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Abstract

In order to study the effects of Ni oxidation barriers on H diffusion in Zr, a
Ni-Zr-H potential was developed based on an existing Ni-Zr potential. Using
this and existing binary potentials H diffusion characteristics were calculated
and some limited findings for the performance of Ni on Zr coatings are made.

1 Introduction

The incorporation and transport of hydrogen in metals has wide technological inter-
est. Zirconium, in particular, is well known to both absorb hydrogen and allow it
to diffuse readily; however, the oxide that forms on the surfaces of zirconium is rela-
tively impermeable. Nickel coatings prevent the formation of oxide layer on Zr and
H transport in Ni is relatively fast. Zirconium has many phases/crystal structures
depending on conditions and the Ni-Zr system can form alloys with a variety of com-
positions. At room temperature crystalline zirconium is hexagonally close-packed
(HCP) a-Zr, and transitions to body-centered cubic 0-Zr, at 1136 K. Nickel is face
center cubic (FCC) at room temperature. As Fig. 1 in Tao et al. [1] shows these
interfaces can be relatively sharp and form a stepped transition in composition from
pure Zr to pure Ni.

This work focus on Ni-Zr interfaces using atomistic techniques to model the hy-
drogen diffusion. Generally speaking, embedded atom method (EAM) [2, 3] and
modified embedded atom method (MEAM) [4] potentials are used to model these
types of systems. Unfortunately, to our knowledge no Ni-Zr-H potential exists. For
Ni-Zr alloys a number of parameterizations exist [5, 6, 7, 8, 9, 10] of various quality
and tuned to different conditions. The EAM potential of Mendelev and coworkers
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Figure 1: Comparison of diffusion versus inverse temperature for existing experimen-
tal and simulated data. Left panel: Ni-H, right panel: Zr-H. Lines: data obtained
from literature, points: data obtained by us using published potentials.

[11, 8, 9] was parameterized to the liquid and glass properties of amorphous and crys-
talline NiZr alloys with application to solidification. An updated version is available
through the NIST site (https ://www. ctcms.nist .gov/potentials/) For the Ni-H
system a number of parameterizations have been published [12, 13, 14, 15]. The
work of Angelo et al. [12] is arguably the best. For the Zr-H system a number of
parameterizations have also been published [16, 17, 18, 19, 18]. Only the MEAM po-
tentials [15, 18] model hydrides with any fidelity. Other complexities than modeling
bound hydrides with mobile diffusing H exist. Fig. 1 show the variety in predicted
and measured Arrhenius behavior for both the Ni-H and Zr-H systems. For Ni-H the
experiments are fairly consistent but there is scatter across predictions. For Zr-H
the experiments and limited predictions both show inconsistencies.

In order to study and quantify hydrogen diffusion in Ni-Zr systems we needed
to develop a Ni-Zr-H potential. Given our estimation of the quality of the existing
potential and preliminary tests, two starting points seemed promising, one based on
MEAM potentials and the other on an EAM potential. One would be to take the
Lee and Lee Zr-H MEAM potential [18] and the Ko and Lee MEAM Ni-H potential
[15] and add the Ni-Zr interactions. This would have the advantage of being able
to model hydride formation; however, MEAM is more difficult to parameterize than
EAM, the two potentials were not consistent in how they treated H, and the Ni-H
showed instabilities for more than 1 H in the system. Instead we chose to add H
interactions to the Mendelev Ni-Zr EAM potential [8].
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2 Potential

The Embedded Atom Method (EAM) potential [2] in Finnis-Sinclair [20] form is

(Nrco) = Fa( E Pab(rao)) + E E 20ab(rao)1 „

a,aEga b,OEgbOcx a,aEgab,0EgbOŒ

embedded pair

(1)

where Fa(p), pab(r) and Oab (T) are functions. Suggested forms [21] for the embedding
energy:

Fa(p) = fa (r=) (log ( 
Pa

— 1)
Pa 

(2)

na
with minimum —fa at ( = 1 and three parameters {fa, qa, ga}, and the density:

Pab(r) = gab exp(—i3abr)

with two parameters -1LPab7 The pair potential is taken to be in Morse form

Oab(r) = Eab (exp(-2aab(r — rab)) — 2 exp(—ctab(r — Tab)))

(3)

(4)

with three parameters {Eab, (Tab, rabl.
The Ni, Zr, and Ni-Zr parameters known from Ref. [8] which leaves eighteen

,unknown parameters: H self IfH ,T1H, OH}, {QHH7 {EHH ŒHThrim-}; H with Ni

{ gliNi 7 I311Ni}7 {EHNi ŒHNi rHNi}; and H with Zr: {QHZr 7 13HZr}, {EliZr1ŒHZr7THZr}
if we assume symmetry gab — eba and ,3ab Na • The properties of pure Ni and Zr
predicted by the Mendelev EAM potential are given in Table 1 and Table 2. It is
noteworthy that the Mendelev EAM potential predicted negative interface energies
for Ni:Zr interfaces which suggests a propensity for mixing as opposed to sharp
interfaces.

