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ABSTRACT

The New Mexico Small Business Assistance program at Sandia National Labs and Parental Values,
LLC have agreed to explore commonly known principles to describe techniques in trilateration. The
objective from Parental Values’ standpoint is to use these commonly known principles for the
purpose of their own software development by their employees. The software would be meant for
mobile devices held by minors and the softwate would be monitored by parent(s) and/or guardians.
The software would be able to notify parent(s)/guardian(s) in the event of an active shooter in a
proximity close enough for the mobile devices’” onboard microphones to detect a gunshot’s noise.
This document is meant for the employees of Parental Values to understand the commonly known
principles as it applies to their intended implementation.
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ACRONYMS AND DEFINITIONS

Abbreviation Definition

App Application




1. INTRODUCTION

This document outlines fundamentals of trilateration with statistics, recommending features and
capabilities, and proposes commonly known general approaches a small-business could use to
develop a mobile device application, commonly referred to as an app. Such an app would be running
in the background on mobile devices which downloaded the app to detect certain noise
characteristics, such as decibel level. This information could be collected by the app’s central
processing server which would perform particularly desired tasks. Such tasks could include sending
notifications to specified phone numbers, comparing the noise characteristics to a database of noises
of interest, localizing the soutce of gunshots, and/or warning nearby individuals about the presence,
location, and threat of active shooters. Gunshot data sent to the central processing server by the
mobile devices could be recorded by the central processing server and could be made available for
additional parties or purposes. Database information can be supplied for gunshot profiles against
which user data can be compared and a shot location as well as an idea of weapon type is possible.



2. TRILATERATION

2.1. Fundamentals

Figure 2-1: lllustration of Finding One Point Relative to Another

Trilateration can be accomplished in any dimension. For now, consider two dimensions, x and y. In
the simplest case, trilateration determines the unknown position, (x, y), of a point by measuring the
straight-line distances from that point to other points with known positions, (x;, y;). Here, the
subscript, i, indicates the i point with known position. The technique is conceptually simple.
Consider first, a single point with known position, (xy, y1). Assume the measured distance from this
point to the point with unknown position is r;. With this much information, we can only deduce
that the point with unknown position is somewhere on the circumference of the circle with center
(x1, y1) and radius 1.

If the distance, 1, from the point with unknown position to a second point with known position,
(X2, ¥2)., 1s also measured, then we know that (x, y) is at one of two points where the circles defined
by the two points intersect.



This is illustrated in the following diagram:

Figure 2-2: lllustration of Finding a Point Relative to Two Other Points

The location of the point indicated by the red dot is what we are trying to determine. The point
indicated by the green dot is a "ghost", or ambiguous, point. To uniquely determine (x, y), we need a
third point with known location, (x3, y3). The known positions of at least three points, along with the
measured distances from the point with unknown position to the three points, allows (x, y) to be
uniquely determined. The common point of intersection of the three circles, as illustrated in the
following diagram, is at a single point (i.e., the point of interest).



r3

Figure 2-3: lllustration of Finding a Point Relative to Three Other Points

2.1.1. Measuring Radii

Assume a gunshot occurs at time t, @and that the arrival time at each mobile device is t;, where
the subscript, i, indicates the i mobile device. If the shooter was kind enough to transmit t,, then
the distance from each mobile device to the shooter could be computed using:

r; = c(t;— 1)

Figure 2-4: Equation for Finding Radii

Here, c is the speed of sound in air. Assume for now that c is known. In reality, ¢ varies somewhat
depending on temperature, pressure, and humidity. In the developments that follow, keep in mind
that the inequality t; > t; is true for all i. Unfortunately, it is unlikely the shooter will transmit the
actual time of gunshots fired. Instead, you have to treat tjas an additional unknown. It turns out, to
solve for ty, all that is needed is another mobile device (four total). With at least four mobile devices
it is possible to uniquely solve for x, y, and to. More users can provide improved accuracy in
localization.
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3. TRILATERATION ALGORITHMS

There are several possible algorithms that can be used to solve for (x, y, ty). Following is a brief
discussion on three different approaches.

