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ABSTRACT
Often, the presence of cracks in manufactured components are detrimental to their overall
performance. We develop a workflow and tools in this report using CUBIT and Sierra/SM for
generating and modeling crack defects to better understand their impact on such components. To
this end, we provide a CUBIT library of various prototypical crack defects embedded in pipes and
plates that can be readily used in a wide range of simulations, with specific application to those
used in Gas Transfer Systems (GTS). We verify the accuracy of the J-integral post-processing
capability in Sierra against solutions available in existing literature for the cracks and geometries
of interest within the context of linear elastic fracture mechanics, and describe ongoing efforts to
quantify and assess numerical errors. Through this process, we outline overall suggestions and
recommendations to the user based on the proposed workflow.
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1. INTRODUCTION

In Gas Transfer Systems components, defects and flaws introduced during the manufacturing
process can be detrimental to the overall performance and reliability of the part. To better
understand and qualify such components, GTS analysts typically assume the presence of defects
under a certain size and perform subsequent analyses accordingly. To this end, the capability to
compute the J-integral to predict driving forces for such defects using Sierra was previously
introduced in [10], but lacked generality and robustness since its initial onset.

In the work proposed here, we attempt to simplify and streamline the workflow needed to run a
J-integral simulation for GTS analysts by leveraging recent code development efforts to test,
verify and improve L2-projections and interpolations (frequently termed "L2 transfer") between
meshes in Sierra. With the workflow proposed here, the previous computationally expensive
models can also be simplified by performing a mapping procedure, wherein a full model is
mapped using an L2 transfer in Sierra to a smaller subset mesh with significant speedup.
Additionally, by performing these mappings, a greater degree of flexibility in choice of element
formulation can be attained for other pieces of the analysis (since the J-integral calculations have
traditionally only been supported for the uniform gradient hexahedral elements).

We also aim to introduce more generality in the previous approach by developing a templated
defect library that can readily be inserted into a variety of common geometries for GTS
components, such as plates with elliptical flaws and pipes with penny-shaped, longitudinal, or
circumferential cracks to assess performance. This library will enable us to create an additional
step (as part of our Full Circle Lifecycle modeling approach) where a flaw might be added along
the way, and subsequent analysis performed to assess the performance down the road. To this end,
we provide verification of the defects under investigation here assuming linear elastic fracture
mechanics to enhance the credibility associated with our Full Circle approach. We note that
additional work will be conducted in FY20 to reformulate the J-integral to accurately incorporate
the manufacturing history accumulated through a series of steps to obtain the full benefits of the
Full Circle approach, which is outside the scope of this report at this point in time.

The remainder of this work is organized as follows: In chapter 2, we provide illustrations and
templates of geometries and meshes for the defects under study using CUBIT, including
parameters to be edited for generality, which are included in full in appendix A. The results for
the studies are described in chapter 3, including verification of the results with analytical solutions
or other closed-form polynomial expressions available in prior works. Finally, we conclude with
some discussion of the main contributions of our approach and suggestions for future work.
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2. GENERATION OF GEOMETRIES AND

MESHES

This section contains images of the geometries and meshes produced by the CUBIT journal files
in appendix A. Each section focuses on a single geometry/mesh, which will be used to compute
the fields and post-processed J-integral in chapter 3. Note that all geometries presented here have
certain symmetries (e.g. planar symmetry or axi-symmetry) which are assumed when generating
the meshes in order to minimize the overall degrees of freedom.

2.1. PLATE WITH EMBEDDED ELLIPTICAL FLAW

elliptical flaw

(a)

/
/

Y

_ - -

(b)

,,

Figure 2-1. Plate with embedded elliptical flaw: Schematic of embedded
elliptical flaw with (a) specimen dimensions and (b) flaw dimensions
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Figure 2-2. Plate with embedded elliptical flaw: Reduced mesh of em-

bedded flaw employing symmetry along the x-, y-, and z-axes

(a)

(c)

(b)

Figure 2-3. Plate with embedded elliptical flaw: Mesh along the crack

front for (a) fine hexahedral mesh, (b) coarse hexahedral mesh, and (c)

tetrahedral mesh. Nodes and curve on crack front are shown in purple.
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2.2. PIPE WITH LONGITUDINAL PENNY-SHAPED CRACK

embedded flaw

z y

(a)

L

2i 

(b)

t

(c)

Figure 2-4. Penny-shaped longitudinal crack: Dimension parameters

shown for (a) entire cylinder, (b) region near crack, and (c) top view of

cylinder

Figure 2-5. Pipe with longitudinal penny-shaped crack: Mesh with crack

front curve and nodes shown in purple
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2.3. PIPE WITH LONGITUDINAL THROUGH CRACK

embedded flaw

z y

x

(a)

L

(b)

Figure 2-6. Pipe with longitudinal through crack: Dimension parame-

ters shown for (a) entire cylinder, and (b) region near crack

Figure 2-7. Pipe with longitudinal through crack: Mesh with crack front

curve and nodes shown in purple
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2.4. PIPE WITH CIRCUMFERENTIAL PENNY-SHAPED

CRACK

embedded flaw

(a)

L

(b)

Figure 2-8. Pipe with penny-shaped circumferential crack: Dimension

parameters shown for (a) entire cylinder, and (b) region near crack

Figure 2-9. Pipe with penny-shaped circumferential crack: Mesh with

crack front curve and nodes shown in purple

14



2.5. PIPE WITH CIRCUMFERENTIAL CRACK

embedded flaw

.14

i

(a)

(b)

Figure 2-10. Full circumferential crack: Dimension parameters shown

for (a) entire cylinder, and (b) region near crack

Figure 2-11. Full circumferential crack: Mesh with crack front curve and

nodes shown in purple
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3. VERIFICATION OF J-INTEGRAL

In this chapter, the distribution of the J-integral computed in Sierra along the crack front is
presented for the geometries and configurations from chapter 2. This model problem primarily
serves to illustrate the error in the numerically computed J-integral compared to the exact values.
For the purpose of verification, it is assumed that the strains remain small for all cases, and that
the loads are applied in a quasi-static manner. With this assumption, the material response is
characterized within the context of linear elasticity. The elastic constants are assigned as
E = 200GPa and v = 0.25, which are values typical for stainless steel. To serve as a contrast, the
example in section 3.2.1 assumes a viscoplastic constitutive law, though strains are assumed to be
small enough to represent a linear elastic material response. For simplicity, the configuration and
defect geometries remain fixed for all cases. It is assumed that the cracks are "small"
(approximately 10% of the wall thickness for thick-walled pipes).

3.1. PLATE WITH EMBEDDED ELLIPTICAL FLAW

UNDERGOING INTERNAL PRESSURE

3.1.1. Model Description

The schematic of the plate and embedded elliptical crack is shown in fig. 2-1. The selected
parameters for the geometry of the plate and embedded elliptical crack is shown in table 3-2. The
elliptical flaw is exposed to a outward-oriented (towards the crack faces) pressure of 100kPa.

The analytical stress intensity factor is presented in [12] along the crack front of an elliptical flaw
embedded in an infinite medium and subjected to a far-field stress along the z-axis, which is

name symbol value
width w 5.0 m

thickness t 2.0 m
height h 5.0 rn

major radius a 0.2 rn
minor radius b 0.1 m

Table 3-1. Plate with embedded elliptical flaw: Dimensions of plate and
embedded flaw
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expressed for a given point p as:

CY'VTrb 2 b2 2 
1/4

KP =
I E(k) 

( 
sin (T 

a
) + cos (T)) , (3.1)

where a is the far-field stress, a and b are the major and minor radii (respectively) such that
a > b, and (19 is the angle between a and the projection of the point p in the direction orthogonal to
a onto a circle which is circumscribed around the ellipse, as is illustrated in fig. 2-1b. Moreover,
E(k) is the complete elliptical integral of the second kind defined as follows:

E(k) = fox/2 \/1 — k2sin2(0)dO, k = 1— 
b2
2 .a

(3.2)

To attribute relevance of eq. (3.1) to the problem-at-hand, the infinite medium is approximated by
a plate of finite (albeit sufficiently large) dimensions. As examined in [11] (of particular
importance to the current setting are figs. 6c-d), the placement of physical boundaries plays a
negligible role in the deviation of the stress intensity factor along the elliptical crack front from its
analytically exact counterpart for cases where the ellipse is not very flat (i.e. b 1 a > 0.4), and the
minor radius dimension is roughly less than 40% of the thickness. In addition, superimposing a
far-field stress equal and opposite to the assumed value as well as an inward-oriented pressure on
the open crack faces generates a closed-form shown which identical to eq. (3.1) due to the fact that
the case where the inward-oriented pressure is applied on the crack faces leads to a stress intensity
factor of ICI = 0, and the assumption that the material response is linear elastic [1, Chapter 2].
Thus, with the appropriate assumptions, the exact solution in eq. (3.1) can be consistent with the
stress intensity factor expected for the geometry and loading shown in fig. 2-1.

i

1

a

I i

1

t 17 t

a a
1 i 1' t t
1 1 1 1 1 1

t t t
Figure 3-1. Plate with embedded elliptical flaw: Superposition principle
illustrating equivalence of eq. (3.1) for far-field and pressure loads
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3.1.2. Error in J-integral Due to Mapping

In the first model problem, a meshed elliptical flaw and plate is used to produce the elastic fields
in Sierra based on the loading and boundary conditions presented in section 3.1.1. Symmetry is
assumed along the x-, y-, and z-axes (as shown in fig. 2-2), hence reducing the total number of
elements by a factor of 8. The base simulation is performed for: (a) 1.0e+06 hexahedral uniform
gradient elements (baseline case), (b) 1.2e+05 hexahedral selective deviatoric elements, and (c)
6.5e+05 composite tetrahedron elements. The relative element sizes for the three cases are shown
along the cracked plane in fig. 2-3.

