

X
1l

figure(7); plot(t,x,t,y);
legend('x','y"), title('x and y, using Gls = 0.1*G, G2s \= Gls')
xlabel('x = T1 - Ts'), ylabel('y = T2 - Ts');

From here, we turn to a computation of 7, while signal 4 is on, leading to the desired final
computation of 4.
Rearranging the second equation in our system,

CiTi=q-G(T) - T,) - G;,(T) - T)

G, =Gp(T) - Ty - Gy(T, - T))

we get a differential equation

L (Gt Gy G Gy,
ne-(H) () (E)r

11

UNCLASSIFIED UNLIMITED RELEASE

UNCLASSIFIED UNLIMITED RELEASE

To use Matlab's dsolve function, we fit a function to the 7|, measured data for the period that 4 is on
and then solve for T, symbolically. (Alternately, one may choose to use the ode45 function and the

data itself.)

% Fit for T1l while g is on, from timestep 42 to 142
t2 = [0.1:0.1:10.1]";

Tl on = squeeze(Tcent(1,1,42:142));

figure(10), plot(Tl_on), title('T1l while g is on')
fit_deltaT on = fit(t2, T1 on, ‘exp2')

ab = coeffvalues(fit_deltaT_on);

a = ab(1); b = ab(2); c = ab(3); d = ab(4);

syms T2(t) %G1l2 G2s C2 - add these back to simplify trying multiple values

beta = (G12 + G2s)/C2;

Tlegn = a*exp(b*t) + c*exp(d*t);

egn = diff(T2) == -beta*T2 + (G12/C2)*(Tleqn) + (G2s/C2)*Ts; %another option is
ode45

T2egn = dsolve(eqgn)

The symbolic solution includes an arbitrary constant in the form of the letter C with some appended
number (other than 1 or 2), e.g. C7. This constant is given a new appended number every time the

code is run during an open session, so the following code currently needs to be altered accordingly
based on T2eqn from the previous step. The constant is then solved for using initial condition 7, at

t=0.

% solve for constant using initial condition <--- must look set below C
% number to that of constant in T2eqgn

t = 0;

evalC3 = Ts == subs(T2eqn);

syms C3

constant = double(solve(evalC3, C3));

C3 = constant;

We can now substitute in all necessary values and solve for T, over the period when g4 is turned on.
T, and T, are plotted together over this period.

t = [0.1:0.1:10.1]";

T2_on = double(subs(T2eqn));

figure(11), plot(t,T2_on), title('T1l and T2 while q is on'), xlabel('t'),
ylabel('T2")

hold on

plot(t,T1_on), legend('T2','T1")

Finally, heat flux is calculated using the first equation in our system, rearranged:

q=CT+G(T\—T) + Gp(T, - T)

The code currently uses a raw % that has not been smoothed, which then shows up as noise in our

calculated 4. The scaling of 4 values is off, but the shape is showing to be accurate to the signal on

and off periods.
12

UNCLASSIFIED UNLIMITED RELEASE

UNCLASSIFIED UNLIMITED RELEASE

% Calculating q while g is on

% dT/dt while q is on, discarding constant portion at end of signal
dTdt_on = squeeze(dTdt_cent(1,1,42:142));

figure(9); plot(dTdt_on)

title('Raw dT/dt of T1 while gq is on')

g_on = C1*dTdt_on + G1s*(T1l_on - Ts) + G12*(T1l_on - T2_on);
figure(12), plot(t,q_on), title('Calculated q while gq is on')
g_on_smooth = smoothdata(q_on, 'gaussian’,20)";

hold on, plot(t,q_on_smooth), legend('raw q', 'smooth q")

The following confirms that heat flux is correctly calculated when ¢ = 0 and requires smoothing for

the same reason as above.

% Calculating q while q is off

t = [0.1:0.1:14.4];

Tl off = x + Ts;

T2 off =y + Ts;

dTdt_off = squeeze(dTdt_cent(1,1,150:293));

g_off = C1.*dTdt_off' + G1ls.*(T1l_ off - Ts) + G12.*(T1l_off - T2_off);
figure(13), plot(t,q_off),title('Calculated q while q is off")
g_off_smooth = smoothdata(qg_off, 'gaussian',20);

hold on, plot(t,q_off _smooth), legend('raw q','smooth q")

13

UNCLASSIFIED UNLIMITED RELEASE

