
•

116
SANDIA REPORT
Printed ra
A Domain-Specific Language for
High-Consequence Control Software
Robert Armstrong, Geoff Hulette

Sandia
National
Laboratories

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

SAND2019-14897

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

2

ABSTRACT
While most software development for control systems is directed at what the system is supposed
to do (i.e., function), high-consequence controls must account for what the system is not supposed
to do (i.e., safety, security and reliability requirements). A Domain Specific Language (DSL) for
high-consequence digital controls is proposed. As with similar tools for the design of controls, the
DSL will have plug-in modules for common controller functions. However, the DSL will also
augment these modules with attendant "templates" that aid in the proof of safety, security and
reliability requirements, not available in current tools. The object is to create a development
methodology that makes construction of high-assurance control systems as easy as controls that
are designed for function alone.

3

CONTENTS

1. Introduction 7

2. Synchronization, Refinement and Implementation Refinement in Q-Charts 8
2.1. Introduction to Refinable Semantics in StateCharts: Q-Charts 8
2.2. A Motivation with an Example in Q-Charts 9

3. Formal Reasoning About Q-Charts 18
3.1. Motivation 18
3.2. Syntax of Q-Charts 19
3.3. Semantics of Q-Charts 21
3.4. Semantics and Proofs in Coq 22

4. Conclusion 40

References 41

5

LIST OF FIGURES

Figure 2-1. Simple Q-Chart that forms the first part (1) of a parallel composition. The input
x1 is identified with a completely nondeterministic choice on every step of the
system 9

Figure 2-2. Simple Q-Chart that forms the second part (2) of a parallel composition (see
Figure 2-3) . 10

Figure 2-3. Parallel composition of Q-Charts from Figures 2-1 and 2-2. xi and x2 are unified
to x, and P is unified to in (2, D), a predicate that is true if Machine (2) is in state
D. Similarly in(1,B) is true if Machine 1 occupies B. The effect of this is to
synchronize the B C and D —> E transitions. 11

Figure 2-4. A simple Q-Chart to be composed with that of Figure 2-5 12
Figure 2-5. A simple Q-Chart to be composed with that of Figure 2-4 13
Figure 2-6. The denoted TLA expression for the composition of Figure 2-3. Here in(i, S) °

(sti = S): the state variable sti in the TLA rendering occupies the state S in
Machine i. 14

Figure 2-7. Expression removing the ability for both machines to stutter at once, similar to
threaded C semantics. This is not a valid TLA expression in the sense that it is
no longer stuttering invariant. 15

Figure 2-8. Parallel composition of Q-Charts from Figure 2-3 but now rendered as a reactive
synchronous machine. No stuttering steps are required but refinement becomes
more difficult. 16

Figure 2-9. The denoted TLA expression for the reactive machine refinement of the Q-
Chart of Figure 2-8. Because the only modification is self-transitions, these
can subset stuttering in either expressions of Figures 2-6 or 2-7 and thus is itself
a refinement of both of those machines. This transition relation coheres more
with the semantics of hardware, where at every step some transition must be taken. 17

Figure 3-1. Example machine with states A, B, and C. 20

6

1. INTRODUCTION

Software for unmanned control systems — such as used in defense, energy, and transportation — is
prone to failure when created using common programming languages and techniques, due to the
difficulty of anticipating all possible behaviors of complex software. We propose developing a
controller Domain-Specific Language (DSL) that will make it easier to create correct code and
easier to formally verify its correctness for high-consequence controls. Standard development
practices encourage programming for function over safety, security and reliability: the
programmer concentrates on what it does rather than what it is not supposed to do. The reason for
this is that function is easily verified through testing whereas safety, security and reliability
require formal reasoning.

Current approaches to high-assurance correct-by-construction programming are broad and do not
target specific properties of controllers that are harder to verify (e.g., real-time requirements).
This limits the application of these techniques to very simple systems.

This work has focused on a DSL for high-consequence digital controls that has an unambiguous
formal semantics, but also uses a programming metaphor close to that which the designers of NW
controls already use. Many designers of control systems use a State Chart analog to conceptualize
and test out their designs. The most common programming environment that implements the
State Chart metaphor in the US, and indeed at Sandia, is Matlab Simulink/Stateflow [8]. The DSL
presented in this work is a formally analyzable language based on State Charts, called Q-Charts ,
that is compatible with suitably restricted Stateflow. Although Stateflow has no formally defined
semantics, we have discovered through this work a suitable restriction on Stateflow's informal
semantics that works with our formally correct DSL. This new language can then be analyzed for
safety, security, and reliability properties to show the correctness of a specification for
high-consequence controls. We will refer to such a specification as an "executable
specificatioe.

7

2. SYNCHRONIZATION, REFINEMENT
AND IMPLEMENTATION
REFINEMENT IN Q-CHARTS

2.1. INTRODUCTION TO REFINABLE SEMANTICS IN
STATECHARTS: Q-CHARTS

A number of formal semantics have been assigned to the original Harel State Charts[2]. Here we
present a variant where each composition is also a refinement of the precursor, enabling a divide
and conquer strategy for large systems. This language for specifying controllers is common
among engineers and the purpose of this work is to make a variant Domain-Specific Language
(DSL), called Q-Charts, that is amenible to formal analysis for high-consequence controls but still
accessible to engineers. Two important characteristics of this DSL is automation and refinement.
Because our target systems are high-consequence controllers, strict verification against a
consistent specification that is accessible to engineers is critical.

Refinement not only provides an incremental method of engineering but also providess scalability
for formal proofs of the resulting control system. Famously unscalable, naive formal analysis
complexity grows exponentially with problem size. Without a divide and conquer scheme for
controlling that complexity, even modest-sized designs are out-of-reach. Automation is important
because specification and digital system development, though often represented as top-down, are
almost uniformly iterative.

State Charts was conceived and remains a primarily graphical language, which nonetheless has a
formal semantics. In fact there are a number of different semantics associated with State
Charts [11, 4, 7]. Q-Charts preserves these properties, hewing closely to the written language for
State Charts: SCXML [9]. Q-Charts adds elements to SCXML that enable and facilitate formal
reasoning which have been published separately [10]. In what follows, the semantics of this
Q-Chart formalism is laid out, first with an example, then with the generalized Coq-based [1]
code and proofs. The Q-Chart formal semantics are interpreted in TLA [6] and underlie the
formal reasoning. The Coq rendering of Q-Charts is done in a shallow embedding of TLA in Coq.
The Q toolsuite which interprets this extended SCXML and renders it in various languages formal
and otherwise can be used for both hardware and software analysis.

8

2.2. A MOTIVATION WITH AN EXAMPLE IN Q-CHARTS

We hew closely to the TLA formalism for the logic of Q-Charts using the graphical language to
guide what the states mean and how composition is done.