The relevant fields on the base mesh in cases (a)-(c) are mapped onto a template mesh composed
of uniform gradient hexahedra due to the limitation that the J-integral capability in Sierra can
only be computed on this element type. The level of element refinement along the crack front is
predetermined for all cases to ensure that the density of integration points is roughly preserved
between base and template mesh. A single selective deviatoric element (which by definition,
exactly integrates bilinear deviatoric fields) consists of 8 integration points; the composite
tetrahedron element consists of 4 integration points; and the under-integrated uniform gradient
element consists of 1 integration point. To maintain the same density of integration points in the
base mesh composed of hexahedra and composite tetrahedra, the element size along the crack
front is selected to fit approximately 4 and 8 uniform gradient elements, respectively. Note that
the base and template mesh in case (a) coincide, hence the error in the mapped fields are directly a
product of the global L2-projection. This scenario serves as a useful baseline in differentiating
projection errors from interpolation errors.

The distribution of the numerically computed J-integral for integration radii ranging from
1.0e-3 m to 6.0e-3 m and its exact counterpart is shown in fig. 3-2 along the crack circumference.
The numerically computed J-integral approaches the exact value as the integration radius
increases in all cases, which is largely due to the decreasing influence of the plastic zone near the
crack tip on the fields enclosed by the semi-circular integration domain. The J-integral in cases
(b) and (c) generally exhibits higher errors with a small integration radius due to the increasing
effect of the errors in the mapped fields. This effect is more pronounced in case (c) since the base
mesh consists of tetrahedra which are unstructured near the crack tip. In this case, the greater
misalignment between the mesh composed of composite tetrahedra and the mesh composed of
uniform gradients leads to oscillations and a decrease of regularity in the distribution of the fields
projected onto the latter mesh, as is illustrated in the comparison of the crack-face normal
component of the projected Cauchy stress for both cases (b) and (c) in fig. 3-3. Lastly, the
J-integral deviates from the exact value near the surface cutting through the major radius of the
ellipse due to the fact that the semi-circular integration domain does not fit within the bounds of
the base mesh domain, which emanates from the combined presence of a boundary placed to
enforce symmetry as well as the high relative curvature of the crack front near this boundary.

The path independence of the J-integral is achieved to varying degrees when integrating the
projected fields in cases (a)-(c), as highlighted by the nearly flat curves in fig. 3-4. The J-integral
deviates from the expected path-independent value integrating the projected fields for cases
(a)-(c) throughout the crack circumferences, though the differences remain visibly small. The
characteristic "kinks" in the J-integral distribution occurs due to the geometric constraints posed
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by the curvature of the crack circumference, as elaborated in the prior paragraph. Based on the
elliptical geometry of the flaw and the fact that the integration radius at a given point varies
normal to the crack front, the distance at which the integration radius intersects with the boundary
representing a symmetry plane is expressed as

\/ [( a)COSO] 2 + (b sin0)2 (3.3)

for a given set of major/minor radius a and b, respectively, and angle from the major radius O. To
ensure that the domain of integration used to compute the J-integral does not intersect with the
symmetry boundary for all angles , it is sufficient to set that maximum integration radius as

min (—
b2
,b) .

a
(3.4)

In scenarios where defects and cracks exist in irregular geometries as is typical for numerous
engineered components, it is convenient to compute the J-integral on a simplified sub-region (also
termed template geometry) which encloses a finite region around the original defect. The fields
on the geometry computed in the primary simulation are transferred via an L2 projection and
interpolated onto the relevant portions of the template geometry where the J-integral procedure
takes place. This process is graphically illustrated in fig. 3-5 for the simulations of cases (b) and
(c) with a toroidal template geometry. In this case, a quarter of the torus intersects the original
plate geometry, and hence, the projected fields are only relevant in this region. The J-integral
averaged along the portion of the torus intersecting the original flaw is path-independent for both
cases (b) and (c) for integration radii greater than 20% of the flaw radius (designated as r,nax) with
consistent errors on the order of 1% relative to the exact LEFM J-integral, as shown in fig. 3-41.

1These results were computed on the current version of Sierra/Master due to recent fixes in the J-integral capability
that allows for integration along a crack front greater than 180°. These fixes will be available in the next release
(version 4.54).
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Figure 3-2. Plate with embedded elliptical flaw: J-integral distribution

along crack circumference as a function of 0 (as defined in fig. 2-1b)

for base mesh consisting of (a) uniform gradient hexahedra, (b) selec-

tive deviatoric hexahedra, (c) composite tetrahedra. Exact (analytical)

distribution is shown in black.
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(a)

(b)

(c)

Figure 3-3. Plate with embedded elliptical flaw: ZZ-component of

Cauchy stress on template mesh consisting of uniform gradient hex-

ahedra projected from mesh consisting of (a) uniform gradient hexahe-

dra, (b) selective deviatoric hexahedra, and (c) composite tetrahedra

21



name symbol value (m)

width w 20.0

thickness t 2.0

height h 20.0

major radius a 0.2

minor radius b 0.1

Table 3-2. Plate with embedded elliptical flaw: Dimensions
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1.2 - no projection (ug)

ug to ug
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---------------------------------------------------------------

-- --- — 
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0.0 0.2 0.4 0.6 0.8
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1:0

Figure 3-4. Plate with embedded elliptical flaw: J-integral value as a

function of integration radius for cases (a)-(c) relative to those com-

puted with no projection on the base mesh
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Figure 3-5. Plate with embedded elliptical flaw: ZZ-component of

Cauchy stress on toroidal template mesh consisting of uniform gra-

dient hexahedra projected from mesh consisting of (a) selective devia-
toric hexahedra, and (b) composite tetrahedra.
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Figure 3-6. Plate with embedded elliptical flaw: Error in

circumferentially-averaged J-integral relative to analytical solution

based on fields projected onto torus

3.2. THICK-WALLED PIPE WITH LONGITUDINAL CRACK

The work presented in this section is motivated by burst experiments done in [6], which presented
experimental data of a circular cylinder loaded internally with pressure. Both ends of the cylinder
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were welded, and the top end was kept fixed. In addition, volume change during loading was
measured by immersing the cylinder in a water bath. A flaw was machined longitudinally along
the entire cylinder in order to control the location of crack initiation/propagation. The test was
conducted both hydraulically and pneumatically. In each scenario, the relation between pressure
and volume change was compared for an uncharged specimen, a Deuterium-charged specimen,
and a Helium-charged specimen. The goal of the current work is to quantify the errors in the
numerically computed J-integral relative to the closed-form approximations available in existing
literature (namely those presented in [13, 1]) for an internally pressurized cylinder similar to the
one used in [6].

3.2.1. Penny-Shaped Crack

The geometry and mesh layout is shown in figs. 2-6 and 2-7. The mesh consists of approximately
183, 000 10-noded composite tetrahedra for a total of roughly 270, 000 degrees of freedom. The
crack and cylinder dimensions are shown in table 3-3. In addition, the top and bottom boundaries
of the cylinder are attached to rigid end caps that are each 7.6 mm thick. The crack radius was
selected as 10% of the wall thickness corresponding to a/t = 0.1, essentially making it a "small"
crack. The crack profile is semi-circular, therefore a/c = 1. The end cap thickness was chosen as
an arbitrary large number to provide rigidity at the top and bottom cap-cylinder interfaces as well
as on the end caps themselves. Note that similar results should be observed without end caps by
fixing the boundaries of the edge of the cylinder.

name symbol value (mm)
Length L 76

thickness t 1.3
crack minor radius a 1.3
crack major radius c 1.3
pipe outer radius R, 10
pipe inner radius Ri 8.7

Table 3-3. Pipe with Iongitudinal penny-shaped crack: Dimensions

The boundary conditions include pressure on all interior surfaces (including the crack face), and
fixed displacements on the edges of the top and bottom caps. Additionally, symmetry boundary
conditions were applied on the longitudinal surface shown in fig. 2-7. As a side note, additional
symmetry could have been implemented on a horizontal plane that cuts through the crack center
in fig. 2-7. This was not done intentionally since boundary conditions on the bottom cap are
intended to allow longitudinal motion.

