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ABSTRACT

Often, the presence of cracks in manufactured components are detrimental to their overall
performance. We develop a workflow and tools in this report using CUBIT and Sierra/SM for
generating and modeling crack defects to better understand their impact on such components. To
this end, we provide a CUBIT library of various prototypical crack defects embedded in pipes and
plates that can be readily used in a wide range of simulations, with specific application to those
used in Gas Transfer Systems (GTS). We verify the accuracy of the J-integral post-processing
capability in Sierra against solutions available in existing literature for the cracks and geometries
of interest within the context of linear elastic fracture mechanics, and describe ongoing efforts to
quantify and assess numerical errors. Through this process, we outline overall suggestions and
recommendations to the user based on the proposed workflow.
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1. INTRODUCTION

In Gas Transfer Systems components, defects and flaws introduced during the manufacturing
process can be detrimental to the overall performance and reliability of the part. To better
understand and qualify such components, GTS analysts typically assume the presence of defects
under a certain size and perform subsequent analyses accordingly. To this end, the capability to
compute the J-integral to predict driving forces for such defects using Sierra was previously
introduced in [10], but lacked generality and robustness since its initial onset.

In the work proposed here, we attempt to simplify and streamline the workflow needed to run a
J-integral simulation for GTS analysts by leveraging recent code development efforts to test,
verify and improve L,-projections and interpolations (frequently termed "L, transfer") between
meshes in Sierra. With the workflow proposed here, the previous computationally expensive
models can also be simplified by performing a mapping procedure, wherein a full model is
mapped using an L, transfer in Sierra to a smaller subset mesh with significant speedup.
Additionally, by performing these mappings, a greater degree of flexibility in choice of element
formulation can be attained for other pieces of the analysis (since the J-integral calculations have
traditionally only been supported for the uniform gradient hexahedral elements).

We also aim to introduce more generality in the previous approach by developing a templated
defect library that can readily be inserted into a variety of common geometries for GTS
components, such as plates with elliptical flaws and pipes with penny-shaped, longitudinal, or
circumferential cracks to assess performance. This library will enable us to create an additional
step (as part of our Full Circle Lifecycle modeling approach) where a flaw might be added along
the way, and subsequent analysis performed to assess the performance down the road. To this end,
we provide verification of the defects under investigation here assuming linear elastic fracture
mechanics to enhance the credibility associated with our Full Circle approach. We note that
additional work will be conducted in FY20 to reformulate the J-integral to accurately incorporate
the manufacturing history accumulated through a series of steps to obtain the full benefits of the
Full Circle approach, which is outside the scope of this report at this point in time.

The remainder of this work is organized as follows: In chapter 2, we provide illustrations and
templates of geometries and meshes for the defects under study using CUBIT, including
parameters to be edited for generality, which are included in full in appendix A. The results for
the studies are described in chapter 3, including verification of the results with analytical solutions
or other closed-form polynomial expressions available in prior works. Finally, we conclude with
some discussion of the main contributions of our approach and suggestions for future work.



2. GENERATION OF GEOMETRIES AND
MESHES

This section contains images of the geometries and meshes produced by the CUBIT journal files
in appendix A. Each section focuses on a single geometry/mesh, which will be used to compute
the fields and post-processed J-integral in chapter 3. Note that all geometries presented here have
certain symmetries (e.g. planar symmetry or axi-symmetry) which are assumed when generating
the meshes in order to minimize the overall degrees of freedom.

2.1. PLATE WITH EMBEDDED ELLIPTICAL FLAW

elliptical flaw

\
(@)

Figure 2-1. Plate with embedded elliptical flaw: Schematic of embedded
elliptical flaw with (a) specimen dimensions and (b) flaw dimensions
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Figure 2-2. Plate with embedded elliptical flaw: Reduced mesh of em-
bedded flaw employing symmetry along the x-, y-, and z-axes

(c)

Figure 2-3. Plate with embedded elliptical flaw: Mesh along the crack
front for (a) fine hexahedral mesh, (b) coarse hexahedral mesh, and (c)
tetrahedral mesh. Nodes and curve on crack front are shown in purple.
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2.2. PIPE WITH LONGITUDINAL PENNY-SHAPED CRACK

embedded flaw

(a)

Figure 2-4. Penny-shaped longitudinal crack: Dimension parameters
shown for (a) entire cylinder, (b) region near crack, and (c) top view of
cylinder

Figure 2-5. Pipe with longitudinal penny-shaped crack: Mesh with crack
front curve and nodes shown in purple
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2.3. PIPE WITH LONGITUDINAL THROUGH CRACK

embedded flaw

(b)

N
= <

Figure 2-6. Pipe with longitudinal through crack: Dimension parame-
ters shown for (a) entire cylinder, and (b) region near crack

Figure 2-7. Pipe with longitudinal through crack: Mesh with crack front
curve and nodes shown in purple
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2.4, PIPE WITH CIRCUMFERENTIAL PENNY-SHAPED

CRACK
A
embedded flaw é
(4 L
214 y (b)
X

(a)

Figure 2-8. Pipe with penny-shaped circumferential crack: Dimension
parameters shown for (a) entire cylinder, and (b) region near crack

Figure 2-9. Pipe with penny-shaped circumferential crack: Mesh with
crack front curve and nodes shown in purple
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2.5. PIPE WITH CIRCUMFERENTIAL CRACK

embedded flaw

(b)

(a)

Figure 2-10. Full circumferential crack: Dimension parameters shown
for (a) entire cylinder, and (b) region near crack

N
N
N

Figure 2-11. Full circumferential crack: Mesh with crack front curve and
nodes shown in purple
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3. VERIFICATION OF J-INTEGRAL

In this chapter, the distribution of the J-integral computed in Sierra along the crack front is
presented for the geometries and configurations from chapter 2. This model problem primarily
serves to illustrate the error in the numerically computed J-integral compared to the exact values.
For the purpose of verification, it is assumed that the strains remain small for all cases, and that
the loads are applied in a quasi-static manner. With this assumption, the material response is
characterized within the context of linear elasticity. The elastic constants are assigned as

E =200GPa and v = 0.25, which are values typical for stainless steel. To serve as a contrast, the
example in section 3.2.1 assumes a viscoplastic constitutive law, though strains are assumed to be
small enough to represent a linear elastic material response. For simplicity, the configuration and
defect geometries remain fixed for all cases. It is assumed that the cracks are "small"
(approximately 10% of the wall thickness for thick-walled pipes).

3.1. PLATE WITH EMBEDDED ELLIPTICAL FLAW
UNDERGOING INTERNAL PRESSURE

3.1.1. Model Description

The schematic of the plate and embedded elliptical crack is shown in fig. 2-1. The selected
parameters for the geometry of the plate and embedded elliptical crack is shown in table 3-2. The
elliptical flaw is exposed to a outward-oriented (towards the crack faces) pressure of 100kPa.

The analytical stress intensity factor is presented in [12] along the crack front of an elliptical flaw
embedded in an infinite medium and subjected to a far-field stress along the z-axis, which is

name symbol | value
width w 5.0m
thickness t 20m
height h 5.0m
major radius a 0.2m
minor radius b 0.1m

Table 3-1. Plate with embedded elliptical flaw: Dimensions of plate and
embedded flaw
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expressed for a given point p as:

B oV b

K'=Tm

3 bZ 1/4
(sin (p)+ ;cos%(p)) : (3.1)
where o is the far-field stress, a and b are the major and minor radii (respectively) such that
a > b, and ¢ is the angle between a and the projection of the point p in the direction orthogonal to
a onto a circle which is circumscribed around the ellipse, as is illustrated in fig. 2-1b. Moreover,
E (k) is the complete elliptical integral of the second kind defined as follows:

/2 2
mm:A/ |~ Ksin(9)dg, k=1-" (32)

a

To attribute relevance of eq. (3.1) to the problem-at-hand, the infinite medium is approximated by
a plate of finite (albeit sufficiently large) dimensions. As examined in [11] (of particular
importance to the current setting are figs. 6¢-d), the placement of physical boundaries plays a
negligible role in the deviation of the stress intensity factor along the elliptical crack front from its
analytically exact counterpart for cases where the ellipse is not very flat (i.e. b/a > 0.4), and the
minor radius dimension is roughly less than 40% of the thickness. In addition, superimposing a
far-field stress equal and opposite to the assumed value as well as an inward-oriented pressure on
the open crack faces generates a closed-form shown which identical to eq. (3.1) due to the fact that
the case where the inward-oriented pressure is applied on the crack faces leads to a stress intensity
factor of K; = 0, and the assumption that the material response is linear elastic [1, Chapter 2].
Thus, with the appropriate assumptions, the exact solution in eq. (3.1) can be consistent with the
stress intensity factor expected for the geometry and loading shown in fig. 2-1.