We define the semantics Q-Charts in TLA (Temporal Logic of Actions[6]). TLA is particularly
useful for formal reasoning about specifications. An important part of this work is to be able to
relate specification variants via refinement of the original TLA Q-Chart specification. This
includes refinements that are implementable by hardware or software but necessarily lie outside
of strict TLA formulae.

register: a E Int
input: x1 E Bool

Figure 2-1. Simple Q-Chart that forms the first part (1) of a par-
allel composition. The input x i is identified with a completely
nondeterministic choice on every step of the system.

The input variables, over which the chart has no control (x in Figure 2-1), is distinguished from
the register variables (a in Figure 2-1) which the machine controls. The input variable, xl, should
be thought of as coming from a completely nondeterministic (Boolean valued) machine. This is
important because there will eventually need to put causal, and even implementation constraints
on the input so that it remains physical. (xl in Figure 2-1) is effectively composed with the
machine receiving the input (in this case 1) but we do not consider it part of the machine.

In Q-Charts every composition is a refinement of the machine. This includes both hierarchical
and parallel composition (see Chapter 3). As an example, see the Chart in Figure 2-3. The
translation into TLA appears in Figure 2-4.

Parallel composition is accomplished by conjoining the Spec's for the machines as well as the
variables to be unified between the two. The composed Q-Chart appears in Figure 2-3 where P is
with the predicate in(1,B) (True when machine 1 occupies state B, False otherwise). This has the

9

input: P E Bool
input: x2 E Bool

Figure 2-2. Simple Q-Chart that forms the second part (2) of a
parallel composition (see Figure 2-3).

effect of "synchronizing" B —> C and D —> E. Additionally, x1,x2 become x so that both machines
1 and 2 receive the same input. The composition's representation in TLA the NextR must be
replaced with the conjunction: Nextl A (x1 = x) A (P = (st2 = D)) and NextL is replaced with
Next2 A (x2 = x) A (Q = (st2 = D)) and then these are conjoined together.

Skip steps, or stuttering steps, are transitions where nothing happens and all of the state for any
machine stays the same. As is traditional with TLA specifications the [01,—,<vars> notation indicates
skip steps over the machine variables: [Q]<vars> is true even if the action Q is not True but set of
machine variables, < vars > remains unchanged.

[Q] <vars> '' Q V Skip<vars> = QV (varl = varl') A (var2 = varf)... A (varn = yarn) (2.1)

Notably the input variables to the machine are never constrained by the machine in any way
except that its type remains constant. This alternate notation will be useful when we further refine
the machine closer to something that is less refinable, but more implementable. Implementations,
like Verilog or C programs, don't have an idea of unlimited skip steps and do not possess a
generic ability to be trace subsetted into further refinements. The idea that implementations lack
the ability to be refined is not true in every case, it is just not generically true. For example,
predicated actions (guards) can always be strengthened without resorting to stuttering, which
always yields a refinement. But adding arbitray orthogonal behaviors to the machine by
overlaying stuttering is absent in almost all implementations. These connections between skip
steps, time, and implementations will be dealt with more systematically later in the this work. For
now we will say that Machines 1 and 2 of Figure 2-3 are synchronized when every transition is
taken at the same "time': i.e. on the same step.

It is clear that this step synchronization does not exist in the TLA expression of Figure 2-6. There
are steps where either or both machines are skipping and, for example, states B and E and C and
D can be simultaneously occupied (i.e. not step synchronized as we might like). In order to refine
to non-TLA expressions that are closer to the semantics of an implementation, we reformulate the

10

register: a E Int

input: x E Bool

Figure 2-3. Parallel composition of Q-Charts from Figures 2-1
and 2-2. x1 and x2 are unified to x, and P is unified to in(2,D),
a predicate that is true if Machine (2) is in state D. Similarly
in(1,B) is true if Machine 1 occupies B. The effect of this is to
synchronize the B C and D E transitions.

specification where Skip is an explicit predicate term. Rewriting the specification of Figure 2-6 in
the Skip syntax:

[Next 1] varsl A [Next2]vars2 = (Nextl V Skipvarsi) A (Next2 V sSkkii pvvarrs2s2))

= (Next1 A Next2) V (Skipvarst

A pa

V (Nextl A Skipvars2) V (Next2 A Skipvarsi)

If we further refine the machine into a subset where both of the machines cannot skip at the same
time (i.e. some physical computation is always happening) we can conjoin the above with

'(Skipvars1 A Skipvars2):

([Next1]vars1 A [Next21jvars2) A —1(Skipvarst A Skipvars2) = (Nextl A Next2)

V (Nextl A Skipvars2) V (Next2 A Skipvars1)

In this case the combined machine is always taking some transition but skips are allowed for one
machine or the other. This refinement would conform to C-like semantics where each machine
occupies a thread, and scheduling allow one or both machines to take a step. In this case either
states B and E or C and D can be simultaneously occupied. Note that this refinement supports an
invariant such as Next1 V Next2 that is not stuttering invariant and thus the new specification:

Spec = Init A ❑((Nextl A Next2) V (Nextl A Skinvars2) V (Next2 A Skipvars1))

11

MODULE Machinel
Initl == stl = A
Nextl == \/ (stl = A) /\ (stl ' = B) /\ (a' = a+1)

\/ (stl = B) /\ x_1 /\ P /\ (stl ' = C)

varsl == stl
TypeInvl == (stl

/ \ (x_ 1
\in {A,B,C}) /\ (a \in Int)

\ in Bool)/\ (P \in Bool)

Specl == Init 1 /\ [] [Nextl] varsl /\ Typelnv

THEOREIVI Specl => ((st 1 = C) => [] (st 1 = C))

}

Figure 2-4. A simple Q-Chart to be composed with that of Figure 2-5.

Because this is expression is not stuttering invariant, it is not a "TLA expressioe [6].

Allowing one or the other machine to skip while the other takes a transition allows Machine 2 to
delay until both B C and D E transitions can be enabled. Further skipping allows the two
transitions to be taken simultaneously but does not require it.

Removing all stuttering would constrain all of the transitions in the two machines to be taken
simultaneously, but would not allow for the Machine 2 delay necessary for the B C and D E
transitions to be simultaneously enabled, after which the two would be taken synchronously. This
completely synchronous semantics is closer to a hardware description where a clock dictates the
next transition for all composed machines and there is nothing that could be interpreted as
stuttering.

To impose hardware-like synchronous semantics will require refinement of the composition of
Figure 2-3 to a completely reactive machine. Because we cannot rely on stuttering to cover for a
transition that cannot be taken, the machine must have a transition for every eventuality to avoid a
deadlock condition. The most straight forward way to accomplish this is to decorate each state
with a self-transition that has a guard with the negation of that state's outgoing transitions.

In Figure 2-8 is this further refinement for the example. The transition relation expression for this
Q-Chart is written in Figure 2-9.