The material is assumed to be 304L stainless steel, with the material parameters fit for the
dynamic strain aging (DSA) constitutive/plasticity model in Sierra [7, 3]. The selected material
parameters are shown in table 3-4. Note that the results presented herein should not be affected by
the material behavior due to the assumption of LEFM. As a verification of the
material-independent properties of the stress intensity factor (and hence the J-integral within the
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LEFM regime), the values of the J-integral were nearly identical when changing the material to
neo-Hookean.

parameter name value units
Young's modulus 200.0E+09 Pa
Poisson ratio 0.25

initial REX volume fraction 1.0E-04
flow rule exponent temperature dependence 5.699E+03 K

rate independent yield constant 1.0528E+10 Pa
rate independent yield temperature dependence 2.688E+05 K

rate independent yield temperature dependence 2 1.87E-03 1/K
rate independent yield temperature dependence 3 8.683E+02 K

rate independent yield temperature dependence 4 3.316E+01
flow rule coefficient constant 9.178E-02 1/s

isotropic dynamic recovery constant 8.565E+02
isotropic dynamic recovery temperature dependence 5.419E+03 K

isotropic hardening shear coefficient 0.01
recrystallization kinetics temperature dependence 5.0E+04 K

recrystallization kinetics mobility coefficient 8.846E+16 1/PaP
recrystallization kinetics mobility exponent, ß 5.431E+00

recrystallization kinetics boundary energy dependence 1.1E+16 K/s/Pa2
recrystallization kinetics multiple cycle correction factor 1.0

recrystallization kinetics boundary area exponent 1 0.667
recrystallization kinetics boundary area exponent 2 1.333

misorientation variable hardening constant 1.67E-03 m/s/pa7
misorientation variable hardening exponent, y 1.0

temperature option 0
plastic dissipation factor 0.95

density for plastic dissipation calculations 8.004E+03 kg / m3

specific heat for plastic dissipation calculations 6.67E+02 J/kg/K
initial temperature for uncoupled adiabatic heating 294.11 K

temperature for post-processed yield strength 294.4 K
strain rate for post-processed yield strength 1.0E-03 1/s

Table 3-4. Pipe with longitudinal penny-shaped crack: DSA material
properties 304L stainless steel

The pressure was ramped linearly from 0 to 1 MPa within the span of 10 s in a total of 5 time
steps. Plasticity dominates the time dependence of the initial/boundary-value problem, however,
it is highly localized at the crack tip due to the low applied pressure relative to the material's yield
stress. Therefore, the response of the cylinder to the applied pressure is essentially quasi-static,
which implies a low sensitivity of the solution to a refinement in the time step. This correlation is
confirmed by observing that the L2-norm of each component of the Cauchy stress is nearly
identical (deviations less than 1%) when refining the number of time steps to 20, 50, and 100.
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With these observations in mind, it suffices to conclude that the selected time step of 2 s is fine
enough to temporally resolve the rate-dependent fields. Though no rigorous convergence
properties are shown for mesh refinement (h-refinement) in this report, the values of the J-integral
were fairly consistent to within 1% of the values obtained with the coarse mesh.

The second region consisted of an L2-projection that was performed on the main mesh, and
subsequently interpolated onto a template mesh along the crack front shown in fig. 3-7. Since the
entire cylinder is difficult to mesh with hexahedral elements, a template model was created by
sweeping only along the crack front. This geometry allowed for a simple meshing scheme with
hexahedral elements where the J-integral can subsequently be computed. The J-integral was
computed on the template mesh shown in fig. 3-7, with approximately 3 and 5-9 hexahedral
elements fitting inside each tetrahedron along the crack front and end planes adjacent to the inner
radius (respectively), which is roughly sufficient to maintain the density of integration points
between the main and template meshes (refer to section 3.1.2 for implementation details of
mesh-to-mesh transfers using L2-projections and interpolations).
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Figure 3-7. Pipe with longitudinal penny-shaped crack: Comparison of
the main model mesh using tetrahedral elements (blue), and the swept
hexahedral template mesh around the crack tip used for the J-integral
computations (red)

The value of the J-integral for various angles from the deepest point in the crack as a function of
the integration radius is shown in fig. 3-8. The values of the J-integral (regardless of angle) are
steadily increasing until reaching an integration radius of approximately 3.0e-05 m. Without the
pressure correction, the J-integral values reach a peak and slowly decreases with increasing
integration radius. In contrast, the pressure-corrected J-integral maintains a nearly constant value
for all angles after reaching a contour integration radius of approximately 3.0e-05 m. This
confirms the expected path-independence of the pressure-corrected J-integral, as was asserted in
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[10, 5]. The J-integral used in subsequent computations is assumed to be converged if the
numerical value is obtained form the region where it is path-independent, which will be termed
path-converged.

The value of the J-integral increases as the angle from the deepest point increases, thus indicating
that the highest value is on the crack tip adjacent to the inner wall of the cylinder. In [2, 4, 8], the
deviation of the stress intensity factor along the crack front is quantified using a non-dimensional
influence function defined as

ICI
h (3.5)

aora (cos20 + a2/c2sin2 0)1/4
E (k)

In the above equation, K1 is the mode-I stress intensity factor,
cro = p((R01Ri)2 + 1)1 ((R01Ri) — 1) is the effective stress, E(k) is the complete elliptical integral
of the second kind which for k = 0 (elliptic modulus of a circular crack) is approximately 1.6, and
a and c are the through-thickness and longitudinal radii of the crack (as shown in fig. 2-7),
respectively, which are equal in this specific case. Note that the angular variation factor that
includes the sine and cosine of 0 does not vary with the angle from the deepest point, 4), since the
crack is circular. Hence, the only variable that affects the influence function is the change in K1.

The variation of the influence is plotted for a path-converged J-integral in fig. 3-9 as a function of
the angle from the deepest point along the crack. As expected based on the trends shown in
fig. 3-8, the J-integral increases nonlinearly from the deepest point of the crack to the end
adjacent to the inner wall of the cylinder, with the steepest slope at around 40°- 70°. The trend
shown in fig. 3-9 is identical to those illustrated in [2, 4, 8]. However, the values obtained here are
approximately 10-15% higher than those obtained in [2, 4, 8]. This can potentially be explained
by the fact that the aforementioned prior works do not account for pressure on the crack face, and
thus, assume that only the inner wall of the cylinder is loaded. In addition, the crack front here
contains a finite notch radius, which could add a potential source of variability in the value of the
stress intensity factor2.

A closed-form expression was obtained in [13] that accounts for pressure on the crack faces, and
corrects the J-integral appropriately by using the technique developed in [5]. The stress intensity
factor at the deepest point of the crack tip is of the following form

2It is well-known that all cracks tips are blunted to some extent, and are thus inherently notch-shaped. The degree
of blunting determines the shape of the notch. In the numerical modeling of crack tips, the use of small notches
serves an additional purpose of preventing significant mesh distortions when the crack undergoes finite deforma-
tions/plasticity. Moreover, the presence of the notch in the simulation geometry prevents stress singularities which
would otherwise be present for a linear elastic material with a sharp crack tip. Readers are referred to [9] for more
details on the numerical treatment of notches and their effect on accuracy.
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In eq. (3.6), R is the radial distance from the cylinder center to the deepest point of the crack, t is
the wall thickness as is defined in fig. 2-7, and p is the internal pressure. The stress intensity
factor at the deepest point using the pressure-corrected J-integral in Sierra is 0.111 MPa-Vrn
whereas the computed stress intensity factor using eq. (3.6) is 0.109MRWR. The current results
thus overestimate the stress intensity factor based on eq. (3.6) by approximately 2%, which is well
within the 4% bounds provided in [13].
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Figure 3-8. Pipe with longitudinal penny-shaped crack: Comparison of
the J-integral as a function of the contour integration radius with no
correction terms (left) and with the pressure correction (right)
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Figure 3-9. Pipe with longitudinal penny-shaped crack: The influence
function based on a path-converged path-independent J-integral as a
function of the angle from the deepest crack point

3.2.2. Through Crack

The relevant geometry and mesh of a pipe with a sharp crack embedded longitudinally along the
entire length of the cylinder are shown in figs. 2-6 and 2-7. The selected dimensions are shown in
table 3-5. The mesh consists of approximately 214k 4-noded hexahedral elements which leads to
approximately 227k degrees of freedom per direction. A single integration point is used for each
element, which corresponds to the uniform gradient (UG) element in Sierra. The J-integral
capability is already supported for UG elements, and hence no additional projections are
necessary to perform the relevant computations3. The inner surface (including the through crack)
are exposed to a 1MPa tensile pressure (oriented radially outwards). The top and bottom ends are
held fixed in the z-direction, and are allowed to move in the x- and y-directions. With these
boundary conditions, The ends of the cylinder are free to expand and contract, thus corresponding
to a long (i.e. "infinite") cylinder with a flaw embedded along the entire length.

The closed-form expression for the stress intensity factor along the longitudinal flaw according to
the work of [13] is

KI 
2pR,  

= OraF , (3.7)

3It is well-known that UG elements are not robust for many high-deformation and/or plasticity-inducing simulations.
In the case of LEFM, we assume that UG elements are sufficient in producing accurate fields despite the fact that
there are consistent integration errors.
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where p is the pressure and F a the geometry-dependent function defined as

a a 
4

F = 1.1+A [4.951 (—
t
) 

2 

+1.092 (7) ,

(0.125 Ri — 0.25) 
Ri
—
t
 E [5,10]

Ri
(0.2R — 1.0) —

t 
e (10,20] •

undefined otherwise

(3.8)

(3.9)

The error in the J-integral computed in Sierra relative to the one based on the the expression for
K1 in eq. (3.7) is shown in fig. 3-10. With the assumed geometry/mesh, and loading/boundary
conditions mentioned above, the error in the J-integral converges at approximately 3%.
Additionally, the error maintains its value for all integration radii greater than 20% of rma, thus
illustrating the path-independence of the J-integral.

name symbol value (mm)
Length L 20

thickness t 1.3
crack length a 0.13

pipe outer radius R0 10
pipe inner radius Ri 8.7

Table 3-5. Pipe with longitudinal through crack: Dimensions

■

0.0 0.2 0.4 0.6 0.8 1.0

normalized integration radius r/rmax

Figure 3-10. Pipe with longitudinal through crack: Error in J-integral as
a function of integration radius
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3.3. THICK-WALLED PIPE WITH CIRCUMFERENTIAL

CRACK

In this section, the error in the J-integral relative to the closed-form values based on the stress
intensity factor from [13] is evaluated for a pipe of similar dimensions to the ones presented in
section 3.2 with both a penny-shaped and fully axisymmetric crack oriented circumferentially.
With this crack orientation, the force that contributes to the mode-I opening of the crack (with the
assumption of small deformation) comes from the pressure on the exposed crack faces as well as
the pressure on the capped ends of the cylinder which generate additional tensile tractions. Due to
the superposition principle described in section 3.1, the net effect of these forces can be captured
by simply applying a longitudinal tensile traction at the ends of the cylinder. Therefore, the
pressure acting on the interior and end caps is neglected in the following examples.

