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ABSTRACT

Flood irrigation benefits from low infrastructure costs and maintenance but the scour near the
weirs can cause channeling of the flow preventing the water from evenly dispersing across the
tield. Using flow obstructions in front of the weir could reduce be a low cost solution to
reduce the scour. The mitigation strategy was to virtually simulate the effects of various
geometric changes to the morphology (e.g. holes and bumps) in front of the weir as a means
to diffuse the high intensity flow coming from the gate. After running a parametric study for
the dimensions of the shapes that included a Gaussian, semi-circle, and rectangle; a Gaussian
hole in front of the gates showed the most promise to reduce farm field shear-stresses with the
added benefit of being easy to construct and implement in practice. Further the simulations
showed that the closer the Gaussian-hole could be placed to the gate the sooner the high shear
stress could be reduced. To realize the most benefit from this mitigation strategy, it was
determined that the maximum depth of the Gaussian-hole should be 0.5 m. The width of the
hole in the flow direction and the length of the Gaussian hole normal to the flow should be
0.5 m and 3 m respectively as measured by the full width at half maximum.
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EXECUTIVE SUMMARY

This study focused on low cost solutions to help a New Mexico farm reduce scour near the
discharge of flood irrigation gates at the head of a crop field. The study investigated several
mitigation strategies to diffuse the flow out of the gates and reduce scour inducing shear stresses.
The investigations included simulations of various obstructions placed in front of the irrigation
gates. Ultimately, do to ease of implementation as wells as its effectiveness, three different geometric
depression or hole shapes (e.g. rectangle, semi-circle, and Gaussian) were simulated in detail to
better understand their shear stress reducing effectiveness. These shapes were placed in front of the
gates to the field and a parametric study was run on the hole shape and location free parameters
which included distance in front of the gate, depth or height of the feature, width in the direction of
flow, and length in the direction normal to flow.

The results of this study provide guidance on the placement of various types, sizes, and location of
obstructions near the discharge of flood irrigation gates for scour reduction. It was shown that the
feature should not protrude from the ground but rather be a hole. The semi-circle and Gaussian
shapes provided better shear reduction than the rectangle. The Gaussian shape was chosen as it is
easier to construct with a backhoe compared to a semi-circle. Further the natural curve into the
Gaussian is safer for humans and cattle to navigate, making it less likely to fall into the hole and
cause injury. The hole should be placed as close as possible to the gate but not so close as to
interfere with the earthen dam. The depth of the hole should be at least 0.5 m deep, 0.5 wide in the
direction of flow, and 3 m long in the direction normal to the flow. These minimum dimensions
may be increased but show diminishing returns for the increases in the size of the holes.

Lastly the results of a uniquely shaped field were presented which in addition to the scour reduction
needed help moving the water to the opposite side of the field from the location of the gates. In this
case the same Gaussian solution was applied as before this time rotating the shape 45 degrees
counter-clockwise from the y-axis. The results of this simulation showed that it both decreased the
shear stress and helped spread water to the previously dry part of the field.

The work presented here is limited in that it focuses on changes to water flow speed, resultant shear
stress, and overall water coverage in a farm field caused by changes in depression shapes near the
discharge of the irrigation gates. This study does not investigate the dynamics of sediment transport
with respect to the field or the earthen dams. These transient effects may lead to observations of
different results than those simulated here. Further the simulations are limited as the earthen damns
are treated as areas of no flow such that the shear stress on the walls of the dams was not measured.
The issue of scour on the dams is a known issue and if considered in further studies, could help
derive an optimal solution to this challenging problem.

Future work could investigate sediment transport using Delft 3D’s sediment transport module and
utilize the water power technologies staff’s expertise in this area. Further investigations into the
effects on the earthen dams could be studied in detail. These developed models could be further
utilized and improved by considering soil infiltration rates to measure the water received by the front
of the field and back of the field to optimize infiltration rates.



ACRONYMS AND DEFINITIONS

Abbreviation

Definition

FWHM

Full Width at Half Maximum

Qol

Quantity of Interest

2D, 3D

Two-dimension, three-dimension




1. PROJECT OVERVIEW

The goal of the Big Wheel Farm project was to optimize the flood irrigation system to reduce scour
near the front of the weirs. The proprietor completed one season using current flood irrigation
system. The flood irrigation system is a common design to multiple fields featuring to 6’ by 6’ gates
supplying 150’ wide by 100s of feet long fields. During the season scour was observed near the flood
gates as can be seen in Figure 1-1. In Figure 1-1 left the flooding out of one of the 6’ x 6’ gates can
be seen to from the gate which is raised 1’ from the bottom creating a 1’x6’ flow opening. Each field
has two identical weirs, the second one in Figure 1-1 (left) can be seen by looking for the grey tarp
further back in the picture. The high flow out of the gate causes scour which creates ruts in the land
as is shown in Figure 1-1 (right) by the pooling of water near the gate. This process repeated over
time creates channels in the ground and prevents the water from dispersing evenly across the 150°
wide fields.

Figure 1-1. Picture of flooding from irrigation system (left) and scouring of the land in front
of the gates (Provided by Big Wheel Farm)

1.1. Flood Irrigation Procedure
Big Wheel Farm totals 60 acres with 20 gates serving about 10 crop fields as shown in Figure 1-2.