The picture of sucessive refinements from a looser TLA specification, most conducive to
abstraction/refinement, down to one that more closely adheres to the implementation semantics
has advantages at both ends. Abstraction/refinement permits a more facile and scalable
environment for proving safety properties and the refinement into an implementation semantics
better predicts the behavior of the end product. Refinement guarantees that every property proved
at the abstract level still holds at the implementation level. Properties may take on a stronger form

12

MODULE Machine2
Init2 == st2 = D
Next2 == \/ (st2 = D) /\ x_2 \ Q \ (st2 ' = E)

vars2 == st2

Typelnv2 (st2 \in {D,E}) /\ (x_2 \in Bool) /\ (Q \in Bool)

Spec2 == Init2 /\ ([Next2] _vars2 /\ TypeInv)

THEOREIVI Spec2 => ((s t 2 = E) => [] (st2 = E))

Figure 2-5. A simple Q-Chart to be composed with that of Figure 2-4.

in refinement, more relevant to the implementation. A property such as:

 QV Skip vars

proved at the abstract level, may take a form:

at the implementation level.

The conclusion is that the abstract level provides a generic ability to refine specifications and a
scalable way to prove properties about it. The more implementation refinement allows an
understanding of what effect those properties have on a physical device that can be built.

13

MODULE Composed Machine
Init == (stl = A) /\ (st2 = D)
Nextl == \/ (stl = A) /\ (stl ' = B) /\ (a' = a+1)

\/ (stl = B) /\ x /\ (st2 = D) /\ (stl ' = C)
Next2 == \/ (st2 = D) /\ x /\ (stl = B) /\ (st2 ' = E)

vars2 == st2

varsl == stl

Typelnv == /\ (stl \in {A,B,C}) /\ (x \in Bool)

/\ (st2 \in {D,E})

Spec == Init /\ [] ([Nextl] varsl /\ [Next2] _vars2 /\ TypeInv)

Figure 2-6. The denoted TLA expression for the composition of
Figure 2-3. Here in(i,S) (sti = S): the state variable sti in the TLA
rendering occupies the state S in Machine i.

14

 MODULE Composed Partial Skip Machine
Init == (stl = A) /\ (st2 = D)

Nextl == \/ (stl = A) /\ (stl ' = B) /\ (a' = a+1)
\/ (stl = B) /\ x /\ (st2 = D) /\ (stl ' = C)

Next2 == \/ (st2 = D) /\ x /\ (stl = B) /\ (st2 ' = E)

vars2 == st2
varsl == stl

Typelnv == /\ (stl \in {A,B,C}) /\ (x \in Bool)

/\ (st2 \in {D,E}) /\ (a \in Int)

Spec == Init /\ H(Next1 /\ Next2 \/ (Nextl /\ Skip vars2) \/ (Next2 /\ S

/\ TypeInv)

Figure 2-7. Expression removing the ability for both machines

to stutter at once, similar to threaded C semantics. This is not a
valid TLA expression in the sense that it is no longer stuttering
invariant.

register: a E Int

input: x E Bool

Figure 2-8. Parallel composition of Q-Charts from Figure 2-3 but
now rendered as a reactive synchronous machine. No stuttering
steps are required but refinement becomes more difficult.

16

MODULE Composed Reactive
st2 = D)

Machine
Init == (st 1 = A) /\ (

Nextl == \/ (st 1 = A) /\ (stl ' = B) /\ (a' = a + 1)

\/ (stl = B) /\ x /\ in (2 ,D) /\ (stl ' = C)
\/ (st 1 = B) /\ \ neg (x /\ in (2 ,D)) /\ (stl ' = B)
\/ (st 1 = C) /\ (stl ' = C)

Next2 == \/ (st2 = D) /\ x /\ in (1 ,B) /\ (st2 ' = E)

\/ (st2 = D) /\ \ neg (x /\ in (1 ,B)) /\ (st2 ' D)

vars 1 ==

vars2 ==

\/ (st2 = E)

st 1

st2 , a

/\ (st2 ' = E)

Typelnv == /\ (st 1 \in {A,B,C}) /\ (a \in Int) /\ (x \in Bool)
/\ (st2 \in {D,E})

Spec == In i t / \ (Nextl / \ Next2 / \ TypeInv)

Figure 2-9. The denoted TLA expression for the reactive ma-
chine refinement of the Q-Chart of Figure 2-8. Because the only
modification is self-transitions, these can subset stuttering in
either expressions of Figures 2-6 or 2-7 and thus is itself a re-
finement of both of those machines. This transition relation co-
heres more with the semantics of hardware, where at every step
some transition must be taken.

17

3. FORMAL REASONING ABOUT
Q-CHARTS

3.1. MOTIVATION

Specifications are an essential part of the engineering process for high-consequence digital
systems. They bridge the design gap between the requirements, which capture desired behavior at
the highest and most domain-specific level, and the implementation, in the form of some
computer program or hardware description, which realizes the requirements. Specifications
capture design and engineering decisions in a way that is still accessible to customers or other
stakeholders and allows for feedback and discussion, but are more detailed and useful than the
raw requirements for engineers and implementers. Traditional specifications are informal,
captured in prose or diagrams which appeal to intuition, but often elide important details.
Moreover, because of their informal nature, they generally cannot be subjected to rigorous testing
or verification and thus may hide mistakes which may then be propogated to the implementation.
Formal specifications complement informal specification with mathematically precise language
for describing desired digital system behavior. They are unlike programming languages, in that
they describe what constitutes an acceptable behavior of the system without necessarily
describing, step-by-step, how to achieve that behavior.

Statecharts [3] have inspired numerous graphical languages, some designed for writing
specifications and some for regular programs, all of which are based on the idea of articulating a
system as a connected set of state machines. Differences in the nature of the connections, as well
as different notions of variables, input, events, etc., give rise to variants. In this work we present
yet another variation on the theme, a version of Statecharts called Q-Charts, which is designed for
the design and specification of high-consequence digital systems, including the ability to refine
specifications from high-level, abstract models down to executable code. In particular, a refined
specification is guaranteed to preserve all stuttering-invariant safety properties (including
inductive invariants) of its abstraction. Crucially, this design facilitates independent development
of separate components, which can be composed after the fact with assurance that safety
properties are maintained.

In this paper we describe a formal syntax for Q-Charts and assign to it a denotational semantics
using Lamport's Temporal Logic of Actions (TLA) [5]. We also give a syntactic definition of
refinement in Q-Charts that follows its from Statechart-like composition operators, and prove that
this definition does indeed yield refinement in the denoted TLA domain. We chose TLA for the
denotational domain because it has a simple and useful definition of refinement which preserves
stuttering-invariant safety properties, and this in turn allows for simpler proofs. We have

18

formalized and machine-checked our definitions and proofs in the Coq theorem prover
environment.

