

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

# The Consistent Bayesian Approach for Stochastic Inverse Problems

SAND2018-12334C

Tim Wildey<sup>†</sup>, Troy Butler<sup>‡</sup>, John Jakeman<sup>†</sup>

<sup>†</sup> Sandia National Laboratories<sup>1</sup>  
Center for Computing Research  
Optimization and UQ Group

<sup>‡</sup> University of Colorado Denver  
Department of Mathematics and Statistics

AMS Fall Southeastern Sectional Meeting  
University of Arkansas, Fayetteville, AR  
November 3-4, 2018

SAND2018-\*\*\*\*

<sup>1</sup> Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security

# Outline

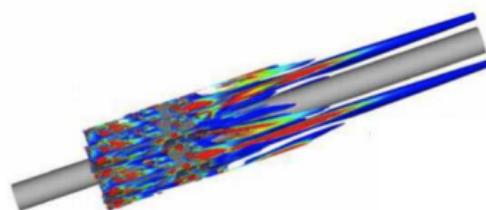
- 1 Motivation
- 2 Stochastic Inverse Problems
  - Problem formulation
  - A measure-theoretic solution
  - An illustrative example
- 3 Comparison with the standard Bayesian formulation
- 4 A natural verification procedure
- 5 Applications
  - Resistive Magnetohydrodynamics
  - Additive Manufacturing
  - Tokamak Disruption Mitigation
- 6 Conclusions and Future Work

# Outline

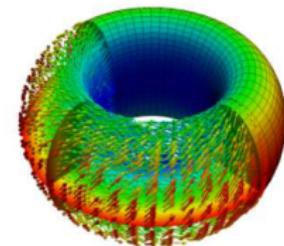
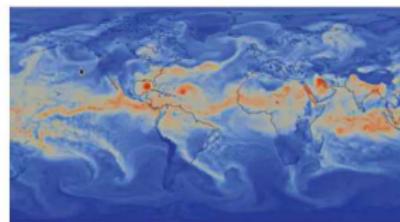
- 1 Motivation
- 2 Stochastic Inverse Problems
- 3 Comparison with the standard Bayesian formulation
- 4 A natural verification procedure
- 5 Applications
- 6 Conclusions and Future Work

# Motivation

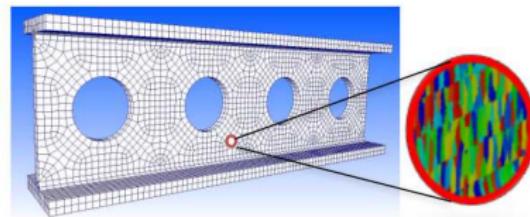
Flow in Nuclear Reactor (Turbulent CFD)



Tokamak Equilibrium (MHD)



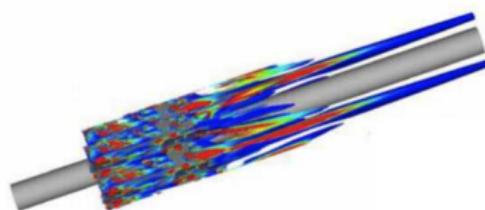
Climate Modeling



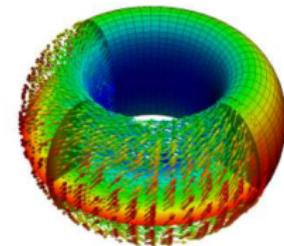
Multi-scale Materials Modeling

# Motivation

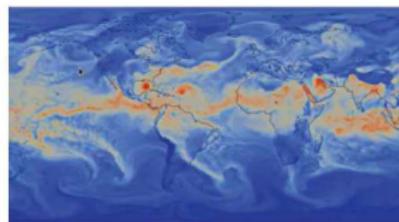
Flow in Nuclear Reactor (Turbulent CFD)



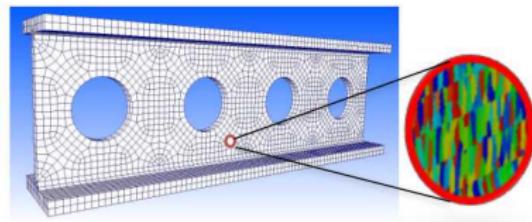
Tokamak Equilibrium (MHD)



We are working to develop **data-informed** models ...