10



(N s
1
—1

z 542611746
W’:'

contour lines

headgate

426'2 13/16"

Figure 1-2. Plan View of Farm (Provided by Big Wheel Farm)

The flood irrigation system for the farm works for one field at a time by opening the two gates
(Figure 1-3) that feed into the desired plot of land. The two gates are each connected to pond #2
(Figure 1-2) and which lift from the bottom up. Pond #2 has 20” (0.5 m) of head and the gates are
raised up 1’ (0.3 m) from the bottom. The head in pond #2 is maintained constant at 20” by

opening the gates from pond #1 until pond #1 depletes the water source which takes about 30
minutes.

Figure 1-3. Isometric view of representative farm channel (Provided by Big Wheel Farm)

In addition to the standard square plot there was a plot of land with a two-gate flood irrigation
system with a modification to the standard configuration as shown in Etrot! Reference source not
found.. In this variation scour near the gates was an issue but diffusion of the water across the 150
wide field was an additional issue. The embankment comes off the south end of the earthen dam
holding the gates at a 45-degree angle.
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Figure 1-4. Isometric view of variation of the standard configuration (Provided by Big
Wheel Farm)

1.2. Solution Approach

The goal of this project was to test the effects of scour reduction features near the outlet of the
flood irrigation gates using computational fluid dynamics (CFD). CFD was chosen for its ability to
quickly and cheaply iterate proposed solutions. The proprietor proposed an initial solution of a small
channel in front of the irrigation gates. This solution was inspired by a tractor wheel which became
stuck in the rut in front of the gate creating a small trench normal to the direction of flow. The team
was asked to test different shape profiles, some potential solutions of interest were provided by the
proprietor as shown in Figure 1-5.

Figure 1-5. Isometric view of proposed flow obstructions for shear stress reduction to placed
in the ground in front of the gates (Provided by Big Wheel Farm).

The chosen CFD software was the environmental modeling tool Delft-3D. Delft-3D is a
hydrodynamic simulation program developed by Deltares [3]. It is a fully integrated computer
software suite for a multi-disciplinary approach for 1D, 2D and 3D computations for coastal, river
and estuarine areas. It can carry out simulations of hydrodynamic flow, waves, water quality and
ecology. Key features of the software include:

= River flow simulations.

12



Rural channel networks

Time varying sources and sinks (e.g., river discharges)

Robust simulation of drying and flooding of inter-tidal flats and river winter beds
Non-linear iterations in the solver can be enabled for accurate flooding results.

Optional facility for special structures such as pumping stations, bridges, fixed weirs and
controllable barriers (1D, 2D and 3D)

Domain partitioning for parallellized runs on MPI-based High Performance Computing
clusters.

13



2. METHODOLOGY & MODEL SETUP

This section details the setup and definitions of the computational model. This includes the
simplifications and choices taken to represent the “real world” in a computer simulation. The farm
was represented as a two-dimension (2D) model of the “sod area” (Figure 1-3) with a 10 m (38.2%)
area behind the gate representing pond #2 (Figure 1-2). The left side of the pond was held constant
at 0.508 m (207). The width of the farmland was modeled in the y-direction as a 46m (150°). The
gates were modeled using Delft-3D’s built in fixed-gate feature defined as 6’ (1.83 m) high by 6’ wide
with a 17 (0.3048 m) opening at the bottom. The earthen dams between the gates holding the water
(Figure 1-1) were modeled as “Dry Areas” which allowed no flow through the grid cells within the
defined area. Finally, a constant grade of 1.5% was applied starting at the gate to the end of the field
in the direction of flow (x-axis) as specified by the proprietor. Lastly on the right-hand side of the
domain a constant gradient boundary condition was applied such that flow could exit the domain.

Legend

) basecase
Bed Level

0
-0.07636
-0.1527
-0.2291
-0.3054
-0.3818
-0.4581
-0.5345
-0.6108
-0.6872
-0.7636
-0.8399

_——
m 25 5 75 10

Figure 2-1. Delft-3D model view showing boundary conditions (constant water height left,
constant gradient right), gates (2 white lines), Dry Areas (3 yellow boxes), and contour of
1.5% Grade applied to the field starting at the gate location.

The discretized domain was constructed to enable scour reduction testing in front of the gates
through the modification of the bathymetry. Therefore, the area of the gate and directly in front of it
was identified as the area of interest and was discretized to be have the highest resolution. The
original domain was constructed to be 56 m by 46 m with an unstructured grid created in a cartesian
shape with a 0.5 m discretization. A two-times (2x) grid refinement was applied three times, each
time nested into a slightly smaller area as shown in Figure 2-2. This created a largest to smallest grid
discretization of 0.5 m, 0.25 m, 0.125 m and finally 0.0625 m in the area around the gate. The higher
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resolution around the gate allowed for study of highly defined diffusion structures and resolution of
the water in in that area.