(6 (6

[ R N S

bbbt

Figure 3-1. Plate with embedded elliptical flaw: Superposition principle
illustrating equivalence of eq. (3.1) for far-field and pressure loads
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3.1.2. Error in J-integral Due to Mapping

In the first model problem, a meshed elliptical flaw and plate is used to produce the elastic fields
in Sierra based on the loading and boundary conditions presented in section 3.1.1. Symmetry is
assumed along the x-, y-, and z-axes (as shown in fig. 2-2), hence reducing the total number of
elements by a factor of 8. The base simulation is performed for: (a) 1.0e+06 hexahedral uniform
gradient elements (baseline case), (b) 1.2e+05 hexahedral selective deviatoric elements, and (c)
6.5e+05 composite tetrahedron elements. The relative element sizes for the three cases are shown
along the cracked plane in fig. 2-3.

The relevant fields on the base mesh in cases (a)-(c) are mapped onto a template mesh composed
of uniform gradient hexahedra due to the limitation that the J-integral capability in Sierra can
only be computed on this element type. The level of element refinement along the crack front is
predetermined for all cases to ensure that the density of integration points is roughly preserved
between base and template mesh. A single selective deviatoric element (which by definition,
exactly integrates bilinear deviatoric fields) consists of 8 integration points; the composite
tetrahedron element consists of 4 integration points; and the under-integrated uniform gradient
element consists of 1 integration point. To maintain the same density of integration points in the
base mesh composed of hexahedra and composite tetrahedra, the element size along the crack
front is selected to fit approximately 4 and 8 uniform gradient elements, respectively. Note that
the base and template mesh in case (a) coincide, hence the error in the mapped fields are directly a
product of the global L;-projection. This scenario serves as a useful baseline in differentiating
projection errors from interpolation errors.

The distribution of the numerically computed J-integral for integration radii ranging from

1.0e-3 m to 6.0e-3 m and its exact counterpart is shown in fig. 3-2 along the crack circumference.
The numerically computed J-integral approaches the exact value as the integration radius
increases in all cases, which is largely due to the decreasing influence of the plastic zone near the
crack tip on the fields enclosed by the semi-circular integration domain. The J-integral in cases
(b) and (c) generally exhibits higher errors with a small integration radius due to the increasing
effect of the errors in the mapped fields. This effect is more pronounced in case (c) since the base
mesh consists of tetrahedra which are unstructured near the crack tip. In this case, the greater
misalignment between the mesh composed of composite tetrahedra and the mesh composed of
uniform gradients leads to oscillations and a decrease of regularity in the distribution of the fields
projected onto the latter mesh, as is illustrated in the comparison of the crack-face normal
component of the projected Cauchy stress for both cases (b) and (c) in fig. 3-3. Lastly, the
J-integral deviates from the exact value near the surface cutting through the major radius of the
ellipse due to the fact that the semi-circular integration domain does not fit within the bounds of
the base mesh domain, which emanates from the combined presence of a boundary placed to
enforce symmetry as well as the high relative curvature of the crack front near this boundary.

The path independence of the J-integral is achieved to varying degrees when integrating the
projected fields in cases (a)-(c), as highlighted by the nearly flat curves in fig. 3-4. The J-integral
deviates from the expected path-independent value integrating the projected fields for cases
(a)-(c) throughout the crack circumferences, though the differences remain visibly small. The
characteristic "kinks" in the J-integral distribution occurs due to the geometric constraints posed
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by the curvature of the crack circumference, as elaborated in the prior paragraph. Based on the
elliptical geometry of the flaw and the fact that the integration radius at a given point varies
normal to the crack front, the distance at which the integration radius intersects with the boundary
representing a symmetry plane is expressed as

\/[(b_2>cos9} ? + (b sin@)z 3.3)

a

for a given set of major/minor radius a and b, respectively, and angle from the major radius 6. To
ensure that the domain of integration used to compute the J-integral does not intersect with the
symmetry boundary for all angles , it is sufficient to set that maximum integration radius as

min<%2,b> . (3.4)

In scenarios where defects and cracks exist in irregular geometries as is typical for numerous
engineered components, it is convenient to compute the J-integral on a simplified sub-region (also
termed template geometry) which encloses a finite region around the original defect. The fields
on the geometry computed in the primary simulation are transferred via an L, projection and
interpolated onto the relevant portions of the template geometry where the J-integral procedure
takes place. This process is graphically illustrated in fig. 3-5 for the simulations of cases (b) and
(c) with a toroidal template geometry. In this case, a quarter of the torus intersects the original
plate geometry, and hence, the projected fields are only relevant in this region. The J-integral
averaged along the portion of the torus intersecting the original flaw is path-independent for both
cases (b) and (c) for integration radii greater than 20% of the flaw radius (designated as r,,,4,) With
consistent errors on the order of 1% relative to the exact LEFM J-integral, as shown in fig. 3-4.

I'These results were computed on the current version of Sierra/Master due to recent fixes in the J-integral capability
that allows for integration along a crack front greater than 180°. These fixes will be available in the next release
(version 4.54).
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Figure 3-2. Plate with embedded elliptical flaw: J-integral distribution
along crack circumference as a function of 6 (as defined in fig. 2-1b)
for base mesh consisting of (a) uniform gradient hexahedra, (b) selec-
tive deviatoric hexahedra, (c) composite tetrahedra. Exact (analytical)

distribution is shown in black.
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(a)

(b)

o, (Pa)

I 1.2e+6

-3.6e+5

(c)

Figure 3-3. Plate with embedded elliptical flaw: ZZ-component of
Cauchy stress on template mesh consisting of uniform gradient hex-
ahedra projected from mesh consisting of (a) uniform gradient hexahe-
dra, (b) selective deviatoric hexahedra, and (c) composite tetrahedra
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name symbol | value (m)
width w 20.0
thickness t 2.0
height h 20.0
major radius a 0.2
minor radius b 0.1

Table 3-2. Plate with embedded elliptical flaw: Dimensions

x10~2
1.2 —
no projection (ug) —-—— sd to ug
,l —-— ugtoug = - ct10 to ug
1.0 -
&0
=
= 0.8-
& 0.6-
=
0.4 -
0:2/1

0.0 0.2 0.4 0.6 0.8 1.0
normalized integration radius /7,

Figure 3-4. Plate with embedded elliptical flaw: J-integral value as a
function of integration radius for cases (a)-(c) relative to those com-
puted with no projection on the base mesh
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(a) (b)

Figure 3-5. Plate with embedded elliptical flaw: ZZ-component of
Cauchy stress on toroidal template mesh consisting of uniform gra-
dient hexahedra projected from mesh consisting of (a) selective devia-
toric hexahedra, and (b) composite tetrahedra.

— ctl0 to ug
— sd to ug
~——— 10 projection
1071 -

—

relative absolute error in J-integral

0.0 0.2 0.4 0.6 0.8 1.0
normalized integration radius r/r,,q.

Figure 3-6. Plate with embedded elliptical flaw: Error in
circumferentially-averaged J-integral relative to analytical solution
based on fields projected onto torus

3.2. THICK-WALLED PIPE WITH LONGITUDINAL CRACK

The work presented in this section is motivated by burst experiments done in [6], which presented
experimental data of a circular cylinder loaded internally with pressure. Both ends of the cylinder
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were welded, and the top end was kept fixed. In addition, volume change during loading was
measured by immersing the cylinder in a water bath. A flaw was machined longitudinally along
the entire cylinder in order to control the location of crack initiation/propagation. The test was
conducted both hydraulically and pneumatically. In each scenario, the relation between pressure
and volume change was compared for an uncharged specimen, a Deuterium-charged specimen,
and a Helium-charged specimen. The goal of the current work is to quantify the errors in the
numerically computed J-integral relative to the closed-form approximations available in existing
literature (namely those presented in [13, 1]) for an internally pressurized cylinder similar to the
one used in [6].

3.2.1. Penny-Shaped Crack

The geometry and mesh layout is shown in figs. 2-6 and 2-7. The mesh consists of approximately
183,000 10-noded composite tetrahedra for a total of roughly 270,000 degrees of freedom. The
crack and cylinder dimensions are shown in table 3-3. In addition, the top and bottom boundaries
of the cylinder are attached to rigid end caps that are each 7.6 mm thick. The crack radius was
selected as 10% of the wall thickness corresponding to a/t = 0.1, essentially making it a "small"
crack. The crack profile is semi-circular, therefore a/c = 1. The end cap thickness was chosen as
an arbitrary large number to provide rigidity at the top and bottom cap-cylinder interfaces as well
as on the end caps themselves. Note that similar results should be observed without end caps by
fixing the boundaries of the edge of the cylinder.

name symbol | value (mm)
Length L 76
thickness t 1.3
crack minor radius a 1.3
crack major radius c 1.3
pipe outer radius R, 10
pipe inner radius R; 8.7

Table 3-3. Pipe with longitudinal penny-shaped crack: Dimensions

The boundary conditions include pressure on all interior surfaces (including the crack face), and
fixed displacements on the edges of the top and bottom caps. Additionally, symmetry boundary
conditions were applied on the longitudinal surface shown in fig. 2-7. As a side note, additional
symmetry could have been implemented on a horizontal plane that cuts through the crack center
in fig. 2-7. This was not done intentionally since boundary conditions on the bottom cap are
intended to allow longitudinal motion.