3.2. SYNTAX OF Q-CHARTS

The syntax of Q-Charts is intentionally quite simple — much simpler than most Statechart-like
languages. In particular, we do not allow for certain constructions, such as inter-machine
transitions or signals, which complicate the semantics while, in our view, adding little
expressivity. We opt instead to define a "core language for Q-Charts, with those extra
constructions defined as "sugar," i.e., in terms of the core. This simple structure has two benefits.
First, since Q-Charts are intended to serve as a formal specification language, it keeps the
meaning of a Q-Chart very clear and hopefully avoids confusion or disagreement over the
meaning of a given Q-Chart. Second, we are interested in proving refinement relations between
certain Q-Charts based on their compositional structure, and the simplicity of those structures
facilitates that goal.

Syntactically, a Q-Chart is defined as a composition over simple state machines with variables.
First, we describe the (core) syntax for the constituent state machines. Second, we describe the
compositional structure of Q-Charts.

We write Bool to denote the set of Boolean values False and True. We assume two sets as
parameters: a set S of state labels, and a set of E of "environments" (see below). We also define
symbols C ° E —x Bool, i.e., predicates over E, as well as A °E x E —x Bool, i.e., relations on E
(think of C and A as mnemonics for "Conditioe and "Actioe, respectively).

A machine is a tuple (I, T, U,N), where I C S x C is the set of initial machine conditions,
T C S x C is the set of the terminal conditions, U C S x A is the set of "inner steps" (see below),
and NC S x SxA is the set of steps.

The set S of state names should be thought of as the labels on the boxes of a state machine
diagram. For example, in Figure 3-1, it would be the case that A,B,C C S. Note that S may
contain any number of "unuser labels, so, in particular, it is convenient to think of S a large set
of finite-length alphanumeric identifiers.

In this setting, we treat the set E of environments abstractly. Intuitively, an element of E can be
thought of as a maps from variable names to values. In the core language presented here it
suffices to elide the details of variable names and values, as well as the structure of the map, as
they do not impact the refinement argument.

The sets I and T are both subsets of S x C and represent initial and terminal states of the machine,
respectively. Intuitively, an initial/terminal state consists of a state label (an element of S) along
with a set of possible configurations of the environment (an element of C, which "picks out"
acceptable initial/terminal environments).

19

The set N represents the "steps" that the machine can take. It is a subset of S x S x A where the
first term can be understood as the "source' state label, the second as the "target" state label, and
the third as the "actioe which relates the sources environement to the target environment.

The set U represents steps which may change the environment but which stay in the same state
(i.e., where the element of S remains unchanged). It is a subset of S x A where the first term is the
state label in question and the second is the action which descibes how the environment may
evolve. A machine by itself makes no semantic distinction between steps in U and steps in N
which happen to have the same source and target state; however, in composition they have
different meanings and the distinction is important. Roughly speaking, U can be thought of as
"stay steps" which describe how the environment may evolve while time is passing in a state.
Self-transitions in N are, by contrast, understood as peers with any other (non-self) step (see
Section 3.3).

Given a set of machines M, we define the syntax of x-terms inductively, as follows:

1. Unit is a x-term;

2. If C1 and C2 are x-terms, then Par(Ci , C2) is a 2c-term;

3. If m E M is a machine and f is a function from S to x-terms, then Node(m, f) is a 2c-term;

and any 2c-term is a Q-Chart. These terms correspond to compositions of state machines, as
described below in Section 3.3.

Finally we need a syntax for "configurations," which we will call 7-terms. Intuitively, a 7-term is
a composition of state labels in S that describes the composite state of a Q-Chart. We define
y-terms inductively as follows:

1. U is a rterm;

2. If G1 and G2 are y-terms, then P(Gi , G2) is a 7-term;

3. If s E S is a state and G is a y-term, then N(s, G) is a 7-term.

Figure 3-1. Example machine with states A, B, and C.

20

3.3. SEMANTICS OF Q-CHARTS

Intuitively, a x-term representing a Q-Chart denotes a set of behaviors that are allowed by any
implementation of the Q-Chart. Here, we assume that an "implementation" of a Q-Chart
specification is just another (probably more detailed) Q-Chart. In practice it could also be a C
program, hardware description, or other description of a digital system. A behavior may be
thought of as a valid "trace" of the Q-Chart, that is, a sequential list of pairs of configurations and
environments. To formalize this notion, we appeal to the existing notion of a behavior or trace in
TLA, and we define our semantics in terms of a denotation of x-terms to TLA formulae.

We have formalized the following mathematics, including machine-checked proofs, in the Coq
theorem prover, see Section 3.4.

To define our denotational semantics, we must first define a few auxillary definitions. We begin
with an inductive definition of a relation init ial which relates x-terms to a pair consisting of a
7-term and a condition in C.

p E C

(U, 13) E initial(Unit)

(gi,p) E initial(ci) (g2,q) E initial(c2)
(3(g l , g2), p A q) E initial(Par(ci,c2))

m = (I , T ,U ,N) s,p) e I ,g,q) E initial(f(s))

(N(s,g), p A q) E initial(Nest(m, f))

We also need a terminal relation, which is defined similarly:

p E C (gi , p) E terminal(ci) (g2,q) E terminal(c2)

(U,p) E terminal(Unit) (P(gi,g2),p A q) E terminal(Par(ci,C2))

m= (I,T,U,N) (s, p) E T (g,q) E terminal(f (s))

(N(s,g), p A q) E terminal(Nest(m,f))

And now we can give the definition of step, which relates between a chart to a set of triples,
where each triple consists of a pair of 7-terms and an action (an element of A, i.e., a relation on
environments) that define the next-state behavior of the chart.

21

a E A

(U,U, a) E step(Unit)

(g1,gi,a1) c step(ci) (g24/2,a2) E step(c2)

(P(g1,g2),P(i{,i2),ai A a2) E step(Par(ci,c2))

m = (s,a1) E U (g,g,a2) E step(f(s))

(N(s,g),N(s,g/),a{ A a2) E step(Nest(m,f))

m= (I,T,U,N) (s,/,a) E N

(g, p) e terminal(f (s)) (g/,q) E initial(f (st))

r(e, ef) A p(e) A a(e, el) A q(el)

(N(s,g),N(s',g'),r) E step(Nest(m,f))

Now we can define the denoted TLA formula in a schematic way. A z-term X denotes a TLA
formula Init A 111[Next]vars where

Init

Next A

Einitial(X)

(x,y,a)Estep(X)

st = x A p

st = x A sti = y A a

vars A = (st, variable names in environment)

3.4. SEMANTICS AND PROOFS IN COQ

Here we include two listings of Coq source code — definitions and proofs — for the syntax,
semantics, and proofs.

(* FILE : Process . v *)

Require Import Coq. Lists . List
Require Import Chart . Util .
Set Implicit Arguments .

Import ListNotations .

Section Process .

Variable A : Type .

Record Process := process
{

initial : A —> Prop;

step : A —> A —> Prop

22

}

Variable m : Process.

Inductive reachable : A —> Prop :=
I reachable_initial : forall x,

initial m x —> reachable x
I reachable_step : forall x y,

reachable x —> step m x y —> reachable y.