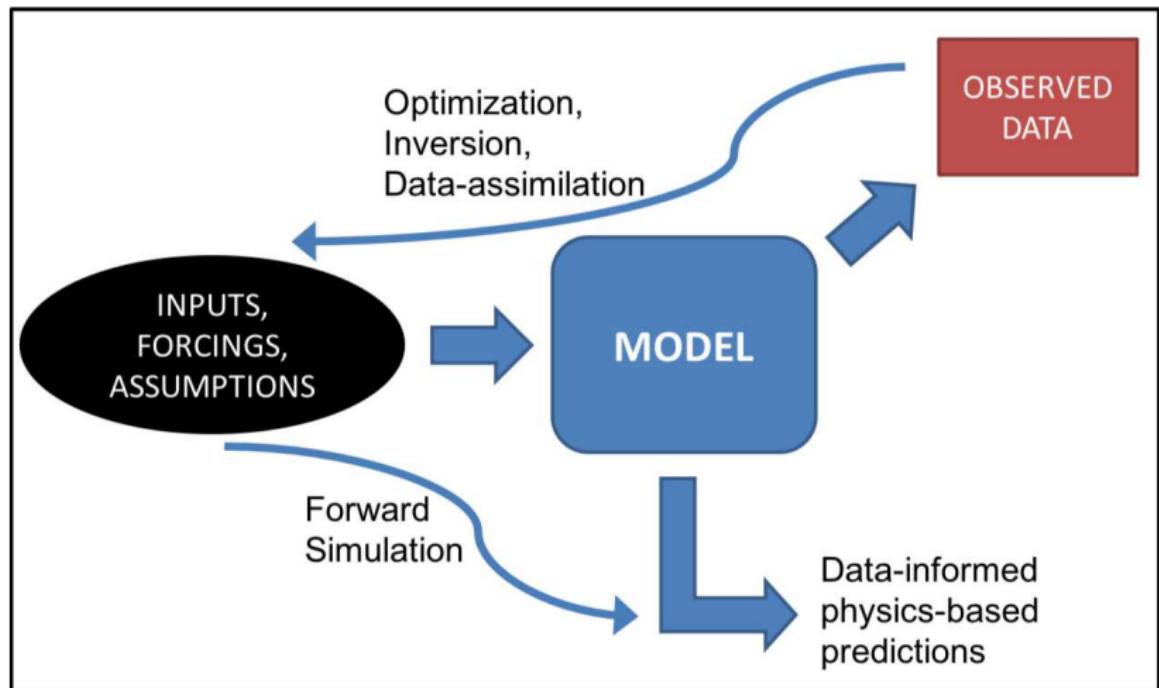


Climate Modeling



Multi-scale Materials Modeling

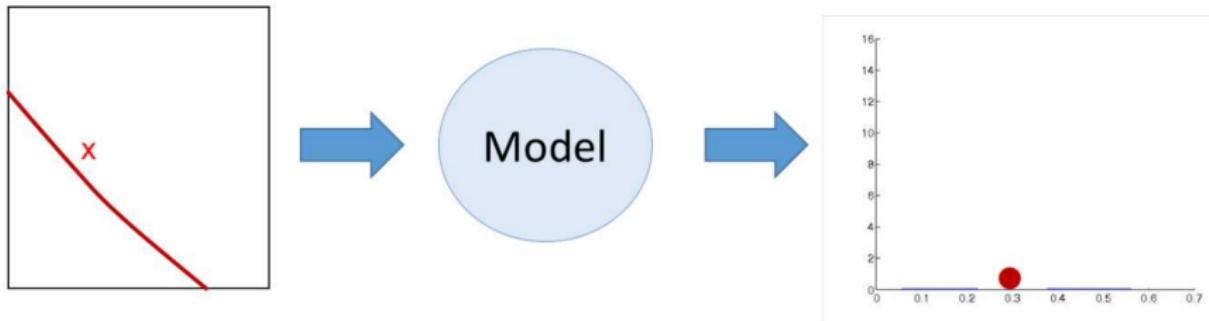
# Data-informed Physics-Based Predictions