3.3.1. Penny-Shaped Circumferential Crack

The relevant geometry and mesh for a penny-shaped crack embedded circumferentially inside a
pipe is shown in figs. 2-8 and 2-9. The selected dimensions are shown in table 3-6. The mesh
consists of 589k uniform gradient hexahedral elements which corresponds to 615k nodes. The top
boundary is loaded to 1MPa, and symmetry is assumed along the mid-length surface where the
embedded crack lies.

The stress intensity factor from [13] for the deepest point along the crack (in the midpoint) is
given as

Kz = crt

In eq. (3.10), crt is the tensile stress defined as

ica
—F .

P
=

27cRavgt

(3.10)

(3.11)

where P is the axial load, and Ravg = 1/2(Ra — Ri). The geometry-dependent functions Q4 and F
are defined as

and

Q = 1+ 1.464(a/01'65 , (3.12)

F = 1 + [0.02 + a (0.0103 + 0.00617a) + 0.0035 (1 + 0.7a) (Ravg/t 5)1 , (3.13)

respectively. In eq. (3.13), a = (a2)/(2ct).

The J-integral error from the values computed in Sierra compared to the one based on the stress
intensity factor in eq. (3.10) is shown in fig. 3-11. The error stabilizes at approximately 1% for

4Note that [1] defines the function Q in terms of (a/2c) rather than (a 1 c), which is an error.
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integration radii greaer than 20% of rmax, indicating that the value of the numerically computed
J-integral eventually reaches path-independence as the integration radius increases.

name symbol value (mm)
Length L 20

thickness t 1.3
crack length a 0.13
crack width 2c 0.507

pipe outer radius R0 10
pipe inner radius Ri 8.7

Table 3-6. Penny-shaped circumferential crack: Dimensions

0.0 0.2 0.4 0.6 0.8 1.0

normalized integration radius r/rmax

Figure 3-11. Penny-shaped circumferential crack: Error in J-integral as
a function of integration radius

3.3.2. Full Circumferential Crack

The geometry and mesh of the pipe with a penny-shaped crack oriented circumferentially is
shown in figs. 2-10 and 2-11. The relevant dimensions are shown in table 3-7. Axisymmetry of
both flaw and geometry is assumed, this three-dimensional problem can be transformed to two
dimensions, being the radial position and length. Since Sierra does not support 2D elements,
axisymmetry is imposed on a 1° cylindrical wedge. The mesh consists of approximately 316k
hexahedral elements leading to roughly 352k degrees of freedom per direction. Uniform gradient
elements are used, with the same assumptions elaborated in section 3.2.2. The top end is exposed
to a normal tensile traction of 1MPa, and the side edges are constrained in the normal direction.
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The closed-form stress intensity factor from [13] is expressed as

Ki = 60CC/F . (3.14)

In eq. (3.14), at is defined by eq. (3.11). Additionally, the geometry-dependent factor F in
eq. (3.14) is defined as

4.2
F = 1.1 +A [1.948 (1 2 1.5 + 0.3342 (—a) , (3.15)

where the factor A is defined in eq. (3.9).

The error in the numerically computed J-integral relative to the one based on eq. (3.14) is shown
in fig. 3-12, and the ZZ-component of the Cauchy stress is shown along the crack tip in fig. 3-13.
The J-integral error converges to approximately 0.2% for integration radii larger than 10% of
r max. The flat profile of the error curve shown in fig. 3-12 indicates that the J-integral is
path-converged (i.e. path independent).

name symbol value (mm)
Length L 20

thickness t 1.3
crack length a 0.13

pipe outer radius Ro 10
pipe inner radius Ri 8.7

Table 3-7. Full circumferential crack: Dimensions

0.0 0.2 0.4 0.6 0.8
normalized integration radius r/rmar

1.0

Figure 3-12. Full circumferential crack: Error in J-integral as a function
of integration radius
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Figure 3-13. Full circumferential crack: ZZ-component of Cauchy stress
along crack front
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4. CONCLUSIONS

In this work, we attempt to generalize and simplify the work described in [10] by proposing a
library of defects to be readily inserted our Full Circle modeling approach for GTS components.
We note that in the majority of solutions, the implementation discussed here shows error within
1% of the analytical solution. The main contributions of this work can be summarized as
follow:

• generation of a defect library including parameterization of meshes for plates with elliptical
flaws and pipes with penny-shaped, longitudinal, or circumferential cracks

• demonstration of mapping full (base mesh) fields to a simplified subregion (template) mesh
and computation of associated error

• achievement of path-independence for the projected fields

• comparison of element formulations for varying base meshes (composite tetrahedron,
selective deviatoric, uniform gradient) as the integration radius increases

• verification of the driving forces with analytical solutions or closed-form polynomial
expressions available in the literature

• addition of verification tests for the J-integral to the Sierra/SM test suite

While significant progress has been made towards improving our J-integral calculation workflow,
work must still be conducted (and is already underway by Jay Foulk) to refactor the J-integral
formulation to account for the manufacturing history before it can be fully incorporated in our
Full Circle models. We plan to leverage the work presented here to verify and test improvements
in the refactored formulation in FY20.
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APPENDIX A. CUBIT SCRIPTS

A.1. PLATE WITH EMBEDDED ELLIPTICAL FLAW

#{height = 5.0}

#{length = 5.0}

#{thickness = 2.0}

#{major_radius = 0.1}

#{minor_radius = 0.2}

#{inner_offset_factor =

#{outer_offset_factor =

#{tet_mesh = 1}

0.007*6.01

0.007*6.01

# create geometry

create brick x {thickness} y {length} z {height}

create cylinder height {height} major radius {major_radius} minor radius {minor_radius}

create cylinder height {height} major radius {major_radius + outer_offset_factor} minor radius {

minor_radius + outer_offset_factor}

create cylinder height {height} major radius {major_radius inner_offset_factor} minor radius {

minor_radius - inner_offset_factor}

# symmetry

webcut volume all with plane xplane

webcut volume all with plane yplane

webcut volume all with plane zplane

delete volume all except volume with x_coord > 0 and y_coord > 0 and z_coord > 0

chop volume 9 with volume 10

chop volume 34 with volume 11

chop volume 33 with volume 12

########################
# meshing done below

########################

# refinement factor: 1 -- coarse, 2 -- fine

#{refinement_factor = 1.0}

#{crack_mesh_size = 0.007 / refinement_factor }

#{transition_mesh_size = 0.03 / refinement_factor}

#{coarse_mesh_size = 0.1 / refinement_factor}

volume all redistribute nodes on

imprint all

merge all

{if(tet_mesh)}

volume all scheme tetmesh

Set Tetmesher Optimize Level 6 Overconstrained OFF Sliver OFF

Set Tetmesher Interior Points On

Set Tetmesher Boundary ReCovery OFF

Trimesher surface gradation 1.1

Trimesher volume gradation 1.1
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surface 286 291 278 size {crack_mesh_size}

mesh volume all

{else}

surface 278 291 scheme map

surface 278 291 size {crack_mesh_size}

mesh surface 278 291

adjust boundary

adjust boundary

surface 284 size

orthogonal surface 291 snap_to_normal curve 409

orthogonal surface 278 snap_to_normal curve 409 fixed curve 409

{coarse_mesh_size}

curve 443 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size} start vertex 228

curve 442 scheme bias fine size {crack_mesh_size}

surface 284 scheme pave

mesh surface 284

surface 286 scheme pave

surface 286 size {crack_mesh_size}

mesh surface 286

coarse size {coarse_mesh_size} start vertex 227

curve 449 scheme

factor 2.0

bias fine size {crack_mesh_size} coarse size {coarse_mesh_size} start vertex 241

curve 447 scheme

factor 2.0

bias fine size {crack_mesh_size} coarse size {coarse_mesh_size} start vertex 240

curve 410 scheme

factor 2.0

bias fine size {crack_mesh_size} coarse size {coarse_mesh_size} start vertex 218

curve 427 scheme

factor 2.0

bias fine size {crack_mesh_size} coarse size {coarse_mesh_size} start vertex 228

curve 310 scheme

factor 2.0

bias fine size {crack_mesh_size} coarse size {coarse_mesh_size} start vertex 54

curve 445 scheme

factor 2.0

bias fine size {crack_mesh_size} coarse size {coarse_mesh_size} start vertex 239

curve 408 scheme

factor 2.0

bias fine size {crack_mesh_size} coarse size {coarse_mesh_size} start vertex 217

curve 425 scheme

factor 2.0

bias fine size {crack_mesh_size} coarse size {coarse_mesh_size} start vertex 227

curve 307 scheme

factor 2.0

bias fine size {crack_mesh_size} coarse size {coarse_mesh_size} start vertex 18

curve 308 scheme

factor 2.0

volume 37 scheme

volume 38 scheme

volume 35 scheme

volume 36 scheme

bias

sweep

sweep

sweep

sweep

fine size {crack_mesh_size}

source surface 286 target

source surface 291 target

source surface 278 target

source surface 284 target

coarse

surface

surface

surface

surface

size

288

293

276

281

{coarse_mesh_size} start vertex 2

mesh volume 35 36 37 38

fendifl

imprint all

merge all

nodeset 1 surface 284 278

nodeset 1 name "bottom_symmetry_surf"

nodeset 2 surface 285 290 279 283

nodeset 2 name "side_symmetry_surf_yplane"

nodeset 3 surface 282 287 292 275

nodeset 3 name "side_symmetry_surf_xplane"