Definition deterministic :=
(forall x x', initial m x —> initial m x' —> x = x') /\
(forall x, reachable x —>

forall y y', step m x y —> step m x y' —> y = y').

Definition reactive :=
forall x, reachable x —> exists y, step m x y.

Definition stuttering :=
forall x, reachable x —> step m x x.

Lemma reactive_reachable :
reactive —>
forall x, reachable x —> exists x', reachable x'

Proof.
unfold reactive.
intros Hreact x Hreach.
specialize (Hreact x Hreach).
inversion Hreact as (y,Hy).
exists y.
apply reachable_step with x; assumption.

Qed.

Inductive trace_to : A —> list A —> Prop :=
I trace_to_initial : forall x,

initial m x —> trace_to x []
I trace_to_step : forall x x' t ,

trace_to x t —> step m x x' —> trace to x' (x::t).

Definition trace (t : list A) :=
match t with
I [] => True
I (x::t') => trace to x t'
end.

23

Lemma initial_trace :
forall x, trace [x] —> initial m x.

Proof. .
intros x Ht.
inversion Ht.
assumption .

Qed.

Lemma step_trace :
forall x y t , trace (y::x:: t) —> step m x y.

Proof.
intros x y t Ht.
inversion Ht; subst .
assumption .

Qed.

Theorem reachable_trace :
forall x, reachable x —> exists t , trace (x :: t).

Proof .
unfold trace .
intros x Hreach .
induction Hreach .
exists [] ; constructor ; assumption
inversion IHHreach as (t ,Ht).
exists (x :: t).
apply trace_to_step ; assumption .

Qed.

Lemma trace_reachable :
forall x t , trace (x: t) —> reachable x.

Proof .
unfold trace .
intros x t Htrace .
induction Htrace .
constructor ; assumption .
apply reachable_step with x; assumption .

Qed.

Lemma trace_cons :
forall x t , trace (x:: t) —> trace t .

Proof. .
intros x t Ht.
destruct Ht.
simpl ; constructor .
assumption .

24

Qed.

Theorem in_trace reachable :
forall t x, trace t —> In x t —> reachable x.

Proof.
intros t x Ht H.
induction t; inversion H; subst.
eauto using trace_reachable.
apply IHt; eauto using trace_cons

Qed.

Lemma trace_app •.
forall tl t2 , trace (t1++t2) —> trace t2.

Proof.
intros tl t2 H.
induction tl as [Ix tl].
assumption.
apply IHtl.
simpl in H.
apply trace_cons with x.
assumption.

Qed.

Theorem trace_postfix :
forall tl t2 , postfix tl t2 —> trace t2 —> trace tl

Proof.
intros tl t2 Hpost Ht2.
induction Hpost.
assumption.
apply IHHpost.
apply trace_cons with x.
assumption.

Qed.

Definition invariant (P : A —> Prop) :=
forall x, reachable x —> P x.

Definition trace_property (P : list A —> Prop) :=
forall t, trace t —> P t.

Theorem invariant_trace_property :
forall P, invariant P <—> trace_property (Forall P).

Proof.
unfold invariant , trace_property .
split ; intros H.

25

intros t Ht.
apply Forall forall
intros x Hx.
apply H.
apply in_trace_reachable with t ; assumption .

intros x Hx.
apply reachable_trace in Hx.
inversion Hx as [t Ht].
specialize (H (x:: t) Ht).
rewrite Forall_forall in H.
apply H.
apply in_eq .

Qed.

Theorem unreachable_invariant :
forall x, —(reachable x) <—> invariant (fun st => st <> x).

Proof .
unfold invariant , not .
split ; intro H; intros ; subst ;
eapply H; eauto .

Qed.

End Process .

Section Safety .

Variable A : Type.

Definition safety (P : list A —> Prop) :=
forall 11 12 , P 12 —> postfix 11 12 —> P 11.

Theorem trace_safety :
forall (m : Process A), safety (trace rn).

Proof. .
unfold safety .
eauto using trace_postfix .

Qed.

End Safety .

Section Refinement .

26

Variable A : Type. (* " Abstract " states *)
Variable C : Type. (* "Concrete" states *)
Variable ma : Process A. (* Abstract machine *)
Variable mc : Process C. (* Concrete machine *)

Variable R : C —> A —> Prop . (* State relation *)

Definition refinement :=
forall tc , trace mc tc —> exists ta , list_rel R tc ta /\ trace ma ta.

Section RefinementProperties .

(* It would be nice if our definitions allowed us to derive that R
must be a function or Galois connection or whatever . In fact , at
least for the properties below , we don ' t seem to need unique
existance , merely existance . *)
(* Hypothesis R_func : function R. *)
Hypothesis Href : refinement .

Lemma refinement_reachable :
forall c , reachable mc c —> exists a, R c a A reachable ma a.

Proof .
intros c Hc.
apply reachable_trace in Hc.
inversion Hc as [tc Htc] ; subst ; clear Hc.
specialize (Href (c :: tc) Htc).
inversion Href as (ta , (HR,Hta)); subst ; clear Href .
destruct ta as [1 a ta].
inversion HR.
exists a.
split .
inversion HR; subst ; clear HR; assumption .
apply trace_reachable with ta ; assumption .

Qed.

Theorem refinement_trace_property :
forall (Pa : list A —> Prop) (Pc : list C —> Prop),
(forall ta tc , list rel R tc ta —> Pa ta —> Pc tc) —>
trace_property ma Pa —>
trace_property mc Pc .

Proof .
unfold trace_property .
unfold refinement in Href .
intros Pa Pc HP Ha tc Htc .
specialize (Href tc Htc).

27

inversion Href as (ta , (HR,Hta)).
specialize (HP ta tc HR).
apply HP.
apply Ha.
assumption.

Qed.

Theorem refinement_invariant :
forall (Ia : A —> Prop) (Ic : C —> Prop),
(forall c a, R c a —> Ia a —> Ic c) —>
invariant ma Ia —>
invariant mc Ic.

Proof.
intros Ia Ic.
repeat (rewrite invariant_trace_property).
intros H.
apply refinement_trace_property.
intros tc ta HR1.

induction HR1 as [I c tc a ta HR1 Hi HR].
intros ; constructor.
specialize (H c a HR).
intros Ha.
inversion Ha; subst ; clear Ha.
constructor ; auto.

Qed.

End RefinementProperties

Section Simulation.

Definition simulation :=
(forall c, initial Inc c —> exists a, R c a /\ initial ma a) /\
(forall c c' a, step rnc c c' —> R c a —> exists a', R c' a' /\ step nri

Theorem simulation_refinement :
simulation —> refinement.

Proof.
unfold simulation , refinement.
intros (Hinit ,Hstep) tc Htc.

destruct tc as [I c tc
exists H.
split ; constructor.