# Outline

- 1 Motivation
- 2 Stochastic Inverse Problems
- 3 Comparison with the standard Bayesian formulation
- 4 A natural verification procedure
- 5 Applications
- 6 Conclusions and Future Work

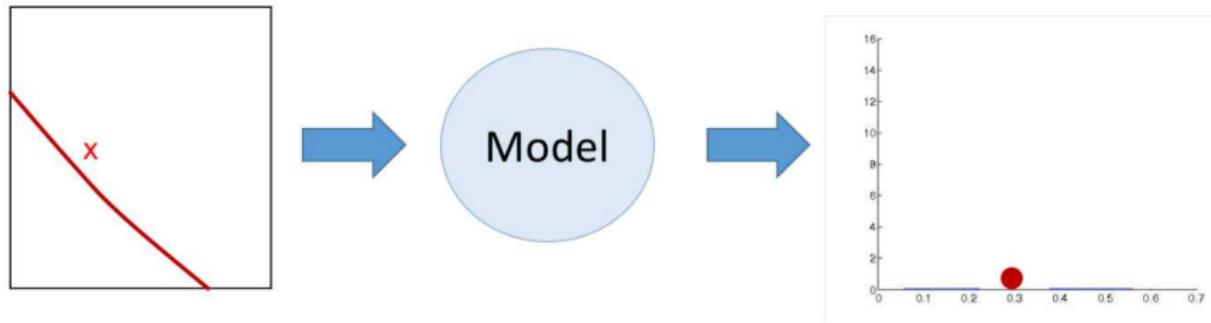
# A Deterministic Inverse Problem



## Problem

Given a deterministic observation,  $\hat{Q}$ , find  $\lambda \in \Lambda$  such that  $Q(\lambda) = \hat{Q}$ .

# A Deterministic Inverse Problem

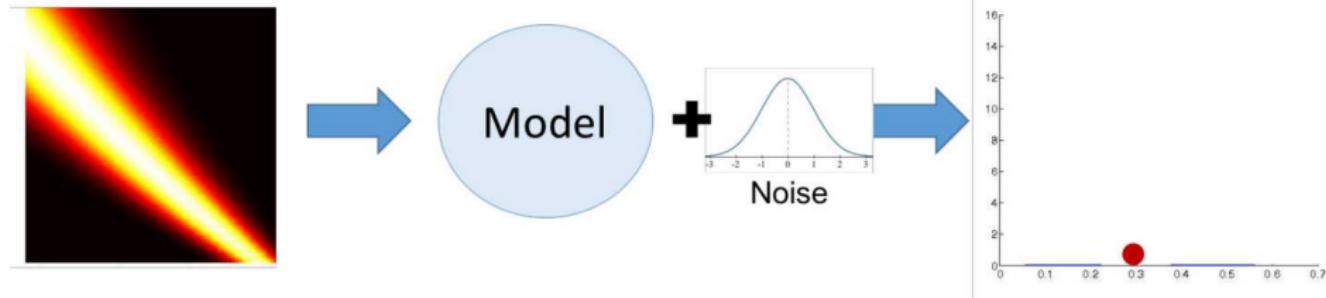


## Problem

Given a deterministic observation,  $\hat{Q}$ , find  $\lambda \in \Lambda$  such that  $Q(\lambda) = \hat{Q}$ .