38



nodeset 4 surface 199

nodeset 4 name "side_surf_yplane"

nodeset 5 surface 202

nodeset 5 name "side_surf_xplane"

nodeset 6 surface 281 276 293 288

nodeset 6 name "top_surf"

nodeset 7 curve 409

nodeset 7 name "crack_front"

nodeset 8 vertex 218

nodeset 8 name "crack_front_major_vertex"

nodeset 9 vertex 217

nodeset 9 name "crack_front_minor_vertex"

sideset 1 surface 281 276 293 288

sideset 1 name "top_surf_ss"

sideset 2 surface 278

sideset 2 name "crack_surf"

sideset 3 surface 286 291

sideset 3 name "pressure_surf"

block 1 volume all

block 1 name "plate_embedded_flaw"

{if(tet_mesh)}

block 1 element type tetral0
{endif}

A.2. PIPE WITH LONGITUDINAL PENNY-SHAPED CRACK

# units: meters

#{height = 0.076}

#{outer_diameter = 0.02}

#{inner_diameter = 0.0174}

#{crack_diameter = 0.025 * (outer_diameter - inner_diameter)}

#{crack_offset_factor = 0.1}

#{cap_thickness = 0.01 * height}

#{crack_longitudinal_radius = 0.8 * height}

#{cap_width = 0.05 * height}

#{scale_factor = 1.0e3}

# create hollow cylinder

create cylinder height {height} radius {outer_diameter/2.0}

webcut volume 1 with cylinder radius {inner_diameter/2.0} axis z

delete volume 2

webcut volume all with plane zplane

delete volume with z_coord > 0

# create crack

#{crack_center = inner_diameter/2.0 + crack_offset_factor * (outer_diameter

- crack_diameter/2.0}

#{penny_radius = crack_center - inner_diameter/2.0}

create cylinder height {crack_diameter} radius {penny_radius}

rotate volume 4 about x angle 90

move volume 4 x {crack_center - penny_radius} y 0 z 0
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chop volume 3 with volume 4

delete volume 5

create torus major radius {penny_radius} minor radius fcrack_diameter*0.51

rotate volume 7 about x angle 90

move volume 7x{crack_center - penny_radius} y0z0

chop volume 6 with volume 7

delete volume 8

# create caps

create cylinder height {cap_width} radius fouter_diameter/2.01

move volume 10 z 1- height/2.0 - cap_width/2.01

webcut volume all with plane yplane

delete volume with y_coord > 0

webcut volume all with plane zplane offset {-penny_radius * 5}

webcut volume 9 with plane yplane rotate -1 about z

unite volume 9 13

########################
# meshing done below

########################

#{crack_mesh_size = crack_diameter/16.0 * scale_factor}

#{transition_mesh_size = (outer_diameter-inner_diameter)/100.0 * scale_factor}

#{coarse_mesh_size = (outer_diameter-inner_diameter)/20.0 * scale_factor}

# scaling up the body helps with merge tolerances

body all scale {scale_factor} {scale_factor} {scale_factor}

imprint all

merge all

volume all scheme tetmesh

Set Tetmesher Optimize Level 6 Overconstrained OFF Sliver OFF

Set Tetmesher Interior Points On

Set Tetmesher Boundary Recovery OFF

Trimesher surface gradation 1.1

Trimesher volume gradation 1.1

surface 81 size {coarse_mesh_size}

surface 25 44 size {crack_mesh_size}

curve 25 56 size {crack_mesh_size}

curve 51 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size} start vertex 40

mesh volume 14

mesh volume 9 10

volume all copy reflect z

imprint all

merge all

body all scale 11.0 / scale_factor} 11.0 / scale_factor} 11.0 / scale_factor}

sideset 1 surface 90 74 84 94 80 99 25 101 44 100

sideset 1 name "inner_radius_ss"

sideset 3 surface 44 100

sideset 3 name "crack_face_notch"

sideset 4 surface 25 101

sideset 4 name "crack_face"

sideset 2 surface 65 98
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sideset 2 name "crack_surf"

nodeset 1 surface 65 98 69 86 91 63 54 93

nodeset 1 name "y_ns_symmetry"

nodeset 2 surface 96

nodeset 2 name "z_ns_top_cap"

nodeset 3 curve 50 149

nodeset 3 name "crack_front"

nodeset 4 surface 57

nodeset 4 name "z_ns_bottom_cap"

block 1 volume all

block 1 name "pipe_notched_flaw"

block 1 element type tetral0

A.3. PIPE WITH LONGITUDINAL THROUGH CRACK

# units: meters

#fheight = 0.07935}

#{outer_diameter = 0.0521

#{inner_diameter = 0.04451

#{height = 0.02}

#{outer_diameter = 0.021

#{inner_diameter = 0.01741

#{thickness = 0.5 * (outer_diameter - inner_diameter)1

#{crack_offset_factor = 0.1}

#{crack_mesh_inner_offset_factor = 0.0051

#{crack_mesh_outer_offset_factor = 0.005 * 30}

#{cap_thickness = 0.01 * height}

#{crack_ellipticity_factor = 0.01

#{crack_depth_radius = crack_offset_factor * thickness}
#{crack_circumferential_radius = crack_ellipticity_factor + crack_depth_radius}

#{inner_crack_depth_radius = (crack_offset_factor - crack_mesh_inner_offset_factor) * thickness}

#{outer_crack_depth_radius = (crack_offset_factor + crack_mesh_outer_offset_factor) * thickness}
#{inner_crack_circumferential_radius = - (crack_mesh_inner_offset_factor) * thickness +

crack_circumferential_radiusl

#fouter_crack_circumferential_radius = (crack_mesh_outer_offset_factor) * thickness +

crack_circumferential_radiusl

#{cap_width = 0.05 * height}

#{scale_factor = 1.0e3}

#{delta = 0.5 * inner_diameter - sqrt( (0.5*inner_diameter)^2 - (crack_circumferential_radius)^2)

1
#{delta_inner = 0.5 * inner_diameter - sqrt( (0.5*inner_diameter)^2 - (

inner_crack_circumferential_radius)^2)1

#{delta_outer = 0.5 * outer_diameter - sqrt( (0.5*outer_diameter)^2 - (

outer_crack_circumferential_radius)^2)1

# create hollow cylinder

create cylinder height {height} radius {outer_diameter/2.0}

webcut volume 1 with cylinder radius {inner_diameter/2.0} axis z

delete volume 2

webcut volume all with plane zplane

delete volume with z_coord < 0

# create crack

#{crack_center = inner_diameter/2.0 + crack_depth_radius}
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create cylinder height {height} major radius {crack_circumferential_radius} minor radius {

crack_depth_radius + delta}

create cylinder height {height} major radius {inner_crack_circumferential_radius} minor radius {
inner_crack_depth_radius + delta_inner}

create cylinder height {height} major radius {outer_crack_circumferential_radius} minor radius {

outer_crack_depth_radius + delta_outer}

move volume 4 x 0 y {inner_diameter/2.0 - delta} z 0

move volume 5 x 0 y {inner_diameter/2.0 - delta_inner} z 0

move volume 6x0y{inner_diameter/2.0 - delta_outer} z0

chop volume 1 with volume 5

chop volume 8 with volume 4

chop volume 10 with volume 6

webcut volume all with plane xplane

delete volume with x_coord < 0

webcut volume all with plane xplane rotate -10 about z

webcut volume all with plane yplane

########################
# meshing done below

########################

#{crack_mesh_size = (outer_diameter-inner_diameter)/1600.0 * 3 * scale_factor}

#{transition_mesh_size = (outer_diameter-inner_diameter)/200.0 * scale_factor}

#{coarse_mesh_size = (outer_diameter-inner_diameter)/20.0 * scale_factor}

volume all redistribute nodes on

# scaling up the body helps with merge tolerances

body all scale {scale_factor} {scale_factor} {scale_factor}

imprint all

merge all

curve 88 size {crack_mesh_size}

curve 100 scheme bias coarse size {transition_mesh_size} fine size {crack_mesh_size} start vertex

58

curve 54 scheme bias coarse size {transition_mesh_size} fine size {crack_mesh_size} start vertex