28

induction Htc .

rename x into c .
specialize (Hinit c H).
inversion Hinit as (a ,(HR,Ha)).
exists [a].
split ; repeat constructor ; auto.

rename x into c .
rename x' into c ' .
rename t into tc .
inversion IHHtc as (ta , (HR, Hta)); clear IHHtc .
inversion HR; subst ; clear HR.
rename y into a .
rename ys into ta .
rename H into Hsc.
rename H4 into HR.
specialize (Hstep c c ' a Hsc HR).
inversion Hstep as (a ' , (HR' ,Ha)); clear Hstep .
exists (a ':: a:: ta).
split ; repeat constructor ; auto .

Qed.

End Simulation.

End Refinement .

Section BiRefinement .

Variable A : Type .
Variable B : Type .
Variable ma : Process A.
Variable mb : Process B.
Variable R : A —> B —> Prop .

Definition birefinement :=
refinement ma mb (transp R) / \ refinement mb ma R.

End BiRefinement .

(* FILE: Semantics . v *)
Require Import Chart . Process .
Require Import Chart . Util .
Require Import Coq. Logic . Prooflrrelevance .

29

Require Import Coq.Logic.Decidable.
Set Implicit Arguments.

Section Chart.

Variable S : Set.
Variable E : Set.

Record Machine :=

{ machine_initial : (S * E) —> Prop;
machine_terminal : (S * E) —> Prop;
machine_inner : S —> E —> E —> Prop;
machine_step : (S * E) —> (S * E) —> Prop

Inductive Chart :=
I Unit : Chart
I Par : Chart —> Chart —> Chart
I Nest : Machine —> (S —> Chart) —> Chart.

Inductive Config :=
I U : Config
I P : Config —> Config —> Config
I N : S —> Config —> Config.

Inductive chart_config : Chart —> Config —> Prop :=
I CC_Unit : chart_config Unit U
I CC_Par : forall chl chr sl sr,

chart_config chl sl —>
chart_config chr sr —>
chart_config (Par chl chr) (P sl sr)

I CC_Nest : forall x m cs s,
chart_config (cs x) s —>
chart_config (Nest m cs) (N x s).

Theorem dec_chart_config :
forall ch cfg , decidable (chart_config ch cfg).

Proof.
induction ch.
destruct cfg.
left. constructor.
right ; intros Hcc; inversion Hcc.
right ; intros Hcc; inversion Hcc.

destruct cfg.

30

right ; intros Hcc; inversion Hcc.
specialize IHchl with cfgl.
specialize IHch2 with cfg2.
destruct IHchl , IHch2.
left ; constructor ; assumption.
right; intros Hcc; inversion Hcc; subst; contradiction
right ; intros Hcc; inversion Hcc; subst ; contradiction
right ; intros Hcc; inversion Hcc; subst ; contradiction
right ; intros Hcc; inversion Hcc.

destruct cfg.
right ; intros Hcc; inversion Hcc.
right ; intros Hcc; inversion Hcc.
specialize (H s cfg).
destruct H.
left ; constructor ; assumption.
right; intros Hcc; inversion Hcc; subst; contradiction

Qed.

Fixpoint chart_config_bool (ch : Chart) (s : Config) : bool :=
match (ch,$) with
I (Unit, U) => true
I (Par chl chr , P sl sr) => chart config bool chl sl && chart_config bo ,
I (Nest m cs , N x s) => chart_config_bool (cs x) s
I _ => false
end.

Theorem chart_config_bool_correct :
forall ch s, chart_config ch s <—> chart_config_bool ch s = true .

Proof.
intros ch s.
split ; generalize dependent s.

induction ch; intros s Hcc;
inversion Hcc; subst; clear Hcc; simpl; intuition.

induction ch; intros s Hcc;
destruct s; inversion Hcc; subst ; clear Hcc;

match goal with
I [H : andb _ _ = true I— _] =>
rewrite Bool.andb_true_iff in H

I => idtac
end; constructor.

apply IHchl; intuition.
apply IHch2; intuition.

31

apply H; assumption.
Qed.

Inductive chart_initial : Chart —> (Config * E) —> Prop :=
I CI_Unit : forall env,

chart_initial Unit (U, env)
I CI_Par : forall chl cfgl ch2 cfg2 env,

chart_initial chl (cfgl , env) —>
chart_initial ch2 (cfg2, env) —>
chart_initial (Par chl ch2) (P cfgl cfg2, env)

I CI_Nest : forall m cs x cfg env,
machine_initial m (x, env) —>
chart_initial (cs x) (cfg, env) —>
chart_initial (Nest m cs) (N x cfg , env).

Lemma chart_initial_config :
forall ch cfg env, chart_initial ch (cfg ,env) —> chart_config ch cfg.

Proof.
intros ch cfg env.
generalize dependent cfg.
induction ch; intros cfg Hi; inversion Hi; subst; clear Hi; constructor
apply IHchl ; assumption.
apply IHch2; assumption.
apply H; assumption.

Qed.

Inductive chart_terminal : Chart —> (Config * E) —> Prop :=
I CT_Unit : forall env,

chart_terminal Unit (U, env)
I CT_Par : forall chl cfgl ch2 cfg2 env,

chart_terminal chl (cfgl , env) —>
chart_terminal ch2 (cfg2 , env) —>
chart_terminal (Par chl ch2) (P cfgl cfg2 , env)

I CT_Nest : forall m x cs cfg env,
machine_terminal m (x, env) —>
chart_terminal (cs x) (cfg , env) —>
chart_terminal (Nest m cs) (N x cfg , env).

Lemma chart_terminal_config :
forall ch cfg env , chart_terminal ch (cfg , env) —> chart config ch cfg.

Proof.
intros ch cfg env.
generalize dependent cfg
induction ch; intros cfg Ht; inversion Ht; subst ; clear Ht; constructor
apply IHchl; assumption.

32

apply IHch2; assumption.
apply H; assumption.

Qed.

Inductive chart_step : Chart —> (Config * E) —> (Config * E) —> Prop :=
I CS_Unit : forall env env' ,

chart_step Unit (U, env) (U, env ')
I CS_Par : forall chl cfgl cfgl ' ch2 cfg2 cfg2' env env ' ,

chart_step chl (cfgl , env) (cfgl ' , env 9) —>
chart_step ch2 (cfg2 , env) (cfg2 ' , env ') —>
chart_step (Par chl ch2) (P cfgl cfg2 , env) (P cfgl ' cfg2 ' , env ')

I CS_Nest_outer : forall m cs x cfg env x' cfg ' env' ,
machine_step m (x, env) (x' , env ') —>
chart_terminal (cs x) (cfg , env) —>
chart_initial (cs x') (cfg ', env') —>
chart_step (Nest m cs) (N x cfg , env) (N x' cfg ' , env ')

I CS_Nest_inner : forall m cs x cfg env cfg ' env ' ,
machine_inner m x env env ' —>
chart_step (cs x) (cfg , env) (cfg ' , env ') —>
chart_step (Nest m cs) (N x cfg , env) (N x cfg 9 , env ').