- Solutions may not be unique without additional assumptions.
- Requires solving several deterministic forward problems.

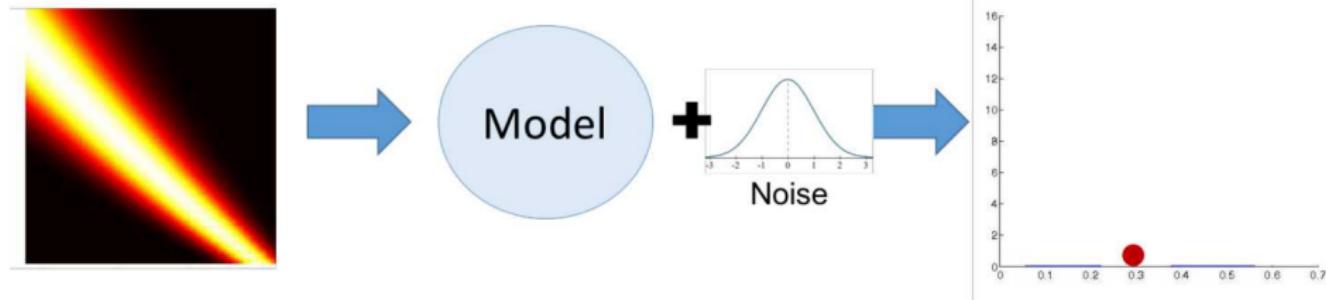
# A Stochastic Inverse Problem



## Problem

Given a deterministic observation,  $\hat{Q}$ , and an assumed noise model, find the parameters that are most likely to have produced the data.

# A Stochastic Inverse Problem

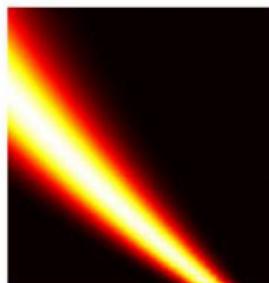
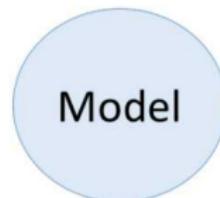
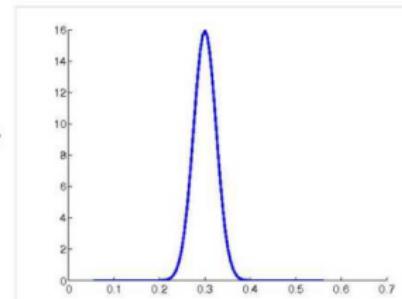


## Problem

Given a deterministic observation,  $\hat{Q}$ , and an assumed noise model, find the parameters that are most likely to have produced the data.

- Solutions may not be unique without additional assumptions.
- Requires solving several deterministic forward problems.

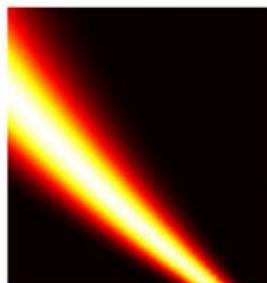
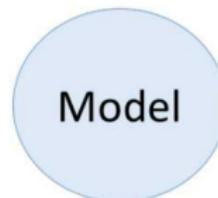
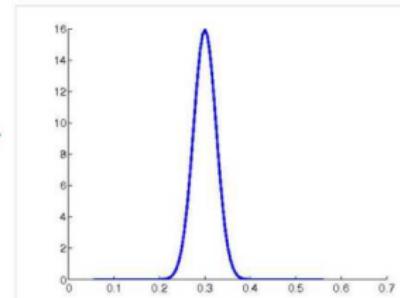
# A Different Stochastic Inverse Problem



## Problem

Given a probability density on observations, find a probability density on  $\Lambda$  such that the push-forward matches the given density on the observed data.