Given the number of unknown parameters we decided to calibrate two poten-
tials, (a) a simplified Ni-Zr-H potential where the EAM M:H interactions have been
reduced to the Morse pair potential (NiZr+H in the remainder of this report), i.e.
FH(p) = 0 and pm-H(r) = 0, and (b) the full Ni-Zr-H EAM potential (NiZrH in the
remainder). Here, M E Ni, Zr }.

We calculated training data using density functional theory (DFT) simulations
(with VASP (https://www.vasp.at) specific to the diffusion process. With a 54
atom cell for both a HCP Zr lattice and a FCC Ni lattice, we used the nudged elastic
band (NEB) method to have a single H traverse between neighboring tetrahedral
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exp. DFT MD

a(Ä) 3.52 3.52 3.52
Ec(eV/atom) -5.07 -4.39
C11(GPa) 252 272 247
C12 (GPa) 152 159 147
C44(GPa) 123 130 122

Table 1: Ni (FCC). Experimental values from Refs. [22, 23, 24].

exp. DFT MD

a(Å) 3.23 3.23 3.22
c (Å) 5.15 5.17 5.28

Ec(eV/atom) -6.32 -6.39 -6.47
C11(GPa) 155 136 156
C33(GPa) 172 160 180
C12(GPa) 67 72 77
C13(GPa) 65 66 63
C44(GPa) 36 32 48
C55(GPa) 24 33

Table 2: Zr (HCP). Experimental values from Refs. [25, 19].
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(TET) and octahedral (OCT) interstitial sites and recorded changes in system vol-
ume and energy. This data is relevant to the diffusion process since it characterizes
the energy barrier and configurational changes for the most likely diffusion path, it
also quantifies the relative stability of H in the TET and OCT sites. The DFT data
in Fig. 2 (black) shows that the OCT site is relatively stable in Ni whereas the TET
site is more stable in Zr. Also H prefers neighboring locations to the TET site. In
both systems the insertion of H causes swelling. Fig. 3 shows that insertion energy
for 2 H in Ni or Zr has now clear dependence on H-H distance, which is a problem for
the usual paradigm for empirical interatomic potentials and may be a small system
effect. Also the energy-volume behavior shows a clearer trend but no ordering with
respect to the site locations.

In calibrating both the simplified NiZr+H and full NiZrH potentials we wish to
capture stability of H in interstitial sites, the diffusion energy barriers, swelling vol-
umes, and H-H coordination effects in metal lattice. For the diffusion path data we
employed corresponding NEB calculation in our molecular dynamics code (LAMMPS
https : //lammps . sandia. gov). For the H-H coordination effects we employed cal-
culations similar to the DFT simulations. We used same 54 atom Ni and Zr lattices
as in the DFT calculations but replicated 2 x 2 x 2 to avoid self-interaction issues. Use
weighted least squares error based on relative error in the relevant data, e.g. changes
in volume and energy for the super-cell. We fit the calculated properties with a
genetic algorithm [26]. Fig. 4 shows an example of the data produced by the genetic
optimization in the case where the optimization converged.

Given that the simplified NiZr+H potential only has M-H pair interactions, the
M-H and H-H data can be fit sequentially. In fitting the diffusion data in Fig. 2
we found that the pair potential always caused cell shrinkage when it came close to
fitting the energy data. Given this model discrepancy, we decided only to fit the
energy data. Also given that the H-H data not consistent with a distance based
potential we assume a small repulsive energy to ensure multiple H do not occupy the
same site. The resulting parameters are given in Table 3.

Although the full NiZrH potential should be able to represent the volume swelling
as well as the energy barrier of the NEB calculations, fitting it was less successful. We
believe this was due to the much larger number of parameters and some correlations
between the parameters. Augmenting the DFT training data with systems with
Ni, Zr and H constituents did appear to help but a satisfactory potential was not
obtained during the project.
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Figure 2: H in metal lattice volume change and energy change as a function of the
TET to OCT path reaction coordinate. Upper panels: Zr-H (barrier 0.28 eV), lower
panels: Ni-H (barrier 0.12 eV).
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NiH ZrH
E 0.441054 1.459919
a 2.828092 1.870996
r 1.512915 1.675497

Table 3: NiZr+H EAM+Morse potential parameters.