Lemma chart_step_src_config :
forall ch cfgl envl cfg2 env2 ,

chart_step ch (cfgl , envl) (cfg2 ,env2) —> chart_config ch cfgl /\ char
Proof.

intros ch cfgl envl cfg2 env2 Ht.
split ;

generalize dependent cfg2;
generalize dependent cfgl ;
induction ch; intros cfgl cfg2 Ht;

inversion Ht; subst ; clear Ht; constructor .
specialize (IHchl _ _ H2); assumption
specialize (IHch2 _ _ H6); assumption
apply chart_terminal_config with envl ; assumption
specialize (H _ _ _ H7); assumption.
specialize (IHchl _ _ H2); assumption
specialize (IHch2 _ _ H6); assumption
apply chart_initial_config with env2; assumption
specialize (H _ _ _ H7); assumption.

Qed.

Inductive chart_refines : Chart —> Chart —> Prop :=
I CR_Unit : forall ch, chart_refines Unit ch
(* I CR_Par_1 : forall chl ch2, chart_refines chl (Par chl ch2) *)
(* I CR_Par_r : forall chl ch2, chart_refines ch2 (Par chl ch2) *)

33

CR_Par : forall chll chrl ch12
chart_refines chll ch12 —>
chart_refines chrl chr2 —>
chart_refines (Par chll chrl)

chr2,

(Par ch12 chr2)
I CR_Nest : forall m csl cs2,

(forall x, chart_refines (csl x) (cs2 x)) —>
chart_refines (Nest m csl) (Nest m cs2).

Inductive config_refines : Config —> Config —> Prop :=
I CFR_U : forall cfg , config_refines U cfg
I CFR_P : forall cfgll cfg12 cfgrl cfgr2 ,

config_refines cfgll cfg12 —>
config_refines cfgrl cfgr2 —>
config_refines (P cfgll cfgrl) (P cfg12 cfgr2)

I CFR_N : forall x cfgl cfg2,
config_refines cfgl cfg2 —>
config_refines (N x cfgl) (N x cfg2).

(* chl — the abstract chart *)
(* cfg2 — the concrete config *)
Fixpoint config_proj_opt (chl : Chart) (cfg2 : Config) : option Config :=

match (chl , cfg2) with
I (Par chl chr , P cfgl cfgr) =>
match config_proj_opt chl cfgl with
I None => None
I Some cfgl ' =>
match config_proj_opt chr cfgr with
I None => None
I Some cfgr ' => Some (P cfgl ' cfgr ')
end

end
I (Nest _ cs , N x cfg) =>
match config_proj_opt (cs x) cfg with
I None => None
I Some cfg ' => Some (N x cfg ')
end

I (Unit , _) => Some U
I (,) => None
end.

Section Refinement.

Variables chl ch2 : Chart.
Hypothesis Href : chart_refines chl ch2.

34

Lemma config_refines_exists_unique :
forall s2 ,

chart_config ch2 s2 —>
exists ! sl , chart_config chl sl /\ config_refines sl s2.

Proof .
induction Href; intros s2 Hcc2.

(* Unit *)
exists U; split .
split ; constructor .
intros s (Hccl , Huniq).
inversion Hccl .
reflexivity .

(* Par *)
inversion Hcc2 as [I chl chr sl sr H1 Hr I]; subst ; clear Hcc2.
assert (exists ! s , chart_config chll s A config_refines s sl) as H1'

by (apply IHcl ; assumption)
assert (exists ! s , chart_config chrl s A config_refines s sr) as Hr'

by (apply IHc2 ; assumption).
inversion H1' as (sl ' , ((Hcla, Hclb), Hl_uniq)).
inversion Hr' as (sr ' , ((Hc2a, Hc2b), Hr_uniq)).
exists (P sl ' sr ').
split .
split ; constructor ; assurnption .
intros s' (Hcc, Huniq).
inversion Hcc; subst ; clear Hcc.
inversion Huniq; subst ; clear Huniq.
specialize (H1_uniq slO).
specialize (Hr_uniq sr0).
rewrite H1_uniq by intuition .
rewrite Hr_uniq by intuition .
reflexivity .

(* Nest *)
inversion Hcc2 as [Ix m' cs s Hcs I]; subst ; clear Hcc2.
assert (exists !s' , chart_config (csl x) s' /\ config_refines s' s) a

by (apply HO; intuition).
inversion Hs' as (s ' , ((Ha, Hb), Huniq)).
exists (N x s ').
split .
split ; constructor ; assumption.
intros s " (Hcc , Huniq ').
inversion Hcc; subst ; clear Hcc.
inversion Huniq '; subst ; clear Huniq '.

35

specialize (Huniq sO).
rewrite Huniq by intuition .
reflexivity .

Qed.

Definition config_proj_rel (s2 : {s I chart_config ch2 s }) (sl :
config_refines (proj 1_sig sl) (proj 1_sig s2).

{s I c

Theorem config_proj_rel_func
function config_proj_rel.

Proof.
unfold function , config_proj_rel.
intros (s2, Hcc2).
assert (exists ! sl , chart_config chl sl /\ config_refines sl s2) as H

by (apply config_refines_exists_unique ; assumption).
inversion Hc as (sl , ((Hccl ,Hcr), Huniq)).
exists (exist (chart_config chl) sl Hccl).
split ; try assumption.
simpl.
intros (sl ' , Hccl ') H.
simpl in H.
specialize (Huniq sl ').
assert (sl = sl ') by (apply Huniq; intuition). subst.
assert (Hccl = Hccl ') by apply proof_irrelevance. subst. (* Yuck *)
reflexivity .

Qed.

Lemma config_proj_correctl
forall sl s2,

chart_config ch2 s2 —>
config_proj_opt chl s2 = Some sl —>
chart_config chl sl /\ config_refines sl s2.

Proof.
induction Href as [1 1 m csl cs2 Hr IH]; intros sl s2 Hcc Hp.

(* Unit *)
inversion Hp; subst; clear Hp.
split ; constructor .

(* Par *)
inversion Hcc; subst; clear Hcc.
simpl in Hp.
destruct (config_proj_opt chll sl) as [sl ' I] eqn:Hl.
destruct (config_proj_opt chrl sr) as [sr 'I] eqn:Hr.
inversion Hp; subst ; clear Hp.

36

specialize (IHcl cl sl' sl).
specialize (IHc2 c2 sr ' sr).
split ; constructor ; tauto.
inversion Hp.
inversion Hp.

(* Nest *)
inversion Hcc; subst; clear Hcc.
inversion Href; subst ; clear Href.
inversion Hp; subst ; clear Hp.
destruct (config_proj_opt (csl x) s) eqn:Hc.
inversion H1; subst; clear H1.
specialize (IH x (HO x) c s).
split ; constructor ; tauto.
inversion H1.