# A Different Stochastic Inverse Problem



## Problem

Given a probability density on observations, find a probability density on  $\Lambda$  such that the push-forward matches the given density on the observed data.

- Solutions may not be unique without additional assumptions.
- **We only need to solve a single stochastic forward problem.**

# Notation

We assume we are given:

- ① A finite-dimensional **parameter space**,  $\Lambda$ .
- ② A **parameter-to-observation/data map**,  $Q : \Lambda \rightarrow \mathcal{D} = Q(\Lambda)$
- ③ An **observed probability measure** on  $(\mathcal{D}, \mathcal{B}_{\mathcal{D}})$ , denoted  $P_{\mathcal{D}}^{\text{obs}}$ , that has a density,  $\pi_{\mathcal{D}}^{\text{obs}}$ .
- ④ A **probability measure** on  $(\Lambda, \mathcal{B}_{\Lambda})$ , denoted  $P_{\Lambda}^{\text{prior}}$ , that has a density,  $\pi_{\Lambda}^{\text{prior}}$ .

# Notation

We assume we are given:

- ① A finite-dimensional **parameter space**,  $\Lambda$ .
- ② A **parameter-to-observation/data map**,  $Q : \Lambda \rightarrow \mathcal{D} = Q(\Lambda)$
- ③ An **observed probability measure** on  $(\mathcal{D}, \mathcal{B}_{\mathcal{D}})$ , denoted  $P_{\mathcal{D}}^{\text{obs}}$ , that has a density,  $\pi_{\mathcal{D}}^{\text{obs}}$ .
- ④ A **probability measure** on  $(\Lambda, \mathcal{B}_{\Lambda})$ , denoted  $P_{\Lambda}^{\text{prior}}$ , that has a density,  $\pi_{\Lambda}^{\text{prior}}$ .

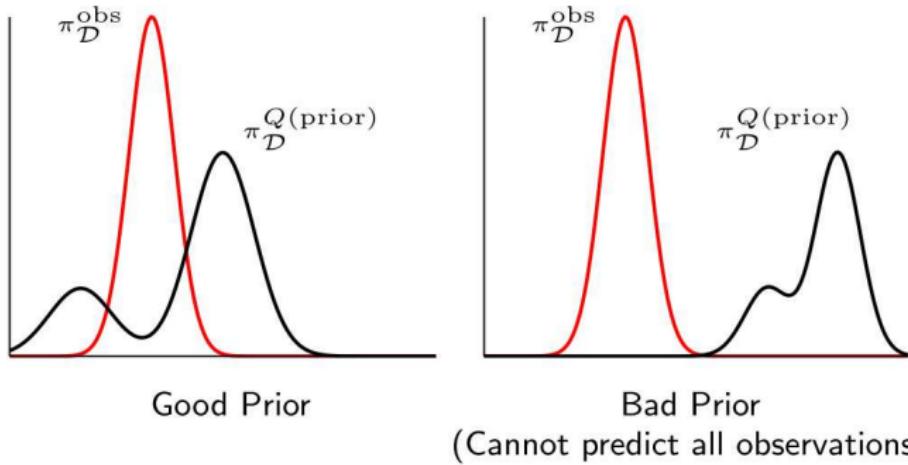
We need to compute:

- ① The **push-forward of the prior** through the model.
  - In other words, **we need to solve a forward UQ problem using the prior.**
  - We use  $\pi_{\mathcal{D}}^{Q(\text{prior})}$  to denote this push-forward density.

# A Key Assumption

## Predictability Assumption

We assume that the observed probability measure,  $P_{\mathcal{D}}^{\text{obs}}$ , is absolutely continuous with respect to the push-forward of the prior,  $P_{\mathcal{D}}^{Q(\text{prior})}$ .