The material is assumed to be 304L stainless steel, with the material parameters fit for the
dynamic strain aging (DSA) constitutive/plasticity model in Sierra [7, 3]. The selected material
parameters are shown in table 3-4. Note that the results presented herein should not be affected by
the material behavior due to the assumption of LEFM. As a verification of the
material-independent properties of the stress intensity factor (and hence the J-integral within the
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LEFM regime), the values of the J-integral were nearly identical when changing the material to
neo-Hookean.

parameter name value units
Young’s modulus 200.0E+09 Pa
Poisson ratio 0.25 -
initial REX volume fraction 1.0E-04 -
flow rule exponent temperature dependence 5.699E+03 K
rate independent yield constant 1.0528E+10 Pa
rate independent yield temperature dependence 2.688E+05 K
rate independent yield temperature dependence 2 1.87E-03 1/K
rate independent yield temperature dependence 3 8.683E+02 K
rate independent yield temperature dependence 4 3.316E+01 -
flow rule coefficient constant 9.178E-02 /s
isotropic dynamic recovery constant 8.565E+02 -
isotropic dynamic recovery temperature dependence 5.419E+03 K
isotropic hardening shear coefficient 0.01 -
recrystallization kinetics temperature dependence 5.0E+04 K
recrystallization kinetics mobility coefficient 8.846E+16 | 1/PaP
recrystallization kinetics mobility exponent, 3 5.431E+00 -
recrystallization kinetics boundary energy dependence 1.1E+16 K/s/Pa”
recrystallization kinetics multiple cycle correction factor 1.0 -
recrystallization kinetics boundary area exponent 1 0.667 -
recrystallization kinetics boundary area exponent 2 1.333 -
misorientation variable hardening constant 1.67E-03 | m/s/pa?
misorientation variable hardening exponent, y 1.0 -
temperature option 0 -
plastic dissipation factor 0.95 -
density for plastic dissipation calculations 8.004E+03 | kg/m’
specific heat for plastic dissipation calculations 6.67E+02 | J/kg/K
initial temperature for uncoupled adiabatic heating 294.11 K
temperature for post-processed yield strength 294.4 K
strain rate for post-processed yield strength 1.0E-03 1/s

Table 3-4. Pipe with longitudinal penny-shaped crack: DSA material
properties 304L stainless steel

The pressure was ramped linearly from O to 1 M Pa within the span of 10 s in a total of 5 time
steps. Plasticity dominates the time dependence of the initial/boundary-value problem, however,
it is highly localized at the crack tip due to the low applied pressure relative to the material’s yield
stress. Therefore, the response of the cylinder to the applied pressure is essentially quasi-static,
which implies a low sensitivity of the solution to a refinement in the time step. This correlation is
confirmed by observing that the L,-norm of each component of the Cauchy stress is nearly
identical (deviations less than 1%) when refining the number of time steps to 20, 50, and 100.
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With these observations in mind, it suffices to conclude that the selected time step of 2 s is fine
enough to temporally resolve the rate-dependent fields. Though no rigorous convergence
properties are shown for mesh refinement (h-refinement) in this report, the values of the J-integral
were fairly consistent to within 1% of the values obtained with the coarse mesh.

The second region consisted of an L-projection that was performed on the main mesh, and
subsequently interpolated onto a template mesh along the crack front shown in fig. 3-7. Since the
entire cylinder is difficult to mesh with hexahedral elements, a template model was created by
sweeping only along the crack front. This geometry allowed for a simple meshing scheme with
hexahedral elements where the J-integral can subsequently be computed. The J-integral was
computed on the template mesh shown in fig. 3-7, with approximately 3 and 5-9 hexahedral
elements fitting inside each tetrahedron along the crack front and end planes adjacent to the inner
radius (respectively), which is roughly sufficient to maintain the density of integration points
between the main and template meshes (refer to section 3.1.2 for implementation details of
mesh-to-mesh transfers using L,-projections and interpolations).

Figure 3-7. Pipe with longitudinal penny-shaped crack: Comparison of
the main model mesh using tetrahedral elements (blue), and the swept
hexahedral template mesh around the crack tip used for the J-integral
computations (red)

The value of the J-integral for various angles from the deepest point in the crack as a function of
the integration radius is shown in fig. 3-8. The values of the J-integral (regardless of angle) are
steadily increasing until reaching an integration radius of approximately 3.0e-05 m. Without the
pressure correction, the J-integral values reach a peak and slowly decreases with increasing
integration radius. In contrast, the pressure-corrected J-integral maintains a nearly constant value
for all angles after reaching a contour integration radius of approximately 3.0e-05 m. This
confirms the expected path-independence of the pressure-corrected J-integral, as was asserted in
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[10, 5]. The J-integral used in subsequent computations is assumed to be converged if the
numerical value is obtained form the region where it is path-independent, which will be termed
path-converged.

The value of the J-integral increases as the angle from the deepest point increases, thus indicating
that the highest value is on the crack tip adjacent to the inner wall of the cylinder. In [2, 4, 8], the
deviation of the stress intensity factor along the crack front is quantified using a non-dimensional
influence function defined as

h= K (3.5)

BT (0520 + a2 /csinp) 114

In the above equation, K is the mode-I stress intensity factor,

oo = p((Ry/R))*+1)/((R,/R;) — 1) is the effective stress, E (k) is the complete elliptical integral
of the second kind which for k = 0 (elliptic modulus of a circular crack) is approximately 1.6, and
a and c are the through-thickness and longitudinal radii of the crack (as shown in fig. 2-7),
respectively, which are equal in this specific case. Note that the angular variation factor that
includes the sine and cosine of ¢ does not vary with the angle from the deepest point, ¢, since the
crack is circular. Hence, the only variable that affects the influence function is the change in Kj.

The variation of the influence is plotted for a path-converged J-integral in fig. 3-9 as a function of
the angle from the deepest point along the crack. As expected based on the trends shown in

fig. 3-8, the J-integral increases nonlinearly from the deepest point of the crack to the end
adjacent to the inner wall of the cylinder, with the steepest slope at around 40°- 70°. The trend
shown in fig. 3-9 is identical to those illustrated in [2, 4, 8]. However, the values obtained here are
approximately 10-15% higher than those obtained in [2, 4, 8]. This can potentially be explained
by the fact that the aforementioned prior works do not account for pressure on the crack face, and
thus, assume that only the inner wall of the cylinder is loaded. In addition, the crack front here
contains a finite notch radius, which could add a potential source of variability in the value of the
stress intensity factor?.

A closed-form expression was obtained in [13] that accounts for pressure on the crack faces, and
corrects the J-integral appropriately by using the technique developed in [S]. The stress intensity
factor at the deepest point of the crack tip is of the following form

2It is well-known that all cracks tips are blunted to some extent, and are thus inherently notch-shaped. The degree
of blunting determines the shape of the notch. In the numerical modeling of crack tips, the use of small notches
serves an additional purpose of preventing significant mesh distortions when the crack undergoes finite deforma-
tions/plasticity. Moreover, the presence of the notch in the simulation geometry prevents stress singularities which
would otherwise be present for a linear elastic material with a sharp crack tip. Readers are referred to [9] for more
details on the numerical treatment of notches and their effect on accuracy.
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In eq. (3.6), R is the radial distance from the cylinder center to the deepest point of the crack, ¢ is
the wall thickness as is defined in fig. 2-7, and p is the internal pressure. The stress intensity
factor at the deepest point using the pressure-corrected J-integral in Sierra is 0.111 MPa+/m
whereas the computed stress intensity factor using eq. (3.6) is 0.109M Pa\/m. The current results
thus overestimate the stress intensity factor based on eq. (3.6) by approximately 2%, which is well
within the 4% bounds provided in [13].

J-Integral (J/m?)

x 1072

£
=y
J —— angle = 1.5° — - angle = 1.5°
[/ —— angle = 16.5° :f( —— angle = 16.5°
=2 —— angle = 31.5° é = — angle = 31.5°
—— angle = 46.5° L 2- i —— angle = 46.5°
angle = 61.5° - angle = 61.5°
angle = 76.5° angle = 76.5°

! , i ' 0 - . ! = ;
| 2 3 | 0 | 2 3 |

integration radius (m) x107° integration radius (m) x107

Figure 3-8. Pipe with longitudinal penny-shaped crack: Comparison of
the J-integral as a function of the contour integration radius with no
correction terms (left) and with the pressure correction (right)
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Figure 3-9. Pipe with longitudinal penny-shaped crack: The influence
function based on a path-converged path-independent J-integral as a
function of the angle from the deepest crack point

3.2.2. Through Crack

The relevant geometry and mesh of a pipe with a sharp crack embedded longitudinally along the
entire length of the cylinder are shown in figs. 2-6 and 2-7. The selected dimensions are shown in
table 3-5. The mesh consists of approximately 214k 4-noded hexahedral elements which leads to
approximately 227k degrees of freedom per direction. A single integration point is used for each
element, which corresponds to the uniform gradient (UG) element in Sierra. The J-integral
capability is already supported for UG elements, and hence no additional projections are
necessary to perform the relevant computations®. The inner surface (including the through crack)
are exposed to a 1M Pa tensile pressure (oriented radially outwards). The top and bottom ends are
held fixed in the z-direction, and are allowed to move in the x- and y-directions. With these
boundary conditions, The ends of the cylinder are free to expand and contract, thus corresponding
to a long (i.e. "infinite") cylinder with a flaw embedded along the entire length.