Figure 2-2. Delft-3D Model grid showing 4 levels of discretization with the smallest
discretization of 0.0625 m and largest of 0.5 m

A similar procedure was followed for the edge case shown in Figure 2-3 and Figure 2-4. In this
case the boundary conditions are the same with a 20” (0.508 m) constant water height on the left
side of the domain, and a constant gradient on the right side of the domain. The two 6’ by 6’ gates
are shown as white lines in Figure 2-3 surrounded on either side by no flow areas marked by yellow
rectangular boxes. The edge on the south side of domain comes off as a 45-degree angle from the
edge of the earthen dam. The proprietor specified the grade for the edge case field to be 1% and this
grade was applied starting at the gates.
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Legend
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Figure 2-3. Delft-3D edge case model showing boundary conditions (constant water height
left, constant gradient right), gates (2 white lines), Dry Areas (3 yellow boxes), and contour
of 1.0% grade applied to the field starting at the gate location.

The solution approach was to determine the shape of the design using the standard case and then
modify that design for the edge case. Therefore, the grid here was slightly less discretized because
this model domain was run after determining the necessary dimensions on the base case. Here the
discretization approach was similar in that it was initialized with a constant 0.5 m discretization in
both the a and y-directions. Then a series of two nested 2x refinements were performed near the
gate locations resulting in even grid discretization of 0.5 m, 0.25 m, and 0.125 m for the three zones
visible in Figure 2-4
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Figure 2-4. Delft-3D edge case grid showing 3 levels of discretization with the smallest
discretization of 0.125 m and largest of 0.5 m
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3. INITIAL MODEL RESULTS

The initial model results for both the base case and edge case are present in this section as a
reference point for modifications going forward. The quantities of interest (Qols) presented in the
results are water depth, magnitude of water velocity (speed), and bed shear stress. Ideally the water
will spread to a thin even layer at a low enough speed to not cause significant shear stress. Effects
not captured by the model are the unevenness of the tilled farmland which will increase the
spreading of the water. The model incorporated a bed roughness using a Manning coefficient of
0.035 typical of floodplains/ pasture farmland [2]. The Qols for the base case are presented in
Figure 3-1 through Figure 3-6 as contours and cross-sections of the contours.

Figure 3-1 shows the base case water depth [ft] results for the farm field at 99 seconds into the
simulation. This time was approximately when the water reached the end of the modeled domain.
Looking to the end of the modeled field (right side) the round shape caused by the diffusion out of
the gates can still be observed in the corners and middle as 0 ft water depth (dark blue). Moving
backwards from end of the field the typical water depth is about 2”. In the area on the right of and
nearest to the earthen dams (3 brown rectangles) the water can be seen not meeting along the
centerline between the two dams until approximately 30’ down the field. Figure 1-1 (left) shows this
to be an invalid result. However, the model is demonstrating the expected behavior as the ground
here should be thought of more as a sloped parking with a very rough surface. Coming out of the
two gates the water mostly moves with the grade of the land but diffuses laterally some due to the
height of the water and roughness of the land. The reality of the non-constant nor homogenous
surface observed in Figure 1-1 (right) is not captured by the model. However, for the purposes of
this exercise it does not need to as the focus is on reducing shear stress near the gates.

Time =99.0 s
o 0.3280
0.2916
120 -
0.2551
100 0.2187 —
&
A ]
g ] 0.1822 £
g 80 §
> 0.1458 &
bt
60 - g
0.1093
40 4 0.0729
20 - 0.0364
0.0000

-25 0 25 50 75 100 125 150 175
x [ft]

Figure 3-1. Base case simulated results for water depth [ft] prior to shear stress reduction
techniques. Orange dashed lines represent cross-sections shown in Figure 3-2.
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Two cross-section views of the data in Figure 3-1 were plotted through the south gate location (y =
37.7, orange dashed line) and at the end of the field (x = 183’, orange dash dot line). The water
depth results along the orange lines are shown in Figure 3-2. The left cross-section shows the
development of the water depth down the field through the gate. Prior to exiting the gate, the
boundary condition specifies the pond height to be a constant 20” (0.508 m). The water depth drops
as it approaches the gate at x = (’, then slowly decreases for the first 10’ out of the gate. After 10
the water decreases more quickly from 0.8’ to 0.3 after which the water depth slowly decreases to
0.16’. The right cross-section of Figure 3-2 shows what the front part of the water flow out of the
gate 183’ down field is predicted to behave by the simulation. The water depth is not predicted to be
uniform.

1.6 = . . & £
[} 140 L R —
. LAk B 5
.
1.4 ; 755
124 3 )
s 100 A -
£ 1.0 - o | * 1
g‘ = 80 v 5 *
e 0 8 . = r L . »
8 ™ 60 - R Mt
o ®be
=
0.6 i )
"
0.4 35 b
0.2 - i
0 50 100 150 0.04 0.06 0.08 0.10 0.12 0.14 0.16
x [ft] Water Depth [ft]

Figure 3-2. Base case water depth cross-section at'y =37’ (left) and x = 183’ (right) as shown
in Figure 3-1 as an orange dashed line and orange dash-dot line respectively.

The velocity magnitude is shown in Figure 3-3 at the same time (99 seconds) as Figure 3-1. The
plot shows that the velocity is highest near the exit of the gates and decreases to an even speed of
about 2 ft/s at about 100” downstream.
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Figure 3-3. Base case showing simulated water speed results prior to shear stress reduction
techniques.