# A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018)

The probability measure  $P_{\Lambda}^{post}$  on  $(\Lambda, \mathcal{B}_{\Lambda})$  defined by

$$P_{\Lambda}^{post}(A) = \int_{\mathcal{D}} \left( \int_{A \cap Q^{-1}(q)} \pi_{\Lambda}^{prior}(\lambda) \frac{\pi_{\mathcal{D}}^{obs}(Q(\lambda))}{\pi_{\mathcal{D}}^{Q(prior)}(Q(\lambda))} d\mu_{\Lambda,q}(\lambda) \right) d\mu_{\mathcal{D}}(q), \quad \forall A \in \mathcal{B}_{\Lambda}$$

solves the stochastic inverse problem.

# A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018)

The probability measure  $P_{\Lambda}^{post}$  on  $(\Lambda, \mathcal{B}_{\Lambda})$  defined by

$$P_{\Lambda}^{post}(A) = \int_{\mathcal{D}} \left( \int_{A \cap Q^{-1}(q)} \pi_{\Lambda}^{prior}(\lambda) \frac{\pi_{\mathcal{D}}^{obs}(Q(\lambda))}{\pi_{\mathcal{D}}^{Q(prior)}(Q(\lambda))} d\mu_{\Lambda,q}(\lambda) \right) d\mu_{\mathcal{D}}(q), \quad \forall A \in \mathcal{B}_{\Lambda}$$

solves the stochastic inverse problem.

Corollary (BJW., SISC 2018)

The posterior measure of  $\Lambda$  is 1.

# A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018)

The probability measure  $P_{\Lambda}^{post}$  on  $(\Lambda, \mathcal{B}_{\Lambda})$  defined by

$$P_{\Lambda}^{post}(A) = \int_{\mathcal{D}} \left( \int_{A \cap Q^{-1}(q)} \pi_{\Lambda}^{prior}(\lambda) \frac{\pi_{\mathcal{D}}^{obs}(Q(\lambda))}{\pi_{\mathcal{D}}^{Q(prior)}(Q(\lambda))} d\mu_{\Lambda,q}(\lambda) \right) d\mu_{\mathcal{D}}(q), \quad \forall A \in \mathcal{B}_{\Lambda}$$

solves the stochastic inverse problem.

Corollary (BJW., SISC 2018)

The posterior measure of  $\Lambda$  is 1.

Theorem (BJW., SISC 2018)

$P_{\Lambda}^{post}$  is stable with respect to perturbations in  $P_{\mathcal{D}}^{obs}$ .

# A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018)

The probability measure  $P_{\Lambda}^{post}$  on  $(\Lambda, \mathcal{B}_{\Lambda})$  defined by

$$P_{\Lambda}^{post}(A) = \int_{\mathcal{D}} \left( \int_{A \cap Q^{-1}(q)} \pi_{\Lambda}^{prior}(\lambda) \frac{\pi_{\mathcal{D}}^{obs}(Q(\lambda))}{\pi_{\mathcal{D}}^{Q(prior)}(Q(\lambda))} d\mu_{\Lambda,q}(\lambda) \right) d\mu_{\mathcal{D}}(q), \quad \forall A \in \mathcal{B}_{\Lambda}$$

solves the stochastic inverse problem.

Corollary (BJW., SISC 2018)

The posterior measure of  $\Lambda$  is 1.

Theorem (BJW., SISC 2018)

$P_{\Lambda}^{post}$  is stable with respect to perturbations in  $P_{\mathcal{D}}^{obs}$ .

All the details can be found in: “Combining Push-forward Measures and Bayes’ Rule to Construct Consistent Solutions to Stochastic Inverse Problems”, BJW. SISC 40 (2), 2018.