3.1. Direct Approach

The direct approach solves the equations defined by the intersection of the circles with parameters
X;, Vi, and 1;. The equation for each circle is:

(x=x)7+ (y=y)* = (ct; = 1))’

Figure 3-1: Equation of a Circle

This equation can be rearranged in terms of the constant, c, as

\/(35 —x)*+ (y—y)?
(t; — 1)

Figure 3-2: Equation of a Circle Algebraically Rearranged to Solve for C

=C

If we assume c is the same along the paths from the gun to each mobile device, then the equations
for each phone can be equated and solved for. Since there are three unknowns (x, y, tg), we need at
least three independent equations (four mobile devices) for a unique solution.

Vx=x)2+ =y Vx—x)+ -y’
(1, — 1) (1, — 1)

VE—x) 4+ —y)’ _ Vr—x)"+ -y
(1, — o) (13 — 1)

\/(JC —x1)°+ (y =)’ . \/(Y —x4)% + (¥ —y4)*
(1) — 1p) (4 — 1o)

Figure 3-3: Three Equations to Solve For Three Unknowns
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The problem with the direct approach is that both timing measurements and the GPS derived
positions of mobile devices are often in error and, as a result, the circles seldom all intersect at a
single, common point. Often, the direct approach fails to yield a solution. The following diagram
illustrates this problem graphically. With three mobile devices and erroneous timing measurements
there is not a common point of intersection. Instead, there are six ambiguous solutions, none of
which are correct. The actual location is somewhere within the shaded region bounded by the arcs
between points a, b, and c. However, this may be all that is needed for the first several iterations to
achieve the desired goal of finding the vicinity of the shot.

Circle 3

Figure 3-4: lllustration of Three Circles Intersecting Over a Region Rather Than a Single Point

3.2 Graphical Approach

A graphical approach, similar to the Hough Transform used in image processing, can yield a robust
solution. The approach uses a discrete, two-dimensional grid. Given xy, yj, and ry, a corresponding
circle is drawn on the grid. A grid cell value is incremented by one if the circumference of the circle
intersects the grid cell, or if a point on the circumference is within a specified distance to the grid
cell. This is repeated for all circles. Then, the location of the gunshot is determined based on the
region in the grid that contains the largest sum of grid cell values. The size of the region is
determined according to the standard deviation of time-measurement errors.

12



3.3. Optimization Approach

Using this approach, a performance function is chosen and optimized. Begin with the equation of a
circle given by:

(x=x)*+ (y=y)* = (clt; = 1p))*

Figure 3-5: Recall the Equation of a Circle

A distance error can easily be defined in one of two ways.

ei= (x—x)"+ (y=y)? = c*(t; = 1p)°

Figure 3-6: Distance Error Definition 1

e, = \/(1 —x)2+ (y=y)*—clt;— 1)

Figure 3-7: Distance Error Definition 2

The first error equation is actually in terms of squared distances while the second error equation is in
terms of distances. A least-squares performance function is defined as:

L= Z;—| e’

Figure 3-8: Least- Squares Performance Function

An optimization procedure, such as steepest descent or fixed-point iteration, can then be used to
determine the values of the unknown parameters, (x, y, ty), that minimize E. The problem with least
squares, however, is that it only takes a single outlier in a timing measurement (e.g., due to an echo
or reflection) to throw off the solution. A more robust performance function is given by:

] N e;
P=—5" exp| -

Figure 3-9: Robust Performance Function

With this function, smaller errors are weighted much more heavily than larger errors. Outliers
minimally

contribute to the value of P. It is relatively easy to see that if all the ¢; are zero, then P=1. However,
if all the errors are large, then P tends towards zero. The range of P is from zero to one. The goal is
to find the values of the unknown parameters that maximize P. The parameter, o, in the
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performance function is a weighting factor that is chosen based on the standard deviation of timing-
measurement errors. As before, an optimization procedure, such as steepest descent or fixed point
iteration, can be used to determine the values of the unknown parameters that maximize P.
Although somewhat more complex than least squares, optimization of P generally yields much more
robust results.