The cross-section of velocity is shown in Figure 3-4 at the same locations as those shown by the
orange lines in Figure 3-1. The cross-section moving through the gate and down the field (left)
shows that out of the gate the water is moving at about 5 ft/s (1.5 m/s) and the increases to 7 ft/s
(2.1 m/s) as the water spills out of the earthen dam area. The velocity cross-section on the right

shows that the velocity is generally traveling at 1.75 ft/s at the front of the water column moving
down the field.
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Figure 3-4. Base case water velocity cross-section at'y =37’ (left) and x = 183’ (right) as
shown in Figure 3-1 as an orange dashed line and orange dash-dot line respectively.

Lastly, the bed shear stress is shown for in Figure 3-5 which shows the highest shear stress to not
be directly out of the gates but where the water is allowed to diffuse laterally at the end of the
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earthen dams. This will be the focus area for reducing shear stress. The maximum shear stress can
be observed in Figure 3-6 (left) which shows a maximum value near 1.8 Ib/ft* (78 Pa). Down the
field this value reduces to about 0.2 Ib/ft* (8.7 Pa). At the front of the water channel (Figure 3-6

right) the shear stress value is slightly lower at 0.15 Ib/ft* (6.5 Pa).
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Figure 3-5. Base case showing simulated bed shear stress results prior to shear stress

reduction techniques.
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Figure 3-6. Base case bed shear stress cross-section at y =37’ (left) and x = 183’ (right) as
shown in Figure 3-1 as an orange dashed line and orange dash-dot line respectively.

21




4, SHEAR STRESS REDUCTION APPROACH

Shear stress reduction approaches focused on creating obstructions to flow following the guidance
laid out by the proprietor (Figure 1-5). The obstruction shapes studied here were a rectangle, a
semi-circle, and a Gaussian curve. In addition to overall shear stress reduction other factors
considered in determining the correct solution were ease of construction and safety of humans and
cattle (e.g. potential to fall into any created hole). The following section will layout the parameters
and values chosen to investigate.

Starting first with the rectangle the parameters included distance in front of the gate to the center of
the left edge of the rectangle (xo), the height (positive up) of the rectangular hole (z), and the length
of sides x and y with respect to the model domain (x, y). For the rectangular parametric test case the
values varied are listed in Table 4-1 for each respective parameter. A single test case consisted of a
combination of the four parameters and each distinct value of any parameter was compared against
all variations of the other parameters. This created a total of 16 test cases which are attached in the
appendix in full.

Table 4-1. Parametric rectangular values test matrix defined by the combination of any four
distinct values listed (e.g. {xo, z, X, y})

Parameter Values [m]
Distance in front of Gate (xo) 3.5
Height (z) -0.1,-0.15, -0.3, -0.75
Length of Side X (x) 0.5, 1
Length of Side Y (y) 3,6

The semi-circle cases reduced the number of studied parameters to three namely distance in front of
the gate to the straight side of the semi-circle (xq), height (positive up) of the semi-circle (z), and
radius (r). This parametric study created a total of 8 cases.

Table 4-2. Parametric semi-circle values test matrix defined by the combination of any three
distinct values listed (e.g. {xo, z, r})

Parameter Values [m]
Distance in front of Gate (xo) 3.5
Height (z) -0.1,-0.15,-0.3, -0.75
Radius (r) 3,6

The last flow obstruction shape investigated was a Gaussian shape. The initial effort focused on
creating a Gaussian “speed bump” on top of the land to slow the flow. However, it was found that
the inverse “speed bump” that went into the ground produced greater ease of construction and
shear stress reduction. Creating a positive “speed bump” with the desired results would have
required fine tuning the shape to the flow which would require a validated model for design success.
The Gaussian “speed bump framework” is laid out below and is shown as positive but has identical
description for a negative amplitude.

Figure 4-1 (left) shows the shape of a 2D Gaussian curve with a maximum value of f,... The end
points of a Gaussian approach zero at infinity but never reaches zero. Therefore, the width of a
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Gaussian curve is defined here using a proxy method which the distance at which half of maximum
amplitude is observed. This metric is known as full-width at half-maximum (FWHM). In the
farmland case a 3D gaussian is of interest therefore two FWHM values are needed one to describe
the width of the Gaussian in both the flow direction (x) and normal to the flow direction (y). An
example 3D gaussian shape is shown in Figure 4-1 (right) for a positive z, zero grade domain. The
slope of the farmland was modeled as a constant 1.5% grade from the gate location to the end of the
field in the flow direction. To model the Gaussian curve Equation 1 was applied to the 1.5% grade.

f(x) 4

Figure 4-1. Gaussian parameters shown in 2D (left) and a resultant 3D Gaussian speed
bump (right)

In Equation 1 the height at some location in the domain (x,y) is calculated by adding the Gaussian
approximation to the current height at that spatial point as defined by the initial 1.5% grade. The
Gaussian approximation is scaled by the amplitude g referred to as f.. in Figure 4-1 left. This
amplitude is the value shown in dark red of Figure 4-1 (right). This maximum amplitude is placed at
some location xo and yo refer. xois defined by the distance in front of a gate and yy is the center
location of either gate. Lastly, the FWHM is defined for both the x and y direction in the domain.
This process is applied to every point in the domain two times, once for each gate (yo) to determine
the final field height values.