3 Diffusion

Diffusion of atomic hydrogen in a solid lattice is a well studied phenomenon, see
Ref. [27, Chap.4] for example. As mentioned, the small H atoms prefer to reside in
interstitial sites and hop/diffuse between them. The Green-Kubo relation

D = 
3 o 
fc)(Va(0) Ýa(t)) dt  E f (,(0) va(t)) dt

c,Eca 0
(5)

provides an equilibrium, small cell molecular dynamics (MD) method for estimating
the diffusivity matrix D and the mean diffusion constant D = tr D. Here "Va is the
species a average velocity, va is the velocity of atom a, and ga group of all atoms
of species a. For dilute systems the GK expression reduces to the usual Einstein
relation. Despite H being relatively mobile in the Ni and Zr, we needed to employ
temperature acceleration to get reliable estimates on MD timescales. If we assume
Arrhenius behavior

D(T) = Do exp  
kB

E

T ) 
(6)

with a single barrier with height E, temperature T, and Boltzmann constant kB, we
can use this relation to calculate D at higher temperatures and then estimate D at
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room temperature.
After conducting preliminary simulations to estimate system size effects and con-

centration effects, we ran equilibrium simulations from 300 K to 2000 K for H in Ni
and in Zr lattices. It was crucial to find the range where the H were mobile and
the lattice was still solid and crystalline, so we monitored the M-H and M-M radial
distribution functions (RDFs) to find the range over which the Arrhenius relation
can be fit.

Fig. 5 shows the mean-squared displacement of the H diffusion/random walk for
a sequence of temperatures. Clearly the expected (x2) ,-,, t relation holds for a suf-
ficiently high temperature. This behavior is corroborated by the H-Zr RDF which
shows that the zero occupation valleys disappear as the temperature increases. Cor-
respondingly where Zr-Zr RDF shows a lack of distinct peaks separated by zero
occupation valleys indicates where the Zr has lost crystallinity. These two tempera-
ture bounds define the appropriate range to fit the D(1/T) data and hence determine
an estimate for D at T= 300 K.

Using this method and the simplified NiZr+H potential we were able compare
the results of this ternary potential to those for existing binary potentials for Zr-H
and Ni-H. Fig. 6 indicates that the new ternary potential gives diffusion estimates
comparable to the more trusted existing binary potentials. Note for Zr-H we also
calculated H diffusion constant for the c-axis separately from the a-plane. Since these
estimates were similar to within uncertainty and are not shown for clarity.

Lastly, we attempted to obtain the diffusion properties for H near a Ni:Zr interface
using a novel analysis. Unfortunately, the Ni:Zr bi-crystal systems were not stable
at elevated temperatures with the Mendelev EAM potential we built our NiZr+H
potential upon. It appears that the interface energy predicted by the potential it
too negative and hence mixing/alloying is preferred to interface stability. In lieu of
stable interfaces we calculated the H diffusion constants in a range of amorphous Ni-
Zr alloys. Although not entirely converged with respect to amorphous configuration
samples, the results show that if intervening amorphous layers exist between Ni and
Zr and they are high in Zr content, they could be prohibitive barriers to H diffusion.

4 Discussion

The findings of this project were:

• a potential more complex than a pair-wise potential is probably needed to
represent both the H diffusion energy barrier and the H swelling volume in Ni
and Zr,
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• a NiZr+H potential that captured the H diffusion barrier was parameterized
and produced diffusion behavior comparable to existing binary potentials,

• the potential predicted that NiZr has a strong propensity to mix species and
destabilize interfaces at elevated temperatures,

• in amorphous, Zr rich, NiZr alloys the H diffusion can be severely limited which
has some relevance to coating Zr with Ni to maintain good H diffusion.

In addition to focusing on the NiZrH system we were also able to perform preliminary
studies of H diffusion in Zr02 and Zr02:Zr interfaces. Unfortunately the available
COMB potential [28] is computationally expensive and also does not seem to model
H diffusion well. Other potentials exist for the Zr0 system [29, 30, 31, 32] but were
not evaluated due to a lack of H interactions. Given the importance of hydride
formation and the proclivity of the Mendelev potential to mix, work is underway to
refit entire potential under other funding. Lastly, the DFT training data for NiH
and ZrH including additional data for amorphous Ni-Zr-H and crystalline Zr-O-h is
available upon request (rjone s@s andi a . gov).
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