The closed-form expression for the stress intensity factor along the longitudinal flaw according to
the work of [13] is

— PR JmaF 3.7)

31t is well-known that UG elements are not robust for many high-deformation and/or plasticity-inducing simulations.
In the case of LEFM, we assume that UG elements are sufficient in producing accurate fields despite the fact that
there are consistent integration errors.
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where p is the pressure and F' a the geometry-dependent function defined as

2
F:1.1+A{4.951<§) i
(o.125? —0.25)

(0.2% — 1.0)

| undefined otherwise

4
1.092(?) } , (3.8)
~L € [5,10]

Ri e (10,20 )

t

The error in the J-integral computed in Sierra relative to the one based on the the expression for
Kjin eq. (3.7) is shown in fig. 3-10. With the assumed geometry/mesh, and loading/boundary
conditions mentioned above, the error in the J-integral converges at approximately 3%.
Additionally, the error maintains its value for all integration radii greater than 20% of r,,x thus

illustrating the path-independence of the J-integral.

name symbol | value (mm)
Length L 20
thickness 1 1.3
crack length a 0.13
pipe outer radius R, 10
pipe inner radius R; 8.7

Table 3-5. Pipe with longitudinal through crack: Dimensions

101 -

relative absolute error in J-integral

0.2 0.4
normalized integratior

0.0

0.6 0.8 1.0

1 radius 7 /7

Figure 3-10. Pipe with longitudinal through crack: Error in J-integral as

a function of integration radius
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3.3. THICK-WALLED PIPE WITH CIRCUMFERENTIAL
CRACK

In this section, the error in the J-integral relative to the closed-form values based on the stress
intensity factor from [13] is evaluated for a pipe of similar dimensions to the ones presented in
section 3.2 with both a penny-shaped and fully axisymmetric crack oriented circumferentially.
With this crack orientation, the force that contributes to the mode-/ opening of the crack (with the
assumption of small deformation) comes from the pressure on the exposed crack faces as well as
the pressure on the capped ends of the cylinder which generate additional tensile tractions. Due to
the superposition principle described in section 3.1, the net effect of these forces can be captured
by simply applying a longitudinal tensile traction at the ends of the cylinder. Therefore, the
pressure acting on the interior and end caps is neglected in the following examples.

3.3.1. Penny-Shaped Circumferential Crack

The relevant geometry and mesh for a penny-shaped crack embedded circumferentially inside a
pipe is shown in figs. 2-8 and 2-9. The selected dimensions are shown in table 3-6. The mesh
consists of 589k uniform gradient hexahedral elements which corresponds to 615k nodes. The top
boundary is loaded to 1M Pa, and symmetry is assumed along the mid-length surface where the
embedded crack lies.

The stress intensity factor from [13] for the deepest point along the crack (in the midpoint) is
given as

Ta
In eq. (3.10), oy 1s the tensile stress defined as
P
o, = 3.11
t Zn_Ravgt 9 ( )

where P is the axial load, and Ry, = 1/2(R, — R;). The geometry-dependent functions Q* and F
are defined as
Q=1+1.464(a/c)" (3.12)

and

)71, (3.13)

F =1+ ]0.02+ a(0.0103 +0.00617x) +0.0035(1 +0.7) (Ravg /t — 5

respectively. In eq. (3.13), a = (a?)/(2ct).

The J-integral error from the values computed in Sierra compared to the one based on the stress
intensity factor in eq. (3.10) is shown in fig. 3-11. The error stabilizes at approximately 1% for

“Note that [1] defines the function Q in terms of (a/2c) rather than (a/c), which is an error.
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integration radii greaer than 20% of r,,,y, indicating that the value of the numerically computed
J-integral eventually reaches path-independence as the integration radius increases.

name symbol | value (mm)
Length L 20
thickness t 1.3
crack length a 0.13
crack width 2c 0.507
pipe outer radius R, 10
pipe inner radius R; 8.7

Table 3-6. Penny-shaped circumferential crack: Dimensions

relative absolute error in J-integrs

0.0 0.2

0.4 0.6

0.8 1.0

normalized integration radius 7 /7,4,

Figure 3-11. Penny-shaped circumferential crack: Error in J-integral as

a function of integration radius

3.3.2. Full Circumferential Crack

The geometry and mesh of the pipe with a penny-shaped crack oriented circumferentially is
shown in figs. 2-10 and 2-11. The relevant dimensions are shown in table 3-7. Axisymmetry of
both flaw and geometry is assumed, this three-dimensional problem can be transformed to two
dimensions, being the radial position and length. Since Sierra does not support 2D elements,
axisymmetry is imposed on a 1? cylindrical wedge. The mesh consists of approximately 316k
hexahedral elements leading to roughly 352k degrees of freedom per direction. Uniform gradient
elements are used, with the same assumptions elaborated in section 3.2.2. The top end is exposed
to a normal tensile traction of 1M Pa, and the side edges are constrained in the normal direction.
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The closed-form stress intensity factor from [13] is expressed as
K; = o/ maF . (3.14)

In eq. (3.14), o; is defined by eq. (3.11). Additionally, the geometry-dependent factor F' in
eq. (3.14) is defined as

2 4.2
F:1.1+A{1.948(?) 1.5+0‘334z(?> ] (3.15)

where the factor A is defined in eq. (3.9).

The error in the numerically computed J-integral relative to the one based on eq. (3.14) is shown
in fig. 3-12, and the ZZ-component of the Cauchy stress is shown along the crack tip in fig. 3-13.
The J-integral error converges to approximately 0.2% for integration radii larger than 10% of
rmax- The flat profile of the error curve shown in fig. 3-12 indicates that the J-integral is
path-converged (i.e. path independent).

name symbol | value (mm)
Length L 20
thickness t 1.3
crack length a 0.13
pipe outer radius R, 10
pipe inner radius R; 8.7

Table 3-7. Full circumferential crack: Dimensions

—

relative absolute error in J-integral

{M»-

0.0 0.2 0.4 0.6 0.8 1.0
normalized integration radius r/7,q.

Figure 3-12. Full circumferential crack: Error in J-integral as a function
of integration radius

33



o, (Pa)

Figure 3-13. Full circumferential crack: ZZ-component of Cauchy stress
along crack front
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4. CONCLUSIONS

In this work, we attempt to generalize and simplify the work described in [10] by proposing a
library of defects to be readily inserted our Full Circle modeling approach for GTS components.
We note that in the majority of solutions, the implementation discussed here shows error within
1% of the analytical solution. The main contributions of this work can be summarized as
follow:

 generation of a defect library including parameterization of meshes for plates with elliptical
flaws and pipes with penny-shaped, longitudinal, or circumferential cracks

* demonstration of mapping full (base mesh) fields to a simplified subregion (template) mesh
and computation of associated error

* achievement of path-independence for the projected fields

» comparison of element formulations for varying base meshes (composite tetrahedron,
selective deviatoric, uniform gradient) as the integration radius increases

* verification of the driving forces with analytical solutions or closed-form polynomial
expressions available in the literature

* addition of verification tests for the J-integral to the Sierra/SM test suite

While significant progress has been made towards improving our J-integral calculation workflow,
work must still be conducted (and is already underway by Jay Foulk) to refactor the J-integral
formulation to account for the manufacturing history before it can be fully incorporated in our
Full Circle models. We plan to leverage the work presented here to verify and test improvements
in the refactored formulation in FY?20.
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APPENDIX A. CUBIT SCRIPTS

A.1. PLATE WITH EMBEDDED ELLIPTICAL FLAW

# create geometry

create brick x {thickness} y {length} z {height}

create cylinder height {height} major radius {major_radius} minor radius {minor_radius}

create cylinder height {height} major radius {major_radius + outer_offset_factor} minor radius {
minor_radius + outer_offset_factor}

create cylinder height {height} major radius {major_radius - inner_offset_factor} minor radius {

minor_radius - inner_offset_factor}

# symmetry

webcut volume all with plane xplane
webcut volume all with plane yplane
webcut volume all with plane zplane

delete volume all except volume with x_coord > 0 and y_coord > 0 and z_coord > 0
chop volume 9 with volume 10

chop volume 34 with volume 11
chop volume 33 with volume 12

volume all redistribute nodes on

imprint all
merge all

{if (tet_mesh)}

volume all scheme tetmesh

Set Tetmesher Optimize Level 6 Overconstrained OFF Sliver OFF
Set Tetmesher Interior Points On