3.4. Trilateration Example

The following example illustrates trilateration using both E and P. For this example, assume the true
location of the shooter is at (x, y) = (0,0) and that a shot is fired at ty= 0 seconds. Then, the actual
distance between a shooter and another point is:

d;= /X2 + )2

Figure 3-10: Distance Between Two Points

The shortest distance between two points is the square root of the sum of the squares. This we
know from Pythagoras’ Theorem to find the hypotenuse. The greater the number, the farther the
points are from each other and the smaller number, the closer they are.

Assume there are N = 15 app users within the vicinity of the shooter. The positions of the app users
are assumed to be uniformly distributed as x;~ U (-1000ft, 1000 ft) and y; ~ U (-1000 ft, 1000 ft).
Also assume that ¢ = 1000 ft/sec. The measured time of arrival of the gunshot at each mobile
device is given by:
d.
i

f5=tu+_+ni
C

Figure 3-11: Time of Arrival
where n; is normally distributed measurement noise, n; ~ N (0, 62.). The following MATLAB code

generates the positions of mobile devices and the corresponding measurement times for a gunshot
fired at ty = 0 seconds.
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3.4.1. Simple MATLAB Example Code

o

% Experiment: Trilateration of Gunshots

clear;

close all;

clc;

% Generate positions of mobile devices
N = 15;

X = 2000*rand (1, N) - 1000;

Y = 2000*rand (1, N) - 1000;

% Specify speed of sound

c = 1000;

% Compute true distances from shooter
D = sgqrt(X.”2 + Y."2);

o\°

Compute measured arrival times

o

se = 0.01; % se is the specified standard
deviation of timing errors

t = D./c + se*randn(1l, N);

% Generate initial guess for location of the
shooter and tO

X = mean (X) ;

y = mean(Y) ;

t0 = min(t);

% Plot positions of mobile devices, shooter,
and initial guess of shooter

o

% location

plot(X, Y, '.', 'MarkerSize', 10);
grid an;

hold on;

x1im([-1000, 10007);

(
ylim([-1000, 10001);
plot (0, O, '.', '"MarkerSize', 20);
plot(x, vy, '.', 'MarkerSize', 20);
title("Locations of Assets and Shooter");
xlabel ("X Position (ft)");
ylabel ("Y Position (ft)");

15



legend ("Assets", "Shooter", "Initial
Guess") ;

1000 Locations of Assets and Shooter

° Assets
Shooter
Initial Guess

800

600

400 . 1

200

-200

Y Position (ft)
o
®

-400

-600

-800

-1000 ' ' '
-1000 -500 0 500 1000

X Position (ft)
Figure 3-12: MATLAB Graph of Simple Example

It is important to remember that this plot is but one random case. The next step is to perform this
case over many iterations to find the statistics for each case then plot them to compare the
performance of the estimation method.

3.5. Metrics

As mentioned in the “Measuring Radii” section, there is a minimum of four devices with the app
downloaded and running (users) needed to solve for a unique point location. What if we only have
one or two or three users? What happens if we have 10 users? The example code in this section can
answer those question by either varying the parameter and running the simulation or by redefining
the variables as a range and performing the simulation for each number in the range. The number of
sensors is herein defined as a range from 5 sensors to 100 sensors and each number of sensors has
1000 random locations in a 1000ft radius of the defined shooter position. The more times a scenario
is evaluated, the more one can be confident in understanding the likelihood of the way that scenario
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plays out because truly random fluctuations have an average of zero; therefore, to remove them one
should average a large number of measurements.