Equation 1: Gaussian curve approximation applied to the farm land grade

height = height(x,y) + z - exp (—-"1 log(2) * (;’JU};{':?!'; + ;j{ 1I;fl:l)ft~f ))

The parameter values chosen for the study are listed in Table 4-3. Similar to the previous study every
combination of the parameters was run resulting in a total of 16 cases.
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Table 4-3. Parametric Gaussian values test matrix defined by the combination of any three distinct
values listed (e.g. {xo, z, FWHMx, FWHMy})

Parameter Values [m]
Distance in front of Gate (xo) 25,4
Depth (2) -0.75, -0.15, 0.15, 0.75
FWHMXx 0.5
FWHMy 3,6
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5. RESULTS

5.1. General Parameter Influence

Independent of the shape chosen it was observed that the closer the shear reduction object was
placed to the high shear stress area in front of the gate the sooner the higher shear stress could be
reduced. The proprietor has discussed issues with scour of the earthen dam sides near the outlet of
the gate (observe the gray tarps in Figure 1-1 (left). Due to the potential of this scour any chosen
reduction shape must not cause increased scour near these areas. This effect was outside the scope
of this initial investigation and has been identified as a potential area for future investigation.

The next primary parameter that was varied what the height of the shape. The shape was found to
need to be near about 0.5 deep to significantly reduce the shear stress. Further for the Gaussian case
positive as well as negative values were simulated. The positive values were observed to increase the
shear stress due to forcing the water around the structure. While it would be possible to design the
height and shape of the structure such that shear stress was not increased in simulation, in practice
this design would likely require experimental iteration and validation of the design.

The next parameter of interest is the width of the shape in the direction of flow (x-axis). For this
axis 0.5 m was found to be sufficient for shear stress reductions independent of the chosen shape.
Further increases to 1 m were found to have a relatively small reduction on the shear stress for the
doubling of the size of the hole. Lastly the length of the shape normal to the flow (y-axis) was found
to require a 3 m minimum. Additional increases in length to the 6 m again showed relatively small
reduction on the overall shear stress. In summary this report found that the shear stress reduction
device should be place as near as possible to the gates without interfering with the earthen dams and
have a depth of at least 0.5 m, 0.5m wide, and 3 m long.

Comparing all the cases the Gaussian and semi-circle cases reduced the shear stress more than the
rectangular case. Between the Gaussian and semi-circle case the results were similar, but the
Gaussian was chosen because the sloped sides were safer for humans and cattle to prevent falls into
the hole and better for concrete construction. The results of a Gaussian reference case are presented
below.

5.2. Gaussian Design

The Gaussian design presented in this section represents a Gaussian shaped flow obstruction with
the minimum requirements to reduce shear stress. Shear stress may be increased by increase the
obstruction size. The Gaussian presented here was placed 5 m in front of the gate, with a maximum
height of -0.5 m, a FWHMx of 0.5 m, and a FWHMy of 3 m. The results of this case are shown as
contours in the second row of Figure 5-1. The first row of Figure 5-1 shows the base case results
previously presented for quick comparison. The rows are the three Qols namely water depth,
velocity magnitude, and shear stress. For a given Qol the color scale is identical between the two
presented case results (e.g. the base case and the modified case).
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Figure 5-1. Top row base case. Bottom row Gauss x = 5m, height = -0.5m, FWHMx = 0.5m,
FWHMy = 3m. Column 1: Water Depth, Column 2: Velocity Magnitude, Column 3: Bed
shear stress

Looking to the first column in Figure 5-1 it can be seen that the water has traveled a shorter
distance in the 99s simulation. Further the Gaussian shape can be observed in the water depth plot
near the gate through the spreading of the max value (yellow) as compared to the base case. Further,
the water depth is dispersed more due to the Gaussian causing the two streams from each gate to
meet sooner (e.g. 25’ to 50”). This increased dispersion in the y direction should be kept in mind
again to ensure that the shear on the earthen dam is not substantially increased in practice.

The second column in Figure 5-1 shows a decrease in the velocity at the Gaussian shear stress
reducer. Beyond the near gate speed reduction, the downstream results appear similar down the
field. Lastly, looking to the third column the shear stress shows a sharp reduction at the gaussian
location (e.g. the bright yellow suddenly ends) showing the success of the Gaussian shape at
reducing shear stress.

Looking to a cross sectional view of each of the Qols Figure 5-2 shows that there is a small change
in water depth following the Gaussian shape. The primary difference is observed in front of the gate
as expected due to the placement of a maximum 0.5 m (1.64°) hole. This hole causes the water depth
to more quickly decrease to the constant value reached previously around 0.2 (0.6 m).
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Figure 5-2. Compares the water depth between the base case and a Gaussian hole 5 m in
front of the gate 0.5 m deep, 0.5 m FWHMx, and 3 m FWHMy down the farm field through
the gate for a constant y-value = 37’ (Figure 5-1)