Set Tetmesher Boundary ReCovery OFF

Trimesher surface gradation 1.1

Trimesher volume gradation 1.1
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surface 286 291 278 size {crack_mesh_size}

mesh volume all
{else}
surface 278 291 scheme map

surface 278 291 size {crack_mesh_size}
mesh surface 278 291

adjust boundary orthogonal surface 291 snap_to_normal curve 409
adjust boundary orthogonal surface 278 snap_to_normal curve 409 fixed curve 409

surface 284 size {coarse_mesh_size}

curve 443 scheme bias fine size {crack_mesh_size} coarse
curve 442 scheme bias fine size {crack_mesh_size} coarse

surface 284 scheme pave
mesh surface 284

surface 286 scheme pave
surface 286 size {crack_mesh_size}
mesh surface 286

curve 449 scheme bias fine size {crack_mesh_size} coarse

factor 2.0

curve 447 scheme bias fine size {crack_mesh_size} coarse

factor 2.0

curve 410 scheme bias fine size {crack_mesh_size} coarse

factor 2.0

curve 427 scheme bias fine size {crack_mesh_size} coarse

factor 2.0

curve 310 scheme bias fine size {crack_mesh_size} coarse

factor 2.0

curve 445 scheme bias fine size {crack_mesh_size} coarse

factor 2.0

curve 408 scheme bias fine size {crack_mesh_size} coarse

factor 2.0

curve 425 scheme bias fine size {crack_mesh_size} coarse

factor 2.0

curve 307 scheme bias fine size {crack_mesh_size} coarse

faetor 2.0

curve 308 scheme bias fine size {crack_mesh_size} coarse

factor 2.0
volume 37 scheme sweep source surface
volume 38 scheme sweep source surface
volume 35 scheme sweep source surface
volume 36 scheme sweep source surface
mesh volume 35 36 37 38
{endif}

imprint all
merge all

nodeset 1 surface 284 278
nodeset 1 name "bottom_symmetry_surf"

nodeset 2 surface 285 290 279 283

nodeset 2 name "side_symmetry_surf_yplane"

nodeset 3 surface 282 287 292 275

nodeset 3 name "side_symmetry_surf_xplane"

286
291
278
284

target
target
target
target

surface
surface
surface
surface
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size
size

size

size

size

size

size

size

size

size

size

size

288

293

276
281

{coarse_mesh_size}
{coarse_mesh_size}

{coarse_mesh_size}

{coarse_mesh_size}

{coarse_mesh_size}

{coarse_mesh_size}

{coarse_mesh_size}

{coarse_mesh_size}

{coarse_mesh_size}

{coarse_mesh_size}

{coarse_mesh_size}

{coarse_mesh_size}

start
start

start

start

start

start

start

start

start

start

start

start

vertex
vertex

vertex

vertex

vertex

vertex

vertex

vertex

vertex

vertex

vertex

vertex

228
227

241

240

218

228

239

217

227

18
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nodeset 4 surface 199
nodeset 4 name "side_surf_yplane"

nodeset 5 surface 202
nodeset 5 name "side_surf_xplane"

nodeset 6 surface 281 276 293 288
nodeset 6 name "top_surf"

nodeset 7 curve 409
nodeset 7 name "crack_front"

nodeset 8 vertex 218
nodeset 8 name "crack_front_major_vertex"

nodeset 9 vertex 217
nodeset 9 name "crack_front_minor_vertex"

sideset 1 surface 281 276 293 288
sideset 1 name "top_surf_ss"

sideset 2 surface 278
sideset 2 name "crack_surf"

sideset 3 surface 286 291
sideset 3 name "pressure_surf"

block 1 volume all
block 1 name "plate_embedded_flaw"

{if (tet_mesh)}
block 1 element type tetralO
{endif}

A.2. PIPE WITH LONGITUDINAL PENNY-SHAPED CRACK

=

= =

uter_diameter - inner_diameter)}

= S e

=

H e

# reate hollow cylinder

create cylinder height {height} radius {outer_diameter/2.0}
webcut volume 1 with cylinder radius {inner_diameter/2.0} axis z

delete volume 2

webcut volume all with plane zplane
delete volume with z_coord > 0

enter — inner_diameter/ )

#{penny_radius =

créate cylinder height {crack_diameter} radius {penny_radius}
rotate volume 4 about x angle 90
move volume 4 x {crack_center - penny_radius} y 0 z 0
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chop volume 3 with volume 4
delete volume 5

create torus major radius {penny_radius} minor radius {crack_diameter*0.5}
rotate volume 7 about x angle 90

move volume 7 x {crack_center - penny_radius} y 0 z 0

chop volume 6 with volume 7

delete volume 8

# create caps

create cylinder height {cap_width} radius {outer_diameter/2.0}

move volume 10 z {- height/2.0 - cap_width/2.0}

webcut volume all with plane yplane
delete volume with y_coord > 0

webcut volume all with plane zplane offset {-penny_radius * 5}
webcut volume 9 with plane yplane rotate -1 about z

unite volume 9 13

# scaling up the body helps with merge tolerances

body all scale {scale_factor} {scale_factor} {scale_factor}

imprint all
merge all

volume all scheme tetmesh

Set Tetmesher Optimize Level 6 Overconstrained OFF Sliver OFF
Set Tetmesher Interior Points On

Set Tetmesher Boundary Recovery OFF

Trimesher surface gradation 1.1

Trimesher volume gradation 1.1

surface 81 size {coarse_mesh_size}

surface 25 44 size {crack_mesh_size}

curve 25 56 size {crack_mesh_size}

curve 51 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size} start vertex 40
mesh volume 14

mesh volume 9 10

volume all copy reflect z

imprint all
merge all

body all scale {1.0 / scale_factor} {1.0 / scale_factor} {1.0 / scale_factor}
sideset 1 surface 90 74 84 94 80 99 25 101 44 100
sideset 1 name "inner_radius_ss"

sideset 3 surface 44 100
sideset 3 name "crack_face_notch"

sideset 4 surface 25 101
sideset 4 name "crack_face"

sideset 2 surface 65 98

40




sideset 2 name "crack_surf"

nodeset 1 surface 65 98 69 86 91 63 54 93
nodeset 1 name "y_ns_symmetry"

nodeset 2 surface 96
nodeset 2 name "z_ns_top_cap"

nodeset 3 curve 50 149
nodeset 3 name "crack_front"

nodeset 4 surface 57
nodeset 4 name "z_ns_bottom_cap"

block 1 volume all
block 1 name "pipe_notched_flaw"

block 1 element type tetralO

A.3. PIPE WITH LONGITUDINAL THROUGH CRACK

=

= =

{outer_diame

inner_diameter

H

nner_

yuter_of

o

c_ellipticity_facto

crack_depth_radi = C

=

cumferential_r

H =

H= ==

==

=

He e

_circumferential_radius) *2)

¥ cr te hollow cylir
create cylinder height {height} radius {outer_diameter/2.0}

webcut volume 1 with cylinder radius {inner_diameter/2.0} axis z
delete volume 2

webcut volume all with plane zplane
delete volume with z_coord < 0

o

= inner_diameter/2.0 + crack_depth_radius}
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create cylinder height {height} major radius {crack_circumferential_radius} minor radius {
crack_depth_radius + delta}

create cylinder height {height} major radius {inner_crack_circumferential_radius} minor radius {
inner_crack_depth_radius + delta_inner}

create cylinder height {height} major radius {outer_crack_circumferential_radius} minor radius {
outer_crack_depth_radius + delta_outer}

move volume 4 x 0 y {inner_diameter/2.0 - delta} z 0

move volume 5 x 0 y {inner_diameter/2.0 - delta_inner} z 0

move volume 6 x 0 y {inner_diameter/2.0 - delta_outer} z 0

chop volume 1 with volume 5

chop volume 8 with volume 4

chop volume 10 with volume 6

webcut volume all with plane xplane

delete volume with x_coord < 0

webcut volume all with plane xplane rotate -10 about z
webcut volume all with plane yplane

FHEFHE AR
# meshing done
#

FEEEESFREEREH

FEEEEEFRHH

volume all redistribute nodes on

# scaling up the body helps with merge toleran

wit
body all scale {scale_factor} {scale_factor} {scale_factor}

imprint all
merge all

curve 88 size {crack_mesh_size}
curve 100 scheme bias coarse size {transition_mesh_size} fine size {crack_mesh_size} start vertex
58

curve 54 scheme bias coarse size {transition_mesh_size} fine size {crack_mesh_size} start vertex
25

surface 77 size {transition_mesh_size}

curve 104 size {transition_mesh_size}

mesh surface 77

surface 67 scheme map
surface 67 size {crack_mesh_size}
mesh surface 67

adjust boundary surface 67 snap_to_normal curve 88

surface 55 scheme pave
surface 55 size {crack_mesh_size}

mesh surface 55

surface 106 size {coarse_mesh_size}

curve 120 scheme bias fine size {transition_mesh_size} coarse size {coarse_mesh_size} factor 1.5
start vertex 66

curve 156 scheme bias fine size {transition_mesh_size} coarse size {coarse_mesh_size} factor 1.5
start vertex 37

mesh surface 106

mesh surface 114 110

curve 117 size {coarse_mesh_size}
curve 97 size {coarse_mesh_size}
curve 81 size {coarse_mesh_size}
curve 67 size {coarse_mesh_size}
curve 65 size {coarse_mesh_size}
curve 144 size {coarse_mesh_size}
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curve 19 size {coarse_mesh_size}
curve 29 size {coarse_mesh_size}
curve 47 size {coarse_mesh_size}
curve 142 size {coarse_mesh_size}
curve 113 size {coarse_mesh_size}
curve 115 size {coarse_mesh_size}
curve 158 size {coarse_mesh_size}
curve 160 size {coarse_mesh_size}