# A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018)

The probability measure  $P_{\Lambda}^{post}$  on  $(\Lambda, \mathcal{B}_{\Lambda})$  defined by

$$P_{\Lambda}^{post}(A) = \int_{\mathcal{D}} \left( \int_{A \cap Q^{-1}(q)} \pi_{\Lambda}^{prior}(\lambda) \frac{\pi_{\mathcal{D}}^{obs}(Q(\lambda))}{\pi_{\mathcal{D}}^{Q(prior)}(Q(\lambda))} d\mu_{\Lambda,q}(\lambda) \right) d\mu_{\mathcal{D}}(q), \quad \forall A \in \mathcal{B}_{\Lambda}$$

solves the stochastic inverse problem.

The posterior density is:

$$\pi_{\Lambda}^{post}(\lambda) = \pi_{\Lambda}^{prior}(\lambda) \frac{\pi_{\mathcal{D}}^{obs}(Q(\lambda))}{\pi_{\mathcal{D}}^{Q(prior)}(Q(\lambda))}.$$

- Both  $\pi_{\Lambda}^{prior}$  and  $\pi_{\mathcal{D}}^{obs}$  are given.
- Computing  $\pi_{\mathcal{D}}^{Q(prior)}$  requires a forward propagation of the prior.
- Given  $\pi_{\mathcal{D}}^{Q(prior)}$ , we can investigate different posteriors for different  $\pi_{\mathcal{D}}^{obs}$ .

# A Parameterized Nonlinear System

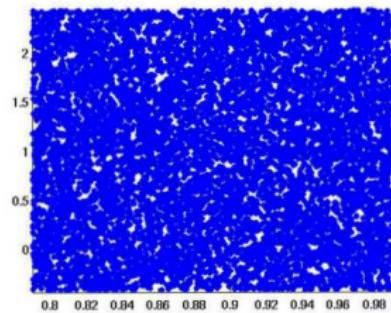
## Example

Consider a parameterized nonlinear system of equations:

$$\begin{aligned}\lambda_1 x_1^2 + x_2^2 &= 1, \\ x_1^2 - \lambda_2 x_2^2 &= 1\end{aligned}$$

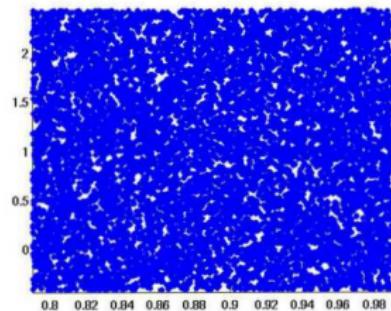
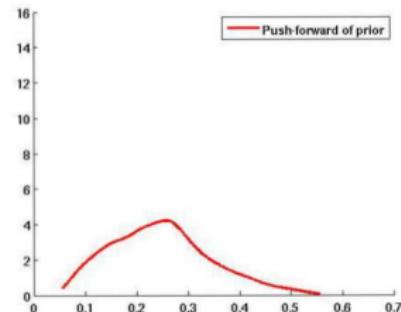
- The quantity of interest is the second component:  $q(\lambda) = x_2$ .
- Assume that we observe  $q(\lambda) \sim N(0.3, 0.025^2)$ .
- We consider a uniform prior.
- We use 10,000 samples from the prior and a standard KDE to approximate the push-forward of the prior.

# A Parameterized Nonlinear System

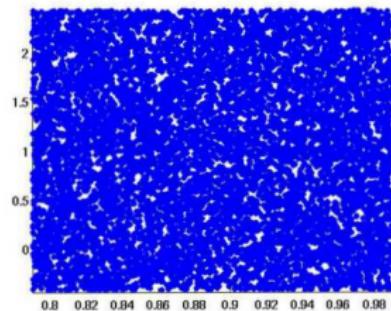
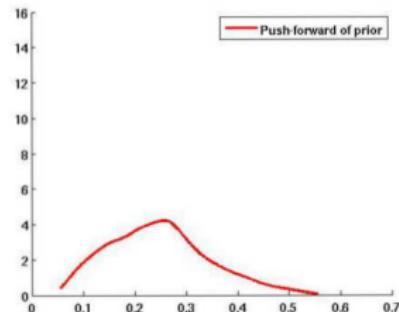