The same centerline plot going through the south gate at y=37" (11.3 m, Figure 5-2) is shown for
the velocity magnitude in Figure 5-3. Prior to the Gaussian hole the solutions between the two
cases are nearly identical. At the Gaussian hole the solution diverges by showing a sudden increase in
velocity then a rapid dectease to just under 4 ft/s (1.22 m/s) for the Gaussian solution. At this same
location (x ~ 25’ (7.6 m)) the base case can be seen to have a 7 ft/s (2.1 m/s) velocity. Downstream
of the Gaussian hole the two solutions reach the same value at about 75’ (22.7 m) to 100” (30.5).
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Figure 5-3. Compares the velocity magnitude between the base case and a Gaussian hole 5
m in front of the gate 0.5 m deep, 0.5 m FWHMyx, and 3 m FWHMy down the farm field
through the gate for a constant y-value = 37’ (Figure 5-1)

Lastly, Figure 5-4 shows a decrease in the shear stress caused by the Gaussian hole from 1.9 1b/ft*

(82.7 Pa) to 0.7 Ib/ft* (30.5 Pa) representing a 63% decrease in the shear stress at its maximum.
Looking at the shear stress curve the location of the Gaussian is observed by the location where the
shear stress suddenly rises and precipitously drops. This figure may help further clarify the guidance
that the gaussian hole should be placed as close as possible to the gate so long as it does not
interfere with the earthen dams.
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Figure 5-4. Compares the shear stress between the base case and a Gaussian hole 5 m in
front of the gate 0.5 m deep, 0.5 m FWHMx, and 3 m FWHMy down the farm field through
the gate for a constant y value = 37’ (Figure 5-1)

5.3. Gaussian Design for the Edge Case

With the Gaussian design chosen as the solution for the base case the analysis shifted focus to the
edge case. The edge case displayed high scour near the gates of the field and issues distributing the
the water to the southern part of the field shown in Figure 5-5. The layout of the results is the same
as described in Figure 5-1 but this time the unmodified edge case is on the top row and the edge
case with a Gaussian modification is on the bottom row. The water depth results of the unmodified
case (top row first column) clearly shows the water failing to reach the southern part of the field.
The water depth results for the modified result (second row first column) shows the results of
placing a Gaussian hole 4 meters in front of the gate, which is 0.6 m deep, has a FWHMx of 0.5 m,
and a FWHMy of 4 m, and was shifted 45 degrees counter clockwise from the y-axis. The design
forced the water to move more along the southern wall. Further the modified edge case shear stress
results (second row third column) shows that the shear stress was significantly reduced as well.
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Figure 5-5. Top row edge case. Bottom row edge case with Gaussian at 4 m in front of the
gate with a depth of 0.6 m, a FWHMXx of 0.5m, a FWHMy of 4m, shifted 45 degrees counter-
clockwise from the y-axis. Column 1: Water Depth, Column 2: Velocity Magnitude, Column
3: Bed Shear-stress
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6. CONCLUSIONS

This study focused on low cost solutions to help a New Mexico farm reduce farmland scour near
the flood irrigation gates to the field. The study investigated three shear stress reduction shapes e.g.
rectangle, semi-circle, and Gaussian. These shapes were placed in front of the gates to the field and a
parametric study was run on the free parameters for the shapes which included distance in front of
the gate, depth or height of the feature, width in the direction of flow, and length in the direction
normal to flow.

The results of this study provide guidance on the placement of a general shape for scour reduction.
It was shown that the feature should not protrude from the ground but rather be a hole. The semi-
circle and Gaussian shapes provided better shear reduction than the rectangle. The Gaussian shape
was chosen as it is easier to construct with a backhoe compared to a semi-circle. Further the natural
curve into the Gaussian is safer for human and cattle to prevent a fall into the hole. The hole should
be placed as close as possible to the gate but not so close as to interfere with the earthen dam. The
depth of the hole should be at least 0.5 m deep, 0.5 wide in the direction of flow, and 3 m long in
the direction normal to the flow. These minimum dimensions may be increased but show
diminishing returns for the increases in the size of the holes.

Lastly the results of a uniquely shaped field (here referred to as the edge case) were presented which
in addition to the scour reduction needed help moving the water to the opposite side of the field
from the location of the gates. In this case the same Gaussian solution was applied as before this
time rotating the shape 45 degrees counter-clockwise from the y-axis. The results of this simulation
showed that it both decreased the shear stress and help fill the previously dry part of the field.

6.1. Future Work

The work presented here is limited in the analysis in that it focuses on determining a shape to reduce
the scour in a field. This case does not investigate the dynamics of sediment transport with respect
to the field or the earthen dams. These transient effects may lead to observation of different results
than those simulated here. Further the simulations are limited as the earthen damns are treated as
areas of no flow such that the shear stress on the walls of the dams was not measured. The issue of
scour on the dams is a known issue and needs to be considered as the solution is implemented.