volume 7 scheme sweep source surface 55 target surface 57
volume 17 scheme sweep source surface 106 target surface 104
volume 9 scheme sweep source surface 67 target surface 65
volume 11 scheme sweep source surface 77 target surface 75

volume 18 12 scheme map

mesh volume 7
mesh volume 17
mesh volume 9
mesh volume 11
mesh volume 12
mesh volume 18

nodeset 1 surface 106 77 67 55 114 110
nodeset 1 name "top_surf"

nodeset 2 surface 84 73 83
nodeset 2 name "side_symmetry_surf"

nodeset 3 surface 104 115 108 75 57
nodeset 3 name "bottom_surf"

nodeset 4 curve 81
nodeset 4 name "crack_front"

nodeset 5 curve 159
nodeset 5 name "line_boundary"

sideset 1 surface 111 113 105 45 56 35 53 63
sideset 1 name "pressure_surf"

sideset 2 surface 106 77 67 55 114 110
sideset 2 name "top_surf_ss"

sideset 4 surface 63
sideset 4 name "crack_surf"

block 1 volume all
block 1 name "pipe_longitudinal_through_crack"

body all scale {1.0/scale_factor} {1.0/scale_factor} {1.0/scale_factor}

A.4. PIPE WITH CIRCUMFERENTIAL PENNY-SHAPED CRACK

=

=

=

=

= =

(outer_diameter - inner_diameter) )

S =
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#{crack_mesh_outer_offset_factor = 0.005 * 30}

#{cap_thickness = 0.01 * height}
#{crack_ellipticity_factor = 0.00013}

#{crack_depth_radius = crack_offset_factor * thickness}

#{crack_circumferential_radius = crack_ellipticity_factor + crack_depth_radius}

#{inner_crack_depth_radius = (crack_offset_factor - crack_mesh_inner_offset_factor) * thickness}

#{outer_crack_depth_radius = (crack_offset_factor + crack_mesh_outer_offset_factor) * thickness}

#{inner_crack_circumferential_radius = - (crack_mesh_inner_offset_factor) * thickness +
crack_circumferential_radius}

#{outer_crack_circumferential_radius = (crack_mesh_outer_offset_factor) * thickness +
crack_circumferential_radius}

#{cap_width = 0.05 * height}

#{scale_factor = 1.0e3}

#{delta = 0.5 * inner_diameter - sgrt( (0.5*inner_diameter)”2 - (crack_circumferential_radius)"2)
}

#{delta_inner = 0.5 * inner_diameter - sqrt( (0.5*inner_diameter)”"2 - (

inner_crack_c
#{delta_outer = 0
outer_crack_c

5
ircumferential_radius) "2)}
.5 * outer_diameter - sqrt( (0.5*outer_diameter)”2 - (
ircumferential_radius) *2)}

# create hollow cylinder

create cylinder height {height} radius {outer_diameter/2.0}

webcut volume 1 with cylinder radius {inner_diameter/2.0} axis z

delete volume 2

webcut volume all with plane zplane
delete volume with z_coord < 0

# create crack

#{crack_center = inner_diameter/2.0 + crack_depth_radius}

create cylinder height {height} major radius {crack_circumferential_radius} minor radius {
crack_depth_radius + delta}

create cylinder height {height} major radius {inner_crack_circumferential_radius} minor radius {
inner_crack_depth_radius + delta_inner}

create cylinder height {height} major radius {outer_crack_circumferential_radius} minor radius {
outer_crack_depth_radius + delta_outer}

move volume 4 x 0 y {inner_diameter/2.0 - delta} z 0

move volume x 0 y {inner_diameter/2.0 - delta_inner} z

x 0 y {inner_diameter/2.0 - delta_outer} z

5 0

6 0
chop volume 1 with volume 5

8

1

move volume

chop volume with volume 4
chop volume 10 with volume 6

webcut volume all with plane xplane

delete volume with x_coord < 0

webcut volume all with plane xplane rotate -10 about z
webcut volume all with plane yplane

FHEH A
# meshing done below
Sssdsssdadats Rt RS

#{crack_mesh_size = (outer_diameter-inner_diameter)/1600.0 * 3 * scale_factor}
#{transition_mesh_size = (outer_diameter-inner_diameter)/200.0 * scale_factor}
#{coarse_mesh_size = (outer_diameter-inner_diameter)/20.0 * scale_factor}

volume all redistribute nodes on

# scaling up the body helps with merge tolerances
body all scale {scale_factor} {scale_factor} {scale_factor}

imprint all
merge all

curve 88 size {crack_mesh_size}

curve 100 scheme bias coarse size {transition_mesh_size} fine size {crack_mesh_size} start vertex
58

44




curve 54 scheme bias coarse size {transition_mesh_size} fine size {crack_mesh_size} start vertex
2.5

surface 77 size {transition_mesh_size}

curve 104 size {transition_mesh_size}

mesh surface 77

surface 67 scheme map
surface 67 size {crack_mesh_size}
mesh surface 67

adjust boundary surface 67 snap_to_normal curve 88

surface 55 scheme pave
surface 55 size {crack_mesh_size}

mesh surface 55

surface 106 size {coarse_mesh_size}

curve 120 scheme bias fine size {transition_mesh_size} coarse size {coarse_mesh_size} factor 1.5
start vertex 66

curve 156 scheme bias fine size {transition_mesh_size} coarse size {coarse_mesh_size} factor 1.5
start vertex 37

mesh surface 106

mesh surface 114 110

curve 117 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0
start vertex 77

curve 97 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0
start vertex 65

curve 81 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0
start vertex 57

curve 67 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0
start vertex 52

curve 65 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0
start vertex 50

curve 144 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0
start vertex 90

curve 19 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0
start vertex 20

curve 29 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0
start vertex 26

curve 47 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0
start vertex 38

curve 142 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0
start vertex 89

curve 113 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0
start vertex 73

curve 115 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0
start vertex 75

curve 158 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0
start vertex 99

curve 160 scheme bias fine size {crack_mesh_size} coarse size {coarse_mesh_size*2.0} factor 2.0
start vertex 100

volume 7 scheme sweep source surface 55 target surface 57
volume 17 scheme sweep source surface 106 target surface 104
volume 9 scheme sweep source surface 67 target surface 65
volume 11 scheme sweep source surface 77 target surface 75

volume 18 12 scheme map

mesh volume 7
mesh volume 17
mesh volume 9
mesh volume 11
mesh volume 12
mesh volume 18
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nodeset 1 surface 106 77 67 55 114 110
nodeset 1 name "top_symmetry_surf"

nodeset 2 surface 84 73 63 53 83
nodeset 2 name "side_symmetry_surf"

nodeset 3 surface 104 115 108 75
nodeset 3 name "bottom_symmetry_surf"

nodeset 4 curve 87
nodeset 4 name "crack_front"

nodeset 5 curve 159
nodeset 5 name "line_boundary"

sideset 1 surface 111 113 105 45 56 35
sideset 1 name "pressure_surf"

sideset 2 surface 106 77 67 55 114 110
sideset 2 name "top_surf"

sideset 4 surface 65
sideset 4 name "crack_surf"

block 1 volume all
block 1 name "pipe_circumferential_penny_crack"

body all scale {1.0/scale_factor} {1.0/scale_factor} {1.0/scale_factor}

A.5. PIPE WITH CIRCUMFERENTIAL CRACK

A.5.1. Sharp Crack

ameter inner_diameter)}

# create hollow cylind

create cylinder height {height} radius {outer_diameter/2.0}
webcut volume 1 with cylinder radius {inner_diameter/2.0} axis z

o

delete volume 2

webcut volume all with plane zplane
delete volume with z_coord > 0

webcut volume all with yplane
webcut volume all with yplane rotate {angle} about =z

delete volume 3 5 6
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webcut volume 4 plane xplane offset {crack_center}

webcut volume all with zplane offset {-webcut_factor*10}
webcut volume all with zplane offset {-webcut_factor*40}

unite volume 8 9
unite volume 10 11

jEESEE s EESs S E R R
# meshing done below
FHEHEE A A S

0.00065

09 }

# scaling up the body helps with merge toleran
body all scale {scale_factor} {scale_factor} {scale_factor}

imprint all
merge all

surface 72 scheme pave
surface 60 scheme pave
surface 79 scheme pave

surface 72 size {transition_mesh_size}
surface 60 size {transition_mesh_size}
surface 79 size {coarse_mesh_size}
surface 87 size {outer_mesh_size}

curve 79 size {crack_mesh_size}
curve 89 scheme bias fine size {crack_mesh_size} coarse size {transition_mesh_size} start vertex