25

surface 77 size {transition_mesh_size}

curve 104 size {transition_mesh_size}

mesh surface 77

surface 67 scheme map

surface 67 size {crack_mesh_size}

mesh surface 67

adjust boundary surface 67 snap_to_normal curve 88

surface 55 scheme pave

surface 55 size {crack_mesh_size}

mesh surface 55

surface 106 size {coarse_mesh_size}

curve 120 scheme bias fine size {transition_mesh_size} coarse size {coarse_mesh_size} factor 1.5

start vertex 66

curve 156 scheme bias fine size {transition_mesh_size} coarse size {coarse_mesh_size} factor 1.5

start vertex 37

mesh surface 106

mesh surface 114 110

curve 117 size {coarse_mesh_size}

curve 97 size {coarse_mesh_size}

curve 81 size {coarse_mesh_size}

curve 67 size {coarse_mesh_size}

curve 65 size {coarse_mesh_size}

curve 144 size {coarse_mesh_size}
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curve 19 size {coarse_mesh_size}

curve 29 size {coarse_mesh_size}

curve 47 size {coarse_mesh_size}

curve 142 size {coarse_mesh_size}

curve 113 size {coarse_mesh_size}

curve 115 size {coarse_mesh_size}

curve 158 size {coarse_mesh_size}

curve 160 size {coarse_mesh_size}

volume 7 scheme sweep source surface 55 target surface 57

volume 17 scheme sweep source surface 106 target surface 104

volume 9 scheme sweep source surface 67 target surface 65

volume 11 scheme sweep source surface 77 target surface 75

volume 18 12 scheme map

mesh volume 7

mesh volume 17

mesh volume 9

mesh volume 11

mesh volume 12

mesh volume 18

nodeset 1 surface 106 77 67 55 114 110

nodeset 1 name "top_surf"

nodeset 2 surface 84 73 83

nodeset 2 name "side_symmetry_surf"

nodeset 3 surface 104 115 108 75 57

nodeset 3 name "bottom_surf"

nodeset 4 curve 81

nodeset 4 name "crack_front"

nodeset 5 curve 159

nodeset 5 name "line_boundary"

sideset 1 surface 111 113 105 45 56 35 53 63

sideset 1 name "pressure_surf"

sideset 2 surface 106 77 67 55 114 110

sideset 2 name "top_surf_ss"

sideset 4 surface 63

sideset 4 name "crack_surf"

block 1 volume all

block 1 name "pipe_longitudinal_through_crack"

body all scale {1.0/scale_factor} {1.0/scale_factor} {1.0/scale_factor}

A.4. PIPE WITH CIRCUMFERENTIAL PENNY-SHAPED CRACK

#{height = 0.07935}

#{outer_diameter = 0.052}

#{inner_diameter = 0.0445}

#{height = 0.02}

#{outer_diameter = 0.02}

#{inner_diameter = 0.0174}

#{thickness = 0.5 * (outer_diameter - inner_diameter)1

#{crack_offset_factor = 0.11

#{crack_mesh_inner_offset_factor = 0.005}
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#{crack_mesh_outer_offset_factor = 0.005 * 30}

#{cap_thickness = 0.01 * height}

#fcrack_ellipticity_factor = 0.000131

#{crack_depth_radius = crack_offset_factor * thickness}

#{crack_circumferential_radius = crack_ellipticity_factor + crack_depth_radius}

#{inner_crack_depth_radius = (crack_offset_factor - crack_mesh_inner_offset_factor) * thickness}
#{outer_crack_depth_radius = (crack_offset_factor + crack_mesh_outer_offset_factor) * thickness}

#{inner_crack_circumferential_radius = - (crack_mesh_inner_offset_factor) * thickness +

crack_circumferential_radiusl

#fouter_crack_circumferential_radius = (crack_mesh_outer_offset_factor) * thickness +

crack_circumferential_radiusl

#{cap_width = 0.05 * height}

#{scale_factor = 1.0e3}

#{delta = 0.5 * inner_diameter - sqrt( (0.5*inner_diameter)^2 - (crack_circumferential_radius)^2)

#{delta_inner = 0.5 * inner_diameter - sqrt( (0.5*inner_diameter)^2 - (

inner_crack_circumferential_radius)^2}1

#{delta_outer = 0.5 * outer_diameter - sqrt( (0.5*outer_diameter)^2 - (

outer_crack_circumferential_radius)^211

# create hollow cylinder

create cylinder height {height} radius fouter_diameter/2.01

webcut volume 1 with cylinder radius finner_diameter/2.01 axis z

delete volume 2

webcut volume all with plane zplane

delete volume with z_coord < 0

# create crack

#{crack_center = inner_diameter/2.0 + crack_depth_radius}

create cylinder height {height} major radius {crack_circumferential_radius} minor radius {

crack_depth_radius + delta}

create cylinder height {height} major radius {inner_crack_circumferential_radius} minor radius {

inner_crack_depth_radius + delta_inner}

create cylinder height {height} major radius {outer_crack_circumferential_radius} minor radius {

outer_crack_depth_radius + delta_outer}

move volume 4 x 0 y {inner_diameter/2.0 - delta} z 0

move volume 5x0y{inner_diameter/2.0 - delta_inner} z 0

move volume 6 x 0 y {inner_diameter/2.0 - delta_outer} z 0

chop volume 1 with volume 5

chop volume 8 with volume 4

chop volume 10 with volume 6

webcut volume all with plane xplane

delete volume with x_coord < 0

webcut volume all with plane xplane rotate -10 about z

webcut volume all with plane yplane

########################
# meshing done below

########################

#{crack_mesh_size = (outer_diameter-inner_diameter)/1600.0 * 3 * scale_factor}

#{transition_mesh_size = (outer_diameter-inner_diameter)/200.0 * scale_factor}

#{coarse_mesh_size = (outer_diameter-inner_diameter)/20.0 * scale_factor}

volume all redistribute nodes on

# scaling up the body helps with merge tolerances

body all scale {scale_factor} {scale_factor} {scale_factor}

imprint all

merge all

curve 88 size {crack_mesh_size}

curve 100 scheme bias coarse size {transition_mesh_size} fine size {crack_mesh_size} start vertex

58

44



curve 54 scheme bias coarse size {transition_mesh_size} fine size {crack_mesh_size} start vertex

25

surface 77 size {transition_mesh_size}

curve 104 size {transition_mesh_size}

mesh surface 77

surface 67 scheme map

surface 67 size {crack_mesh_size}

mesh surface 67

adjust boundary surface 67 snap_to_normal curve 88

surface 55 scheme pave

surface 55 size {crack_mesh_size}

mesh surface 55

surface 106 size {coarse_mesh_size}

curve 120 scheme bias fine size {transition_mesh_size} coarse

start vertex 66

curve 156 scheme bias fine size {transition_mesh_size} coarse

start vertex 37

size {coarse_mesh_size}

size {coarse_mesh_size}

factor 1.5

factor 1.5

mesh surface 106

mesh surface 114 110

curve 117

start

scheme bias fine

vertex 77
size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0

curve 97

start

scheme bias fine

vertex 65

size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0

curve 81

start

scheme bias fine

vertex 57

size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0

curve 67

start

scheme bias fine

vertex 52

size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0

curve 65

start

scheme bias fine

vertex 50

size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0

curve 144

start

scheme bias fine

vertex 90

size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0

curve 19

start

scheme bias fine

vertex 20

size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0

curve 29

start

scheme bias fine

vertex 26

size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0

curve 47

start

scheme bias fine

vertex 38

size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0

curve 142

start

scheme bias fine

vertex 89

size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0

curve 113

start

scheme bias fine

vertex 73

size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0

curve 115

start

scheme bias fine

vertex 75

size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0

curve 158

start

scheme bias fine

vertex 99

size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0

curve 160

start

scheme bias fine

vertex 100

size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0

volume 7 scheme sweep source surface 55 target surface 57

volume 17 scheme sweep source surface 106 target surface 104

volume 9 scheme sweep source surface 67 target surface 65

volume 11

volume 18

scheme sweep source surface 77 target surface 75

12 scheme map

mesh volume 7

mesh volume 17

mesh volume 9

mesh volume 11

mesh volume 12

mesh volume 18
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nodeset 1 surface 106 77 67 55 114 110

nodeset 1 name "top_symmetry_surf"

nodeset 2 surface 84 73 63 53 83

nodeset 2 name "side_symmetry_surf"

nodeset 3 surface 104 115 108 75

nodeset 3 name "bottom_symmetry_surf"

nodeset 4 curve 87

nodeset 4 name "crack_front"

nodeset 5 curve 159

nodeset 5 name "line_boundary"

sideset 1 surface 111 113 105 45 56 35

sideset 1 name "pressure_surf"

sideset 2 surface 106 77 67 55 114 110

sideset 2 name "top_surf"

sideset 4 surface 65

sideset 4 name "crack_surf"

block 1 volume all

block 1 name "pipe_circumferential_penny_crack"

body all scale {1.0/scale_factor} {1.0/scale_factor} {1.0/scale_factor}

A.5. PIPE WITH CIRCUMFERENTIAL CRACK

A.5.1. Sharp Crack

#{height = 0.02}

#{outer_diameter = 0.02}

#{inner_diameter = 0.0174}

#{webcut_factor = 0.025 * (outer_diameter - inner_diameter)1

#{crack_offset_factor = 0.1}

#{cap_thickness = 0.01 * height}

#{crack_longitudinal_radius = 0.8 * height}

#{cap_width = 0.05 * height}

#{scale_factor = 1.0e3}

#{angle=1}

# create hollow cylinder

create cylinder height {height} radius {outer_diameter/2.0}

webcut volume 1 with cylinder radius {inner_diameter/2.0} axis z

delete volume 2

webcut volume all with plane zplane

delete volume with z_coord > 0

webcut volume all with yplane

webcut volume all with yplane rotate {angle} about z

delete volume 3 5 6

# create crack

# {crack_center = inner_diameter/2.0 + crack_offset_factor * (outer_diameter - inner_diameter)

/2.0}
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webcut volume 4 plane xplane offset {crack_center}

webcut volume all with zplane offset {-webcut_factor*10}

webcut volume all with zplane offset 1-webcut_factor*401

unite volume 8 9

unite volume 10 11

########################
# meshing done below

########################

#{crack_mesh_size = 0.00065}

#{transition_mesh_size = (outer_diameter-inner_diameter)/200.0 * scale_factor}

#{coarse_mesh_size = (outer_diameter-inner_diameter)/80.0 * scale_factor}

#{outer_mesh_size = (outer_diameter-inner_diameter)/20.0 * scale_factor}

# scaling up the body helps with merge tolerances

body all scale {scale_factor} {scale_factor} {scale_factor}

imprint all

merge all

surface 72 scheme pave

surface 60 scheme pave

surface 79 scheme pave

surface 72 size {transition_mesh_size}

surface 60 size {transition_mesh_size}

surface 79 size {coarse_mesh_size}

surface 87 size {outer_mesh_size}

curve 79 size {crack_mesh_size}

curve 89 scheme bias fine size {crack_mesh_size} coarse size {transition_mesh_size} start vertex