The following explores detection and localization performance assessments using modeled data.
Detection performance metrics contain probability of detection, Pp, and probability of false alarm,
Pra. Localization performance metrics include bias, B, and uncertainty, U. The assessments provide
useful performance information in terms of key variables including the number of app users and
their spatial distribution, the number of shots fired, how gunshot timing errors translate to
localization errors, how outliers in timing measurements translate to localization errors, and how
errors in positions of mobile devices affect localization accuracy. Localization involves detecting and
estimating the time of gunshots heard at each mobile device and broadcasting data collected at each
phone (e.g., GPS location, phone orientation, pressure, temperature, humidity depending on the
onboard components, and which components the app has permissions to use) along with the
estimated time of detected gunshots to other app users located within the proximity of the shooter.
With this data, trilateration is used to accurately estimate the source of shots fired. Multiple gunshots
fired from the same location and/or multiple app users can provide improved accuracy and
confidence in gunshot location estimates.

In order to begin the modeling of data, assumptions and boundary conditions must be made.
Assumptions include all data packets sent from the mobile devices to the server do not require
additional retransmission protocol, mobile devices have minimum operational and hardware
requirements to satisfy the detection of noise characteristics and wireless transmission of all
pertinent information, there are no barriers to acoustic propagation through the air, and the space is
predefined. We are also assuming probabilities of detection and probabilities of false alarm. These
metrics will vary according to each situation because of the randomness of each unique situation and
the incredible variety in mobile devices in service, the microphone quality, the connection of each
phone to the GPS satellites and mobile networks, and the gun system itself (which may include
silencers) among many other unknowns. This doesn’t mean we can’t model situations and
probabilities, it simply means we must do many of them such that we minimize uncertainty and
develop robust code(s). Once an established code is developed with these assumptions, it can be
improved upon to include greater robustness to handle these realistic and complex environmental
conditions.

The assumption that all mobile devices have the necessary requirements is not entirely valid in real
world scenarios that Parental Values, LLC is attempting to address; many parents specifically
provide their children with extremely simple devices that can only transmit to certain places and only
certain information. The app’s download page should provide the software and hardware
requirements a device would need to run the app successfully.

Additional considerations must be neglected to perform analysis. The scenarios of a sniper or
longer-range shooter are not considered due to the fact that the weapon is fired from a considerable
distance. Although there is optimization described, this doesn’t eliminate barriers like acoustic
attenuators, such as thick walls or walls made of absorbing materials, ricochets of bullets, or attached
silencers. The variability of component quality in mobile devices and the associated individual errors
are not discussed.

One may want to use a sum of squares technique to find the dispersion from a mean in a simulated

data set called regression analysis. It is used to determine what mathematical function best fits a data
set. The greater the number, the more data points lie farther from the mean and thus there is large
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variability in the data set. The smaller the number, the more points lie close to the mean and there is
lower variability in the data set (usually the preferred state).

3.6. Fixed Point Iteration

There are many ways to solve for where radii may intersect. However, we will explore how to use
fixed-point iteration when getting each sensor to activate based on the time of arrival of the sound.

3.6.1. Simple Gunshot Position-Time Estimator Code

$% Gunshot Position-Time estimator

\O

s Clean up
clear all;
close all;
ale)

o

% Initialize wvariables

c = 1000; % speed of sound in air in feet/second
Nmin = 5; % minimum number of sensors

Nmax = 100; % maximum number of sensors

Rmax = 1000; % maximum distance (feet) of sensor

from gunshot position

o

% Specify experiment parameters for bias &
uncertainty analysis

Q

M = 100000; % number of experiments

(o)

% Conduct experiment

sigmaT = 10/c; % timing measurement noise standard
deviation (sec)

sigmaXY = 10, % sensor measurement noise standard
deviation (feet)

maxCnt = 10000; % maximum number of iterations
allowed for FPI to converge

eps = 0.000001; % accuracy requirement for FPI
solution

divergence = zeros(l, Nmax - Nmin + 1);

Bx = zeros(l, Nmax - Nmin + 1);

Ux = zeros(l, Nmax - Nmin + 1);