40

curve 74 scheme bias fine size {crack_mesh_size} coarse size {transition_mesh_size} start vertex
40

curve 104 scheme bias fine size {crack_mesh_size} coarse size {transition_mesh_size} start vertex
31

mesh surface 72
mesh surface 60

surface 79 size {coarse_mesh_size}
surface 87 size {outer_mesh_size}

mesh surface 79
mesh surface 87

volume all redistribute nodes on

curve 70 interval 10

volume 4 scheme sweep source surface 60 target surface 62 autosmooth target on
volume 7 scheme sweep source surface 72 target surface 70 autosmooth target on
mesh volume 7

mesh volume 4

mesh volume

mesh volume 10

body all scale {1.0 / scale_factor} {1.0 / scale_factor} {1.0 / scale_factor}

nodeset 1 surface 52
nodeset 1 name "bottom_symmetry_surf"

nodeset 2 surface 87 79 72 60
nodeset 2 name "axisymmetry_surf"
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nodeset
nodeset

nodeset
nodeset

nodeset
nodeset

nodeset
nodeset

nodeset
nodeset

nodeset
nodeset

nodeset
nodeset

sideset
sideset

sideset
sideset

block 1
block 1

3 surface 94 92 69
3 name "inner_wall"

4 surface 84 82 59
4 name "outer_wall"

5 surface 85 81 62 70
5 name "side_symmetry_surf"

6 curve 70
6 name "crack_front"

8 vertex 40
8 name "crack_tip_node"

9 vertex 31
9 name "ctod_notch_radius"

10 vertex 31
10 name "ctod_notch_edge"

1 surface 50
1 name "top_surf"

2 surface 52
2 name "crack_surf"

volume all

name

"pipe_circumferential_crack"

Notched Crack

=

=

= =

= = S

=

S oS e

£ ==

¥ creat
create
webcut

delete

webcut
delete

webcut
webcut

delete

_diame

diame

e holl

= 0.02}

t
t

_radius = 0.8 * height}

Oow cylinc

cylinder height {height} radius {outer_diameter/2.0}

volume

volume

volume
volume

volume
volume

volume

1 with cylinder radius {inner_diameter/2.0} axis z

all with plane zplane
with z_coord > 0

all with yplane
all with yplane rotate {angle} about z

yuter_diameter

inner_dize

o)

®

@




create torus major radius {crack_center} minor radius {crack_diameter/2.0}
create cylinder height {crack_diameter} radius {crack_center}

chop volume 4 with volume 7
chop volume 10 with volume 8
delete volume 9 11

# create mapping region near crack

create torus major radius {crack_center} minor radius {crack_map_diameter/2.0}
create cylinder height {crack_map_diameter} radius {crack_center}

chop volume 12 with volume 14

chop volume 16 with volume 13

# create mapping region near crack

create torus major radius {crack_center} minor radius {crack_outer_map_diameter/2.0}
create cylinder height {crack_outer_map_diameter} radius {crack_center}

chop volume 18 with volume 20

chop volume 22 with volume 19

unite volume 21 23

webcut volume all with zplane offset {-0.0003}

HHEEE AR
# meshing done below
jSEESE S S SR ES SRS SRR

=

=

+=

# scaling up the body ps with merge tolerar

body all scale {scale_factor} {scale_factor} {scale_factor}

imprint all
merge all

surface 88 scheme map

surface 88 size {crack_mesh_size}

curve 132 scheme bias fine size {crack_mesh_size} coarse size {crack_mesh_bias_factor *
crack_mesh_size} start vertex 79

curve 110 scheme bias fine size {crack_mesh_size} coarse size {crack_mesh_bias_factor *
crack_mesh_size} start vertex 66

mesh surface 88

surface 80 size {crack_mesh_size}

curve 116 scheme bias fine size {crack_mesh_size} coarse size {crack_mesh_bias_factor *
crack_mesh_size} start vertex 65

mesh surface 80

surface 103 size {transition_mesh_size}
surface 103 scheme pave

curve 174 scheme bias fine size {crack_mesh_size} coarse size {transition_mesh_size} start vertex

79

curve 153 scheme bias fine size {crack_mesh_size} coarse size {transition_mesh_size} start vertex

65
mesh surface 103

surface 123 size {transition_mesh_size_2}
surface 123 scheme pave
curve 187 size {coarse_mesh_size}

curve 189 scheme bias fine size {transition_mesh_size} coarse size {coarse_mesh_size} start

vertex 95

curve 184 scheme bias fine size {transition_mesh_size} coarse size {transition_mesh_size_2}

vertex 105
curve 190 scheme bias fine size {transition_mesh_size_2} coarse size {coarse_mesh_size}
vertex 33
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mesh surface 123

surface 131 size
mesh surface 131

{coarse_mesh_size}

volume all redistribute nodes on

curve 136 128 111 115 interval 20

source surface
source surface
source surface
source surface
source surface

scheme
scheme
scheme
scheme
scheme

volume 17
volume 15
volume 21
volume 24
volume 25

sweep
sweep
sweep
sweep
sweep

mesh volume 17 15 21 24 25
body all scale {1.0 / scale_factor}

surface 120 114 92
name "bottom_symmetry_surf"

nodeset 1
nodeset 1

surface 78 91 106 125 129
name "axisymmetry_surf"

nodeset 2
nodeset 2

surface 81 104 124 130
name "inner_wall"

nodeset 3
nodeset 3

surface 128 126
name "outer_wall"

nodeset 4
nodeset 4

surface 88 80 103 123 131
name "side_symmetry_surf"

nodeset 5
nodeset 5

curve 136
name "crack_front"

nodeset 6
nodeset 6

surface 42
name "top_surf_ns"

nodeset 7
nodeset 7

vertex 82
name "crack_tip_node"

nodeset 8
nodeset 8

vertex 68
name "ctod_notch_radius"

nodeset 9
nodeset 9

10 vertex 70
10 name "ctod_notch_edge"

nodeset
nodeset

surface 42
name "top_surf"

sideset 1
sideset 1

surface 92
name "crack_surf"

sideset 2
sideset 2

block 1
block 1

volume all
name

{1.0 / scale_factor}

88 target surface 91 autosmooth target on
80 target surface 78 autosmooth target on
103 target surface 106 autosmooth target on
123 target surface 125 autosmooth target on
131 target surface 129 autosmooth target on

{1.0 / scale_factor}

"pipe_circumferential_crack"
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APPENDIX B. SIERRA IMPLEMENTATION

In this chapter, the overall procedure in Sierra for running a physics simulation and computing the
J-integral is discussed. In appendix B.1, the various scenarios are highlighted. A sample Sierra
input deck is shown in appendix B.2 which was used to produce the results in section 3.1. The
other simulations conducted in chapter 3 can be carried out using the same input deck, by simply
replacing the input mesh.

B.1. PROCEDURE OVERVIEW

The general procedure for conducting simulations consists of two primary scenarios:

1. Simulations involving a single mesh

2. Simulations involving inter-procedural transfers between meshes

The differences between the basic procedures of scenarios 1 and 2 are graphically illustrated in

Procedure 1 Procedure 2

scenario 1

Perform Simulation
Compute J-integral

Y

Project Fields
» Apply Pressure Correction
Compute J-integral

Initialize Input Finalize Output

crack face pressure

I
.4¢—>(Perform Simulation)
scenario 2

A

‘(Project Fields
'tCOmpute J-integral

far-field loads

Figure B-1. Sierra Implementation: Procedural differences between
scenarios 1 and 2

Scenario 1 assumes the use of a mesh consisting of uniform gradient (UG) hexahedral elements,
due to the limitation that the J-integral capability in Sierra is currently only supported for this
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element type. A single UG element contains 8 degrees of freedom at the nodes, and 1 integration
point. This under-integrating leads to some error in the fields, while alleviating element locking
due to over-constraints. As a rule of thumb, this element type is suitable for problems involving
small deformations and highly localized crack-tip plasticity. An advantage scenario 1 is that the
J-integral can be computed in a single procedure in Sierra, thus bypassing the need for
L,-projections and interpolations, which are error-prone. Additionally, the appropriate correction
terms are automatically added onto the computed J-integral to ensure path-independence in the
case of cracks faces exposed to pressure, without any required user input.

Scenario 2 is preferred in cases where deformation/plasticity is significant in the physical
simulation and/or when the modeled geometry is too complex to mesh with hexahedral elements.
In this scenario, the physical simulation is run using any preferred element type (e.g. selective
deviatioric hexahedral elements, composite tetrahedral elements). The results are then projected
and interpolated onto a template mesh consisting of UG elements which contains the crack and its
surrounding regions. The J-integral is lastly computed on the template mesh.

Simulations using scenario 2 require two procedures, the first for the physical simulation, and the
second to compute the J-integral on the template mesh. The implementation of the second
procedure differs for models involving pressure on the crack face than for those with only far-field
loads. The former requires a "dummy" load step to properly register the fields. This is done by
selecting a very small (non-zero) time step, i.e., the following line at the end of the time control
block for the second procedure

termination time = {end_time + small_dt * end_time}

and assigning uniform zero velocity on all degrees of freedom, i.e. the following block in the
boundary conditions of the second procedure

begin prescribed velocity

include all blocks

components = x y z

function = sierra_constant_function_zero
end

These are both included in the sample input deck provided in appendix B.2. It has been noted that
the additional load step can lead to potential sources of error. The sources of this error may be due
to issues within the code. Work to quantify this error and implement fixes are currently an
ongoing effort.