Qed.

Lemma config_proj_correct2 :
forall sl s2,

chart_config ch2 s2 —>
chart_config chl sl —>
config_refines sl s2 —>
config_proj_opt chl s2 = Sorne s 1 .

Proof .
induction Href; intros sl s2 Hcc2 Hccl Hcr.

(* Unit *)
inversion Hccl ; subst ; clear Hccl.
reflexivity.

(* Par *)
inversion Hccl ; subst ; clear Hccl.
inversion Hcc2; subst ; clear Hcc2.
inversion Hcr; subst; clear Hcr.
rename slO into sl
rename sr0 into sr '.
simpl.
destruct (config_proj_opt chl l sl ') eqn:Hl.
destruct (config_proj_opt chrl sr ') eqn :Hr.

specialize (IHcl cl sl sl ').
specialize (IHc2 c2 sr sr ').
rewrite IHcl in H1 by tauto.
rewrite IHc2 in Hr by tauto.
inversion H1; subst ; clear H1.

37

inversion Hr; subst ; clear Hr.
reflexivity .

specialize (IHc2 c2 sr sr ').
rewrite IHc2 in Hr by tauto .
inversion Hr.

specialize (IHcl cl sl sl ').
rewrite IHcl in H1 by tauto .
inversion H1 .

(* Nest *)
inversion Hccl ; subst ; clear Hccl .
inversion Hcc2; subst ; clear Hcc2 .
inversion Hcr ; subst ; clear Hcr. .
rename x0 into x .
rename cs 1 into cs .
rename cs2 into cs ' .
rename sO into s ' .
simpl
assert (config_proj_opt (cs x) s ' = Some s) by (apply HO; try assumpt
destruct (config_proj_opt (cs x) s ') eqn :Hc; inversion H1 ; subst ; ref

Qed.

Theorem config_proj_correct :
forall s 1 s2 ,

chart_config ch2 s2 —>
config_proj_opt chl s2 = Some sl <—> chart config chl sl /\ config_

Proof .
split ; intros .
apply config_proj_correct 1 ; tauto .
apply config_proj_correct2 ; tauto .

Qed.

End Refinement .

(* Refinement *)

Definition chart_process (ch : Chart) : Process (Config * E)
{I initial := chart_initial ch;

step := chart_step ch
}

Theorem chart_refines_refinement :

38

forall chl ch2 ,
chart_refines chl ch2 —>
refinement (chart process chl) (chart_process ch2) eq.

Proof. .
intros chl ch2 Href.
unfold refinement .

intros tc ta Hlr.
replace ta with tc by (apply list rel_eq_ list eq ; assumption).

*)
Abort.

End Chart .

39

4. CONCLUSION

Currently Q-Charts are being actively used in NW development. A translator from
Simulink/Stateflow has been written (outside of the scope of this work) and engineers are using
Q-Charts to verify their designs. Beyond this, proofs of implementation code for these systems
are translated from the same Q-Chart SCXML. This has enabled Sandia to give evidence that
safety, security and reliability properties are upheld by our NW controllers. Previously, the only
assurance for these properties was a "best efforr by the engineers. Beyond the reach of testing,
there was no mechanism to demonstrate definitively why these properties held.

It is our hope that this is just the beginning. There are indications that the way NW control
systems are engineered and verified is changing to a more evidenced-based methodology. The
work is not nearly done. While we have formal evidence for every layer of abstraction from the
systems executable specification down to the implementation binary (alas not the processor yet).
Even so, it is not the best evidence. There are seams between the abstraction layers where the
semantics appears to line up but it is not yet proven to be so. Currently it is just assumed
axiomatically. Eventually we intend to have a semantic representation of every abstraction layer
in a theorem prover (probably Coq) and be able prove consistency between abstraction layers. In
the end we expect to have "one QED" for all of the software and hardware that goes into a nuclear
weapon. We are not there yet, and it may take a decade or so, but we can now see a clear path.

In the meantime we are not taking the usual ASC throw it over the fence approach. We are
contributing and having an impact on the weapons programs currently underway, in spite of
imperfections. We believe that this approach, though slower and less efficient, increases the
chance that the output of this program will be useful and used. The ultimate goal is safer, more
secure and more reliable nuclear weapons.

40

REFERENCES

[1] The Coq development team. The Coq proof assistant reference rnanual. LogiCal Project,
2004. Version 8.0.

[2] David Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Program.,
8(3):231-274, June 1987.

David Harel. Statecharts: A visual formalism for complex systems. Sci. Cornput. Program.,
8(3):231-274, June 1987.

[4] David Harel and Amnon Naamad. The statemate semantics of statecharts. ACM Trans.
Softw. Eng. Methodol., 5(4):293-333, October 1996.

Leslie Lamport. The temporal logic of actions. ACM Trans. Program. Lang. Syst.,
16(3):872-923, May 1994.

[6] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

[3]

[5]

[7]

[8]

Diego Latella, Istvan Majzik, and Mieke Massink. Towards a formal operational semantics
of uml statechart diagrams. In Paolo Ciancarini, Alessandro Fantechi, and Robert Gorrieri,
editors, Formal Methods for Open Object-Based Distributed Systems, pages 331-347,
Boston, MA, 1999. Springer US.

MathWorks. Stateflow documentation, 2016. Available at
https://www.mathworks.com/help/stateflow.

[9] Scott McGlashan, Rafah Hosn, Marc Helbing, James Barnett, Jerry Carter, Klaus
Reifenrath, RJ Auburn, Johan Roxendal, Rahul Akolkar, Noam Rosenthal, Torbjörn Lager,
Daniel Burnett, T. V. Raman, and Michael Bodell. State chart XML (SCXML): State
machine notation for control abstraction. W3C recommendation, W3C, September 2015.
http://www.w3.org/TR/2015/REC-scxml-20150901/.

[10] Karla Morris, Colin Snook, Thai Son Hoang, Robert Armstrong, and Michael Butler.
Refinement of statecharts with run-to-completion semantics. In The Sixth International
Workshop on Formal Techniques for Safety-Critical Systems (16/11/18), November 2018.

[11] Clayton Shepard, Hang Yu, Narendra Anand, Erran Li, Thomas Marzetta, Richard Yang,
and Lin Zhong. Argos: Practical many-antenna base stations. In Proceedings of the 18th
Annual International Conference on Mobile Computing and Networking, Mobicom '12,
pages 53-64, New York, NY, USA, 2012. ACM.

41

DISTRIBUTION

Hardcopy—External

Number of
Copies

Name(s)
Company Name and

Company Mailing Address

Hardcopy—lnternal

Number of
Copies

Email—

Mailstop

rr Name

Technical Library

Org.

01177

Sandia Email Address

libref@sandia.gov

42

43

Sandia National Laboratories

is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy's
National Nuclear Security
Administration under contract
DE-NA0003525.