By = zeros(l, Nmax - Nmin + 1);

18



Uy = zeros(l, Nmax - Nmin + 1);

Bt = zeros(l, Nmax - Nmin + 1);

Ut = zeros(l, Nmax - Nmin + 1);

sVal = zeros(l, Nmax - Nmin + 1); % for plotting
xX-y (number of sensors)

(
0

for N = Nmin:Nmax
N

n=n+1; % this is an index into a sensor
array

sVal (n) = N;

xErr = zeros(l, M);

yErr = zeros(1l, M);

tErr = zeros(l, M);

divCnt = 0;

k = 0;

for j = 1:M
% Specify random positions of each sensor
(ln polar coordinates)
R = Rmax*rand(l, N);
Theta = 2*pi*rand(l, N);

[¢)

% Convert from polar to rectangular
coordinates

X = R.*cos (Theta) + sigmaXY*randn(l, N);
= R.*sin (Theta) + sigmaXY*randn(1l, N);

<

% Compute time of arrival measurements
T = R/c + sigmaT*randn (1, N);

% Use FPI to solve for x, y, and t.

% Use initial guesses of 0, 0, and O.
oldx = 0;

oldy = 0;

oldt = 0;

ex = 1000;

ey = 1000;

19



cnt < maxCnt

et = 1000;
cnt = 0; % divergence counter
while (ex > eps || ey > eps || et > eps)
cnt = cnt + 1;
sxnum = 0;
sxden = 0;
synum = 0;
syden = 0;
stnum = 0;
stden = 0;
for i = 1:N
dx = oldx - X (1i);
dy = oldy - Y (1i);
dt = oldt - T(1);
err = dx"2 + dy*2 - (c*dt)*2;
sXnum = sxXnum + err*dx;
sxden = sxden + err + 2*dx"2;
synum = synum + err*dy;
syden = syden + err + 2*dy"2;
stnum = stnum + err*dt;
stden = stden + err - 2% (c*dt) "2;
end % close for loop on i
% compute new parameter values
if sxden > 0
newx = oldx - sxnum/sxden;
else
newx = oldx;
end
if syden > 0
newy = oldy - synum/syden;
else
newy = oldy;
end
if stden > 0
newt = oldt - stnum/stden;
else

20
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newt = oldt;
end

% compute absolute errors

ex = abs(newx - oldx);
ey = abs(newy - oldy);
et = c*abs (newt - oldt);

o

% Update old values with new wvalues
oldx = newx;
oldy = newy;
oldt = newt;

o

end % close while loop

if cnt >= maxCnt
divCnt = divCnt + 1;

else
k =%k + 1;
% err = estimate - true value, (but
true value was 0)
xErr (k) = newx;
vErr (k) = newy;
tErr (k) = newt;

[¢)

end % close if-else loop

[e)

end % close for loop on J

xErr = xErr(l:k);
yErr = yErr(l:k);
tErr = tErr(l:k);

Q

% Compute Bias and Uncertainty

divergence (n) = divCnt;
Bx (n) = mean (xErr);
Ux(n) = std(xErr);

By (n) = mean (yErr);

Uy (n) = std(yErr);

Bt (n) = mean (tErr);

Ut (n) = std(tErr);

21



o

end % close for loop on N

%% plot Estimation Bias and Uncertainty
% Plot Bx and Uz first

figure;

plot (svVal, Bx);

hold on;

grid on;

plot(sval, Ux);

title("x: Bias and Uncertainty"):;
xlabel ("Number of Sensors");
ylabel ("B and U");

legend ("Bx", "Ux");

% Plot By and Uy second

figure;

plot (svVal, By);

hold on;

grid on;

plot (sval, Uy);

title("y: Bias and Uncertainty"):;
xlabel ("Number of Sensors");
ylabel ("B and U");

legend ("By", "Uy");