Future work could investigate sediment transport using Delft 31D’s sediment transport module and
utilize the water power technologies staff’s expertise in this area. Further investigations into the
effects on the earthen dams could be studied in detail. These developed models could be further
utilized and improved by considering soil infiltration rates to measure the water receive by the front
of the field and back of the field to optimize the time spent water the field.
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APPENDIX A. PARAMTERIC CASE STUDY RESULTS

AA1. Rectangular Cases
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Figure 1: Top Row base case. Bottom Row rectangle x = 3.5m, depth = -0.10 m, length x = 0.5m, length y = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 2: Top Row base case. Bottom Row rectangle x = 3.5m, depth = -0.10 m, length x = 0.5m, length y = 6m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 3: Top Row base case. Bottom Row rectangle x = 3.5m, depth = -0.10 m, length x = 1m, length y = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 4: Top Row base case. Bottom Row rectangle x = 3.5m, depth = -0.10 m, length x = 1m, length y = 6m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 5: Top Row base case. Bottom Row rectangle x = 3.5m, depth = -0.15 m, length x = 0.5m, length y = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 6: Top Row base case. Bottom Row rectangle x = 3.5m, depth = -0.15 m, length x = 0.5m, length y = 6m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 7: Top Row base case. Bottom Row rectangle x = 3.5m, depth = -0.15 m, length x = 1m, length y = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 8: Top Row base case. Bottom Row rectangle x = 3.5m, depth = -0.15 m, length x = 1m, length y = 6m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 9: Top Row base case. Bottom Row rectangle x = 3.5m, depth = -0.30 m, length x = 0.5m, length y = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 10: Top Row base case. Bottom Row rectangle x = 3.5m, depth = -0.30 m, length x = 0.5m, length y = 6m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 11: Top Row base case. Bottom Row rectangle x = 3.5m, depth = -0.30 m, length x = 1m, length y = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 12: Top Row base case. Bottom Row rectangle x = 3.5m, depth = -0.30 m, length x = 1m, length y = 6m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 13: Top Row base case. Bottom Row rectangle x = 3.5m, depth = -0.75 m, length x = 0.5m, length y = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 15: Top Row base case. Bottom Row rectangle x = 3.5m, depth = -0.75 m, length x = 1m, length y = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 16: Top Row base case. Bottom Row rectangle x = 3.5m, depth = -0.75 m, length x = 1m, length y = 6m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 17: Top Row base case. Bottom Row rectangle x = 5m, depth = -0.70 m, length x = 0.5m, length y = 6m. Column 1: Water Depth, Column 2:
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A.2. Semi-Circle Cases
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Figure 8 Top Row base case. Bottom Row semiCircle x = 3.5 m, depth = -0.75 m, diameter = 6m. Column 1: Water Depth, Column 2: Velocity
Magnitude, Column 3: Bed Shear-stress
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Figure 9: Top Row base case. Bottom Row semiCircle x = 5 m, depth = -0.70 m, diameter = 6m. Column 1. Water Depth, Column 2: Velocity Magnitude,
Column 3: Bed Shear-stress
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A.3. Gaussian Cases

A.3.1. Standard Field Cases
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Figure 1: Top Row base case. Bottom Row Gauss x = 2.5 m, depth =-015 m, FWHM, = 0.5m, FWHM, = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 2: Top Kow bage cage. Bottom Row Gauss x = 2.5 m, depth = -018 m, FWHM, = 0.85m, FWHM, = 8m. Column 1: Water Depth, Column 2:
WVeloolty Magnitude, Column 3: Bed Zhear-stress
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Figure 3: Top Row base case. Bottom Row Gauss x = 2.5 m, depth =-0.75 m, FWHM, = 0.5m, FWHM, = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 4: Top Row base case. Bottom Row Gauss x = 2.5 m, depth = -0.75 m, FWHM, = 0.5m, FWHM, = 6m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 5: Top Row base case. Bottom Row Gauss x = 2.5 m, depth = 015 m, FWHM, = 0.5m, FWHM, = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 6: Top Row base case. Bottom Row Gauss x = 2.5 m, depth = 0.15 m, FWHM, = 0.5m, FWHM, = 6m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 2: Bed Shear-stress
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Figure 7: Top Bow base case. Bottom Bow Gauss xx = 2.5 m, depth = 0.78 m, FWHM, = 0.5m, FWHM, = 3m. Column 1: Water Depth, Column 2:
Welocity Magnitude, Column 3: Bed Shear-stress
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Figure & Top Row base caze. Botlom Row Gauss x = 285 m, depth = 0.78 m, FWHM, = 08m, FWHM, = 8m. Column 1: Water Depth, Column 2:
Welocity Magnitude, Column 3: Bead Shear-stress
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Figure B: Top Row base case. Bottom Bow Gauss x = 4 m, depth =-0.15 m, FWIM, = 0.8m, FWHM, = 3m. Column 1. Water Depth, Column 2:
Welocity Magnitude, Column 2: Bed Bhear-stress
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Figure 10: Top Row base case. Bottom Row Gauss x = 4 m, depth =-0.15m, FWHM, = 0.5m, FWHM, = 6m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 11: Top Row base case. Bottom Row Gauss x = 4 m, depth = -0.78 m, FWHM, = 0.5m, FWHM, = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 13: Top Row base case. Bottom Row Gauss x = 4 m, depth = 015 m, FWHM, = 0.5m, FWHM, = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress

71



Gauss 4 0.15 0.5 6

Time =890 ¢ Time =930s Time =99.Cs
4 0.3730 (4 130
= EREN 1300
02916 1156
70
0.2551 o
W00 % . &
02187 LELTE
AR 01822 3 £ oriz 'y
: 5 -
= S = 2
o [ T 2 0373 3
x z 3 o
0.1031 0433 &
o o2y 0.z63
20 0.Us81 0199
0.003¢ 0,000
500 %M1 s WE s 1D 1%
x
Time - 99.0 s Time = 99.0s
40 1 0.323¢C 1 1.300
0.2916 1156
0 L
02551 Lon
o 02737 0k ;‘
= T 3
i 0187 3 = ariz 'y
= L] F 5
> 01458 2 0373 &
- - £l -
60 s > B
01091 0433 &
0 0.us28 3
301 0.U81 0119
00000 0ond
L FLOE A 2 0 3% W T e 35 150 175
Xt x