40

curve 74 scheme bias fine size {crack_mesh_size} coarse size {transition_mesh_size} start vertex

40

curve 104 scheme bias fine size {crack_mesh_size} coarse size {transition_mesh_size} start vertex

31

mesh surface 72

mesh surface 60

surface 79 size {coarse_mesh_size}

surface 87 size {outer_mesh_size}

mesh surface 79

mesh surface 87

volume all redistribute nodes on

curve 70 interval 10

volume 4 scheme sweep source surface 60 target surface 62 autosmooth target on

volume 7 scheme sweep source surface 72 target surface 70 autosmooth target on

mesh volume 7

mesh volume 4

mesh volume 8

mesh volume 10

body all scale 11.0 / scale_factor} 11.0 / scale_factor} 11.0 / scale_factor}

nodeset 1 surface 52

nodeset 1 name "bottom_symmetry_surf"

nodeset 2 surface 87 79 72 60

nodeset 2 name "axisymmetry_surf"
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nodeset 3 surface 94 92 69

nodeset 3 name "inner_wall"

nodeset 4 surface 84 82 59

nodeset 4 name "outer_wall"

nodeset 5 surface 85 81 62 70

nodeset 5 name "side_symmetry_surf"

nodeset 6 curve 70

nodeset 6 name "crack_front"

nodeset 8 vertex 40

nodeset 8 name "crack_tip_node"

nodeset 9 vertex 31

nodeset 9 name "ctod_notch_radius"

nodeset 10 vertex 31

nodeset 10 name "ctod_notch_edge"

sideset 1 surface 50

sideset 1 name "top_surf"

sideset 2 surface 52

sideset 2 name "crack_surf"

block 1 volume all

block 1 name "pipe_circumferential_crack"

A.5.2. Notched Crack

#{height = 0.076}

#{height = 0.02}

#{outer_diameter = 0.02}

#{inner_diameter = 0.0174}

#{crack_diameter = 0.001 * (outer_diameter - inner_diameter)}

#{crack_offset_factor = 0.11

#{cap_thickness = 0.01 * height}

#{crack_longitudinal_radius = 0.8 * height}

#{cap_width = 0.05 * height}

#{scale_factor = 1.0e3}

#{crack_map_diameter = 0.002 * (outer_diameter - inner_diameter)}

#{crack_outer_map_diameter = 0.1 * (outer_diameter - inner_diameter)1

#{crack_mesh_bias_factor = 4.01
#{angle=1}

# create hollow cylinder

create cylinder height {height} radius {outer_diameter/2.0}

webcut volume 1 with cylinder radius {inner_diameter/2.0} axis z

delete volume 2

webcut volume all with plane zplane

delete volume with z_coord > 0

webcut volume all with yplane

webcut volume all with yplane rotate {angle} about z

delete volume 3 5 6

# create crack

# {crack_center = inner_diameter/2.0 + crack_offset_factor * (outer_diameter - inner_diameter)

/2.0 - crack_diameter/2.0}
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create torus major radius {crack_center} minor radius {crack_diameter/2.0}

create cylinder height {crack_diameter} radius {crack_center}

chop volume 4 with volume 7

chop volume 10 with volume 8

delete volume 9 11

# create mapping region near crack

create torus major radius {crack_center} minor radius {crack_map_diameter/2.0}

create cylinder height {crack_map_diameter} radius {crack_center}

chop volume 12 with volume 14

chop volume 16 with volume 13

# create mapping region near crack

create torus major radius {crack_center} minor radius {crack_outer_map_diameter/2.0}

create cylinder height {crack_outer_map_diameter} radius {crack_center}

chop volume 18 with volume 20

chop volume 22 with volume 19

unite volume 21 23

webcut volume all with zplane offset {-0.0003}

########################
# meshing done below

########################

#{crack_mesh_size = 3.Oe-7 * scale_factor}

#{transition_mesh_size = (outer_diameter-inner_diameter)/800.0 * scale_factor}

#{transition_mesh_size_2 = (outer_diameter-inner_diameter)/400.0 * scale_factor}

#{coarse_mesh_size = (outer_diameter-inner_diameter)/80.0 * scale_factor}

# scaling up the body helps with merge tolerances

body all scale {scale_factor} {scale_factor} {scale_factor}

imprint all

merge all

surface 88 scheme map

surface 88 size {crack_mesh_size}

curve 132 scheme bias fine size {crack_mesh_size} coarse size {crack_mesh_bias_factor
crack_mesh_size} start vertex 79

curve 110 scheme bias fine size {crack_mesh_size} coarse size {crack_mesh_bias_factor
crack_mesh_size} start vertex 66

mesh surface 88

*

*

surface 80 size {crack_mesh_size}

curve 116 scheme bias fine size {crack_mesh_size} coarse size {crack_mesh_bias_factor *
crack_mesh_size} start vertex 65

mesh surface 80

surface 103 size {transition_mesh_size}

surface 103 scheme pave

curve 174 scheme bias fine size {crack_mesh_size} coarse size {transition_mesh_size} start vertex
79

curve 153 scheme bias fine size {crack_mesh_size} coarse size {transition_mesh_size} start vertex

65

mesh surface 103

surface 123 size {transition_mesh_size_2}

surface 123 scheme pave

curve 187 size {coarse_mesh_size}

curve 189 scheme bias fine size {transition_mesh_size} coarse size {coarse_mesh_size} start

vertex 95

curve 184 scheme bias fine size {transition_mesh_size} coarse size {transition_mesh_size_2} start

vertex 105

curve 190 scheme bias fine size {transition_mesh_size_2} coarse size {coarse_mesh_size} start

vertex 33
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mesh surface 123

surface 131 size {coarse_mesh_size}

mesh surface 131

volume all redistribute nodes on

curve 136 128 111 115 interval 20

volume 17 scheme sweep source surface 88 target surface 91 autosmooth target on

volume 15 scheme sweep source surface 80 target surface 78 autosmooth target on

volume 21 scheme sweep source surface 103 target surface 106 autosmooth target on

volume 24 scheme sweep source surface 123 target surface 125 autosmooth target on

volume 25 scheme sweep source surface 131 target surface 129 autosmooth target on

mesh volume 17 15 21 24 25

body all scale {1.0 / scale_factor} {1.0 / scale_factor} {1.0 / scale_factor}

nodeset 1 surface 120 114 92

nodeset 1 name "bottom_symmetry_surf"

nodeset 2 surface 78 91 106 125 129

nodeset 2 name "axisymmetry_surf"

nodeset 3 surface 81 104 124 130

nodeset 3 name "inner_wall"

nodeset 4 surface 128 126

nodeset 4 name "outer_wall"

nodeset 5 surface 88 80 103 123 131

nodeset 5 name "side_symmetry_surf"

nodeset 6 curve 136

nodeset 6 name "crack_front"

nodeset 7 surface 42

nodeset 7 name "top_surf_ns"

nodeset 8 vertex 82

nodeset 8 name "crack_tip_node"

nodeset 9 vertex 68

nodeset 9 name "ctod_notch_radius"

nodeset 10 vertex 70

nodeset 10 name "ctod_notch_edge"

sideset 1 surface 42

sideset 1 name "top_surf"

sideset 2 surface 92

sideset 2 name "crack_surf"

block 1 volume all

block 1 name "pipe_circumferential_crack"



APPENDIX B. SIERRA IMPLEMENTATION

In this chapter, the overall procedure in Sierra for running a physics simulation and computing the
J-integral is discussed. In appendix B.1, the various scenarios are highlighted. A sample Sierra
input deck is shown in appendix B.2 which was used to produce the results in section 3.1. The
other simulations conducted in chapter 3 can be carried out using the same input deck, by simply
replacing the input mesh.

B.1. PROCEDURE OVERVIEW

The general procedure for conducting simulations consists of two primary scenarios:

1. Simulations involving a single mesh

2. Simulations involving inter-procedural transfers between meshes

The differences between the basic procedures of scenarios 1 and 2 are graphically illustrated in

scenario 1

Initialize Input

Procedure 1 Procedure 2

Perform Simulation

Compute J-integral

scenario 2

crack face pressure

Perform Simulation

far-field loads

(-Project Fields
Apply Pressure Correction
\Compute J-integral

Project Fields
Compute J-integral

Finalize Output

Figure B-1. Sierra Implementation: Procedural differences between
scenarios 1 and 2

Scenario 1 assumes the use of a mesh consisting of uniform gradient (UG) hexahedral elements,
due to the limitation that the J-integral capability in Sierra is currently only supported for this
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element type. A single UG element contains 8 degrees of freedom at the nodes, and 1 integration
point. This under-integrating leads to some error in the fields, while alleviating element locking
due to over-constraints. As a rule of thumb, this element type is suitable for problems involving
small deformations and highly localized crack-tip plasticity. An advantage scenario 1 is that the
J-integral can be computed in a single procedure in Sierra, thus bypassing the need for
L2-projections and interpolations, which are error-prone. Additionally, the appropriate correction
terms are automatically added onto the computed J-integral to ensure path-independence in the
case of cracks faces exposed to pressure, without any required user input.

Scenario 2 is preferred in cases where deformation/plasticity is significant in the physical
simulation and/or when the modeled geometry is too complex to mesh with hexahedral elements.
In this scenario, the physical simulation is run using any preferred element type (e.g. selective
deviatioric hexahedral elements, composite tetrahedral elements). The results are then projected
and interpolated onto a template mesh consisting of UG elements which contains the crack and its
surrounding regions. The J-integral is lastly computed on the template mesh.