In summary, scenario 1 is suitable for problems involving simple geometries and/or small
deformations. The fields for scenario 1 generally contain some amount of error due to
under-integration. However, the J-integral can be computed as a post-processing step with
minimal additional input, and no inter-procedural transfers are necessary. scenario 2 is required
for most simulations involving significant deformations and/or complex geometries. However, as
a consequence, an extra procedure is required to perform the J-integral, and the fields must be
projected and interpolated onto a template mesh containing the crack. Additionally, cracks faces
exposed to pressure must include specific user input to ensure the correction terms are properly
activated for the J-integral.
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B.2. INPUT DECK FOR PLATE WITH EMBEDDED ELLIPTICAL
FLAW

FEEEE AR R R AR AR E R AR R AR AR AR R AR F R A S HE R A HHH A4S
e Description ----------
44 I s I TI T TS R AR S

iREsEsssssasas AR RRRRE
&

# This file r on a plate th a flaw
4
iSssssat s aAntatata AR AR RS

==

= =

=

=

= =+

=

begin sierra plate_embedded_flaw
title ©plate_embedded_flaw

define direction unit_minus_z with vector 0 0 -1

BEREEE R R
[ttt Function Defs —————-——-
FEA AR R R R AR AR R R R R R R R R R R R

begin definition for function load_ramp

type 1is Analytic

expression variable: time = global time

evaluate expression = "{peak_load}*time/{end_time}"
end definition for function load_ramp

begin definition for function const_load
type is analytic
evaluate expression = "{peak_load}"
end definition for function const_load

FHEF AR R R R R R R R R R
s Matesrials —————————v
FEAFH A H AR AR R R R R R R R R
Materiglg——=—=—mem——

begin material ss
density = 8004

begin parameters for model elastic
youngs modulus = 200.0e9
poissons ratio = 0.25

end parameters for model elastic

begin parameters for model neo_hookean
youngs modulus = 200.0e9
poissons ratio = 0.25

end parameters for model neo_hookean

end material ss
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(ST R RS ER T
] Adagio Section -----------
begin solid section ug_section
formulation = mean_quadrature
strain incrementation = midpoint_increment
end solid section ug_section

begin solid section sd_section
Formulation = selective_deviatoric
Deviatoric Parameter = 1

end solid section sd_section

begin total lagrange section section_composite_tetl0
formulation = composite_tet
end

P Finite Element Model -----------

begin finite element model plate
Database name = plate_embedded_flaw.g
Database type = exodusII

begin parameters for block plate_embedded_flaw
material ss
solid mechanics use model elastic

{if (project == 0)}
section = ug_section
{else}
section = sd_section
{endif}

end parameters for block plate_embedded_flaw
end finite element model plate

{if (project == 0)}
{else}
begin finite element model projected_plate
Database name = template_plate_embedded_flaw.g
Database type = exodusII

begin parameters for block plate_embedded_flaw
material ss
solid mechanics use model elastic
section = ug_section
end parameters for block plate_embedded_flaw
end finite element model projected_plate
{endif}

iSsassEsssiatadatatatatssssttind s AR RS ERR RS RR R RS
fommm - Main Procedure for Adagio ----------
thdddddHdt bt AR AR AR R
Begin Adagio Procedure adagio_pressure_test
Begin time control
Begin time stepping block time_block
Start Time = 0.0
Begin Parameters for Adagio Region adagio_mechanical
Time Increment = {initial_time_step}
End Parameters for Adagio Region adagio_mechanical
End Time stepping block time_block
Termination Time = {end_time}
End time control




FHEFRE R H R R R R R
o Adagio Region ----------
T T T T T T T R TR R R

begin adagio region adagio_mechanical

e adaptive time stepping ----———=m——=—=-—

begin adaptive time stepping

target iterations = 50
iteration window = 15
maximum multiplier = 4.0e+00
minimum multiplier = le-10

growth factor = 1.5

cutback factor = 0.5

maximum failure cutbacks = 30
end

use finite element model plate
e Boundary Conditions ---------

begin fixed displacement
node set = bottom_symmetry_surf
components = z

end fixed displacement

begin fixed displacement
node set = side_symmetry_surf_yplane
components =y

end fixed displacement

begin fixed displacement
node set = side_symmetry_surf_xplane
components = x

end fixed displacement

begin fixed displacement
node set = side_surf_yplane
components =y

end fixed displacement

begin fixed displacement
node set = side_surf_xplane
components = x

end fixed displacement

{if (pressure == 0)}
begin traction
surface = top_surf_ss
function = load_ramp
direction = unit_minus_z
end traction
{else}
begin fixed displacement
node set = top_surf
components = z

end fixed displacement

begin pressure

surface = pressure_surf
function = load_ramp
end pressure
{endif}
{if (project == 0)}
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begin j integral j_pl

crack tip node set = crack_front
integration radius = 0.1
number of domains = 100
crack plane side set = crack_surf
function = plateau

end

{endif}
fommmsaas Results OQutput ---------

begin results output output_adagio

database name = plate_embedded_flaw.e
database type = exodusII
at time 0, increment = {output_time_step}
Nodal Variables = displacement As disp
Nodal Variables = temperature As temp
Nodal Variables = coordinates
Nodal Variables = velocity
Nodal Variables = force_internal
Nodal Variables = residual
Element Variables = fluid_pressure
Element Variables = von_mises
Element Variables = effective_log_strain
Element Variables = stress
Element Variables = unrotated_stress
element Variables = strain_energy
element Variables = strain_energy_density
Element Variables = left_stretch
Element Variables = rotation
{if (project == 0)}
element variables = j_integration_domains_j_pl as j_int_dom_pl
global variables = j_average_j_pl as j_ave_j_pl
nodal variables = j_j_pl as j_pl_planar
nodal variables = j_weight_functions_j_pl as j_pl_wtfunc

{endif}
end results output output_adagio

o Solver ---------
Begin Solver
begin loadstep predictor
type = secant
end loadstep predictor

Begin cg
target relative residual = le-5
acceptable relative residual = le-4
target residual = le-3
acceptable residual = le-2
Maximum Iterations = 10

I

Minimum Iterations
Line Search secant
Orthogonality measure for reset = 0.5
Preconditioner = Elastic

begin full tangent preconditioner
linear solver = feti

iteration update = 10

minimum convergence rate = 1.0E-15
end

End cg
End Solver

end adagio region adagio_mechanical

End Adagio Procedure adagio_pressure_test
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{if (project == 0)}

{else}

FHEE AR R R R R R A
L Projection Procedure for Adagio ----------

HHF A AR R AR R R R R R

Begin Adagio Procedure project

Begin procedural transfer migration
node variables = displacement
element variables = stress unrotated_stress strain_energy_density strain_energy
element lie group variables = rotation left_stretch
Begin 12_projection transfer fred
send blocks = plate_embedded_flaw
receive blocks = plate_embedded_flaw
transformation type = element2element
send coordinates = original
receive coordinates = original
linear solver = feti_iterative
End

End

Begin time control
Begin time stepping block p0

start time = {end_time}
Begin Parameters for Adagio Region region_2
Time Increment = {1.0e-5 * end_time}
End Parameters for Adagio Region region_2
End
{if (pressure == 0)}
termination time = {end_time}
{else}
termination time = {end_time + 1.0e-5 * end_time}
{endif}
End

Begin Adagio Region region_2
Use Finite Element Model projected_plate

{if (pressure == 0)}
{else}
begin prescribed velocity
include all blocks

components = x y z
function = sierra_constant_function_zero
end

begin pressure

surface = pressure_surf
function = const_load
end pressure

{endif}

begin j integral j_pl

crack tip node set = crack_front
integration radius = 0.1
number of domains = 100
crack plane side set = crack_surf
function = plateau

end

Begin Results Output output_vars
database name = projected_plate_embedded_flaw.e
at step 0 increment = 1
element Variables = stress
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element Variables = unrotated_stress

element Variables = strain_energy

element Variables = strain_energy_density

element Variables = rotation

element Variables = left_stretch

element variables = j_integration_domains_j_pl as j_int_dom_pl
global variables = j_average_j_pl as Jj_ave_j_pl

nodal variables = j_j_pl as j_pl_planar

nodal variables = j_weight_functions_j_pl as j_pl_wtfunc

nodal variables = displacement

nodal variables = coordinates

End

Begin solver

Begin cg
reference = external
target relative residual = le~5
acceptable relative residual = le-4
target residual = le-3
acceptable residual = le-2
Maximum Iterations = 10

Il

Minimum Iterations

Begin full tangent preconditioner

linear solver = feti
iteration update = 10
End
End cg

End solver

End adagio region region_2

e R R S $$8$
End adagio procedure project
S e e A $55
{endif}
begin feti equation solver feti
Residual Norm Tolerance = le-6
end

begin feti equation solver feti_iterative
param-string "debugMask" value "solver"
param-string "local_rbm_tol" value 1.0e-32
param-string "global_rbm_tol" value 1.0e-32
residual norm tolerance = le-16

end

end sierra plate_embedded_flaw
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