Figure 14: Top Row base case. Bottom Row Gauss x = 4 m, depth = 015 m, FWHM, = 0.5m, FWHM, = 6m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 15 Top Fow basge cagse, Bottom Bow Gauss x = 4 m, depth = 0.7 m, FWHM, = 0.8m, FWI M, = 3m. Column 1: Water Depth, Column 2:
Welocity Magnitude, Column 2 Bad Zhear-stress
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Figure 16: Top Fow base cage, Bottom Bow Gauss x = 4 m, depth = 0.78 m, FWEM, = 0.8m, FWIOM, = b6m. Column 1: Water Depth, Column 2:
Weloclty Magnitude, Column 3: Bed Zhear-stress
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Figure 17: Top Row base case. Bottom Row Gauss x = S m, depth =-08 m, FWHM, = 0.5m, FWHM, = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 18: Top Row base case. Bottom Row Gauss x = S m, depth =-08 m, FWHM, = 0.5m, FWHM, = 6m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 19: Top Row base case. Bottom Row Gauss x = S m, depth =-08 m, FWHM, = 1.0m, FWHM, = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 20: Top Row base case. Bottom Row Gauss x = 5 m, depth =-08 m, FWHM, =1.0m, FWHM, = 8m. Column 1. Water Depth, Column 2:
Velocity Magnitude, Column 3: Bed Shear-stress
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Figure 21: Top Row base case. Bottom Row Gauss x = 5 m, depth =-0.70 m, FWHM, = 0.5m, FWHM, = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 2: Bed Shear-stress
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Figure 22: Top Row basze caze. Bottom Bow Gauss x =5 m, depth = -070m, FWHM, = 085m, FWHM, = 6m. Column 1: Water Depth, Column 2
Weloclty Magnitude, Column 3 Bed Zhear-stress
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Figure 23: Top Row base case. Bottom Row Gauss x = 5 m, depth =-0.70 m, FWHM, = 1.0m, FWHM, = 3m. Column 1: Water Depth, Column 2:
Velocity Magnitude, Column 2: Bed Shear-stress
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Figure 24: Top Bow base case. Bottom Bow Gauss x = 5 m, depth =-070m, FWHM, = 10m, FWHM, = 8m. Column 1: Water Depth, Column 2
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A32 Edge Field Cases
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Figure 1: Top Row base caze, Bottom Kow edgeGauss x = 4 m, depth = -04 m, FWHM, = 08m, FWHM, = 2m, angle = 0 degress counter-clockwize
from the y-axizs. Column 1: Water Dapth, Column 2 Velocity Magnitude, Column 2: Bed Bhear-stress
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Figure &: Top Row base case. Bottom Row edgeGaus x =4 m, depth =-04 m, FWHM, = 08m, FWOM, = 2m, angle = 48 degrees counter-clockwise
from the y-axizs. Column 1: Water Depth, Column 20 Velocity Magnitude, Column 2: Bed Bhear-gtress
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Figure 3: Top Row bage cage, Bottom BRow edgeGanss x =4 m, depth = -04d m, FWHM, = 0.8m, FWEM, = 4m, angle = 0 degrees counter-cloclwise
from the y-axis. Column 1: Water Dapth, Column 2 Velocity Magnitude, Column 3: Bed Shear-atress
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Figure 4: Top Row base case. Bottom Bow edgeGauss x =4 m, depth =-04 m, FWHM, = 0.8m, FW HM, = 4m, angle = 45 degrees counter-clockwisze
from the y-axis. Column 1: Water Depth, Column 2 Velocity Magnitude, Column 2: Bed Bhear-stress
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Figure 5: Top Row basze caze. Bottom Row edgeGauss x = 4 m, depth = -08 m, FWHM, =05m, FWHM, = 2m, angle = 0 degrees counter-clockwize
from the y-axis. Column 1: Water Depth, Column 2 Veloctty Magnitude, Column 3: Bed Bhear-stress
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Figure 6: Top Row bage case. Bottom Row edgeGauss x =4 m, depth =-08 m, FWHM, = 0.8m, FWIM, = 2m, angle = 45 degrees counter-clockwisze
from the y-axizs. Column 1: Water Depth, Column 2 Velocity Magnmitude, Column 3: Bed Bhear-atress
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Figure 7: Top Eow base caze. Bottom Eow edgeGauss x = 4 m, depth = -08 m, FWHM, = 0.8m, FWHM, = 4m, angle = 0 dagress counter-clockwize
from the y-amis, Column 1) Water Depth, Column 20 Velocity Magnitude, Column 2: Bed Bhear-stress
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Figure & Top Row bage case. Bottom Row edgeGauss x =4 m, depth =-08 m, FWHM, = 0.8m, FWHM, = 4m, angle = 45 degrees counter-clockwise
from the y-axizs. Column 1: Water Depth, Column 2 Velocity Magnitude, Column 3: Bed Bhear-siress
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