% Plot Bt and Ut third

figure;

plot(sval, Bt);

hold on;

grid on;

plot (sval, Ut);

title("t: Bias and Uncertainty"):;
xlabel ("Number of Sensors");
ylabel ("B and U");

legend ("Bt", "Ut");

[e)

% Plot divergence percentage last
figure;
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plot (sVal, divergence/M);

hold on;

grid on;

title ("Divergence Percentage");
xlabel ("Number of Sensors");
ylabel ("Divergence") ;

3.6.2.  Explanation and Plots
The variable, S1 gmaXyY, is the variable by which one can set sensor measurement noise standard

deviation in feet. The example was done with two numbers, 10 feet (as seen in §3.6.1), and 100 feet.
Some of the better sensors available today in many mobile phone systems have low standard
deviations but there are still many that aren’t that good. In this way, we can ‘bound’ the system with
sensors that perform reasonably well (10 ft standard deviation) and those which perform poorly (100
ft standard deviation). It can start as a good case scenario and a bad case scenario and one can
observe a uniformly distributed array of sensors and for each number of sensors (5-100 number of
sensors) 10,000 different random setups are generated.

This may not be the best set-up as in school systems, there are clusters of students in classrooms or
auditoriums ot bathrooms or football fields or bleachers, etc. The next step after establishing a good
system with a random set-up is to try a clustered set-up and define classroom like areas within the
overall area where sensors can be generated. Then one would have a certain number of sensors in
clustered areas within the overall area and then repeat the simulation. Additional improvements of
the same type can come later and the accuracy of how the simulation and code(s) replicate real world
examples will improve.
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Figure 3-13: Divergence of the 'Worst-Case’ Scenario of 100 ft Standard Deviation
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When a numerical method converges, we get a solution to the problem. Conversely, when a
numerical solution diverges, we do not get a solution. For the worst-case scenario of 100 ft standard
deviation, the divergence is pretty small for our 10,000 iteration per number of sensors. After we
have 10 sensors, the divergence never happens meaning all our iterations yielded solutions. Even in
our worst-case scenatio, we only need 10 users to provide a solution consistently.

Once we get 16 users with poor sensors, our uncertainty for the estimated time of arrival correlation
to the actual time of the shot is zero.

By the time we get 40 users with poor sensors, we can pin-point the shot within 30 feet.
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Figure 3-14: Time Estimation Bias and Uncertainty of the 'Worst-Case' Scenario of 100 ft Standard
Deviation
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Figure 3-15: The X Position of the Shot Bias and Uncertainty in the 'Worst-Case' Scenario of 100 ft
Standard Deviation
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Figure 3-16: The Y Position of the Shot Bias and Uncertainty in the 'Worst-Case' Scenario of 100 ft
Standard Deviation
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Now for good sensors, we always converge, only need seven users to get the time of arrival and shot
time correct, and with seven users, we can estimate the location of the shot within 12 feet.

This is but one random solution set. Each solution set would come up with slightly different
numbers and configurations as they are innumerable. However, the trends should follow a similar
pattern. Once an approach to the problem has been established, this is how one would test the
code’s performance. These performance metrics would then inform the next improvement iteration
until the performance was acceptable to release.
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Figure 3-17: Divergence of the 'Best-Case' Scenario of 10 ft Standard Deviation
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Figure 3-18: Time Estimation Bias and Uncertainty of the 'Best-Case' Scenario of 10 ft Standard
Deviation
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Figure 3-20: The Y Position of the Shot Bias and Uncertainty in the 'Best-Case' Scenario of 10 ft
Standard Deviation
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4. CONCLUSION

This is a problem that can be solved in many ways using several different approaches. There may
even be the case that many ways are used as the iterations progress and one may help refine another.
Once an approach has been selected and developed, the next step is to test it and use the results of
the test to improve. Then repeat the improvement and testing process until it has been refined
enough to take into a real-world simulation. Once the real-world simulations produce results worthy
of release, the product is ready for user beta testing. Several more iterations will be likely before the
product is ready for high-fidelity consideration.
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