Simulations using scenario 2 require two procedures, the first for the physical simulation, and the
second to compute the J-integral on the template mesh. The implementation of the second
procedure differs for models involving pressure on the crack face than for those with only far-field
loads. The former requires a "dummy" load step to properly register the fields. This is done by
selecting a very small (non-zero) time step, i.e., the following line at the end of the time control
block for the second procedure

termination time = {end_time + small_dt * end_time}

and assigning uniform zero velocity on all degrees of freedom, i.e. the following block in the
boundary conditions of the second procedure

begin prescribed velocity

include all blocks

components = x y z

function = sierra_constant_function_zero

end

These are both included in the sample input deck provided in appendix B.2. It has been noted that
the additional load step can lead to potential sources of error. The sources of this error may be due
to issues within the code. Work to quantify this error and implement fixes are currently an
ongoing effort.

In summary, scenario 1 is suitable for problems involving simple geometries and/or small
deformations. The fields for scenario 1 generally contain some amount of error due to
under-integration. However, the J-integral can be computed as a post-processing step with
minimal additional input, and no inter-procedural transfers are necessary. scenario 2 is required
for most simulations involving significant deformations and/or complex geometries. However, as
a consequence, an extra procedure is required to perform the J-integral, and the fields must be
projected and interpolated onto a template mesh containing the crack. Additionally, cracks faces
exposed to pressure must include specific user input to ensure the correction terms are properly
activated for the J-integral.
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B.2. INPUT DECK FOR PLATE WITH EMBEDDED ELLIPTICAL

FLAW

###########################################################
  Description  

############################################################

# This file runs an adagio simulation for a plate with a pressurized embedded flaw

############################################################

#{end_time = 10.01
#fnum_output=2I
#{time_steps=2}

#{initial_time_step = end_time/time_steps}

#{output_time_step = end_time/num_output}

#{peak_load = 1.0e5}

#{project = 01

#{pressure = 0}

begin sierra plate_embedded_flaw

title plate_embedded_flaw

define direction unit_minus_z with vector 0 0-1

###################################################
  Function Defs  

###################################################

begin definition for function load_ramp

type is Analytic

expression variable: time = global time

evaluate expression = "{peak_load}*time/fend_timel"

end definition for function load_ramp

begin definition for function const_load

type is analytic

evaluate expression = "{peak_load}"
end definition for function const_load

###########################################################
  Materials  

############################################################

Adagio Materials

begin material ss

density = 8004

begin parameters for model elastic

youngs modulus = 200.0e9

poissons ratio = 0.25

end parameters for model elastic

begin parameters for model neo_hookean

youngs modulus = 200.0e9

poissons ratio = 0.25

end parameters for model neo_hookean

end material ss
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###########################################################

  Adagio Mesh  

############################################################

  Adagio Section  

begin solid section ug_section

formulation = mean_quadrature

strain incrementation = midpoint_increment

end solid section ug_section

begin solid section sd_section

Formulation = selective_deviatoric

Deviatoric Parameter = 1

end solid section sd_section

begin total lagrange section section_composite_tet10

formulation = composite_tet

end

  Finite Element Model

begin finite element model plate

Database name = plate_embedded_flaw.g

Database type = exodusll

begin parameters for block plate_embedded_flaw

material ss

solid mechanics use model elastic

{if (project == 0)}

section = ug_section

{else}

section = sd_section

fendifl

end parameters for block plate_embedded_flaw

end finite element model plate

{if (project == 0)1

{else}

begin finite element model projected_plate

Database name = template_plate_embedded_flaw.g

Database type = exodusll

begin parameters for block plate_embedded_flaw

material ss

solid mechanics use model elastic

section = ug_section

end parameters for block plate_embedded_flaw

end finite element model projected_plate

fendifl

###########################################################

  Main Procedure for Adagio  

############################################################

Begin Adagio Procedure adagio_pressure_test

Begin time control

Begin time stepping block time_block

Start Time = 0.0

Begin Parameters for Adagio Region adagio_mechanical

Time Increment = {initial_time_step}

End Parameters for Adagio Region adagio_mechanical

End Time stepping block time_block

Termination Time = {end_time}

End time control

$$$ $$$
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###########################################################

  Adagio Region  

############################################################

begin adagio region adagio_mechanical

  adaptive time stepping

begin adaptive time stepping

target iterations = 50

iteration window = 15

maximum multiplier = 4.0e+00

minimum multiplier = le-10

growth factor = 1.5

cutback factor = 0.5

maximum failure cutbacks = 30

end

use finite element model plate

  Boundary Conditions

begin fixed displacement

node set = bottom_symmetry_surf

components = z

end fixed displacement

begin fixed displacement

node set = side_symmetry_surf_yplane

components = y

end fixed displacement

begin fixed displacement

node set = side_symmetry_surf_xplane

components = x

end fixed displacement

begin fixed displacement

node set = side_surf_yplane

components = y
end fixed displacement

begin fixed displacement

node set = side_surf_xplane

components = x

end fixed displacement

{if (pressure == 0)1

begin traction

surface = top_surf_ss

function = load_ramp

direction = unit_minus_z

end traction

{else}
begin fixed displacement

node set = top_surf

components = z

end fixed displacement

begin pressure

surface = pressure_surf

function = load_ramp

end pressure
{endif}

{if (project == 0)1
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begin j integral j_pl

crack tip node set = crack_front

integration radius = 0.1

number of domains = 100

crack plane side set = crack_surf

function = plateau

end

lendifl

  Results Output

begin results output output_adagio

database name = plate_embedded_flaw.e

database type = exodusll

at time 0, increment = {output_time_step}

Nodal Variables = displacement As disp

Nodal Variables = temperature As temp

Nodal Variables = coordinates

Nodal Variables = velocity

Nodal Variables = force_internal

Nodal Variables = residual

Element Variables = fluid_pressure

Element Variables = von_mises

Element Variables = effective_log_strain

Element Variables = stress

Element Variables = unrotated_stress

element Variables = strain_energy

element Variables = strain_energy_density

Element Variables = left_stretch

Element Variables = rotation

{if (project == 0)1

element variables = j_integration_domains_j_pl as j_int_dom_pl

global variables = j_average_j_pl as j_ave_j_pl

nodal variables = j_j_pl as j_pl_planar

nodal variables = j_weight_functions_j_pl as j_pl_wtfunc

{endif}

end results output output_adagio

  Solver

Begin Solver

begin loadstep predictor

type = secant

end loadstep predictor

Begin cg

target relative residual = le-5

acceptable relative residual = le-4

target residual = le-3

acceptable residual = le-2

Maximum Iterations = 10

Minimum Iterations = 5

Line Search secant

Orthogonality measure for reset = 0.5

Preconditioner = Elastic

begin full tangent preconditioner

linear solver = feti

iteration update = 10

minimum convergence rate = 1.0E-15

end

End cg

End Solver

end adagio region adagio_mechanical

End Adagio Procedure adagio_pressure_test
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{if (project == 0)1

{else}

###########################################################

  Projection Procedure for Adagio  

############################################################

Begin Adagio Procedure project

Begin procedural transfer migration

node variables = displacement

element variables = stress unrotated_stress strain_energy_density strain_energy

element lie group variables = rotation left_stretch

Begin 12_projection transfer fred

send blocks = plate_embedded_flaw

receive blocks = plate_embedded_flaw

transformation type = element2element

send coordinates = original

receive coordinates = original

linear solver = feti_iterative

End

End

Begin time control

Begin time stepping block p0

start time = {end_time}

Begin Parameters for Adagio Region region_2

Time Increment = {1.Oe-5 * end_time}

End Parameters for Adagio Region region_2

End

{if (pressure == 0)1

termination time {end_time}

{else}

termination time {end_time + 1.Oe-5 * end_time}

{endif}

End

Begin Adagio Region region_2

Use Finite Element Model projected_plate

{if (pressure == 0)}

{else}

begin prescribed velocity

include all blocks

components = x y z

function = sierra_constant_function_zero

end

begin pressure

surface = pressure_surf

function = const_load

end pressure

lendifl

begin j integral j_pl

crack tip node set = crack_front

integration radius = 0.1

number of domains = 100

crack plane side set = crack_surf

function = plateau

end

Begin Results Output output_vars

database name = projected_plate_embedded_flaw.e

at step 0 increment = 1

element Variables = stress
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element Variables = unrotated_stress

element Variables = strain_energy

element Variables = strain_energy_density

element Variables = rotation

element Variables = left_stretch

element variables = j_integration_domains_j_pl

global variables = j_average_j_pl as j_ave_j_pl

as j_int_dom_pl

nodal variables = j_j_pl as j_pl_planar

nodal variables = j_weight_functions_j_pl as j_pl_wtfunc

nodal variables = displacement

nodal variables = coordinates

End

Begin solver

Begin cg

reference = external

target relative residual

acceptable relative residual

target residual

acceptable residual

Maximum Iterations = 10

Minimum Iterations = 5

le-5

le-4

le-3

le-2

Begin full tangent preconditioner

linear solver = feti

iteration update = 10

End

End cg

End solver

End adagio region region_2

$$$ $$$
End adagio procedure project

$$$ $$$
lendifl

begin feti equation solver feti

Residual Norm Tolerance = le-6

end

begin feti equation solver feti_iterative

param-string "debugMask" value "solver"

param-string "local_rbm_tol" value 1.Oe-32

param-string "global_rbm_tol" value 1.Oe-32

residual norm tolerance = le-16

end

end sierra plate_embedded_flaw
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