Prior

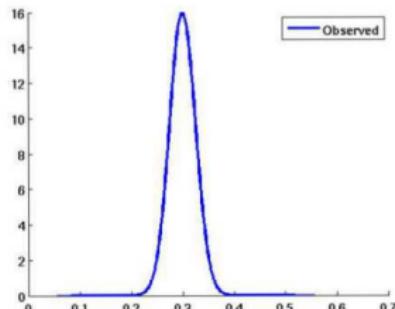
# A Parameterized Nonlinear System



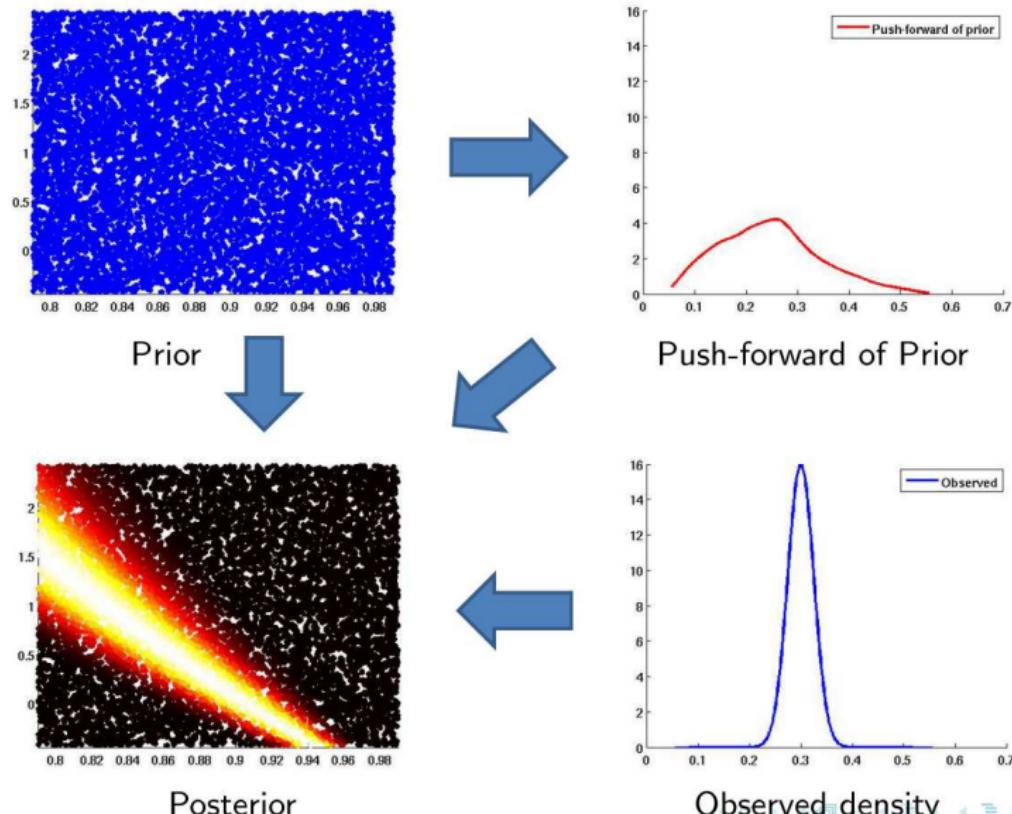
# A Parameterized Nonlinear System



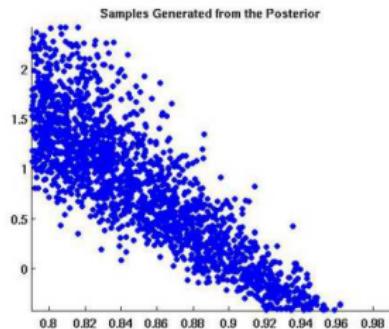
Push-forward of Prior



# A Parameterized Nonlinear System

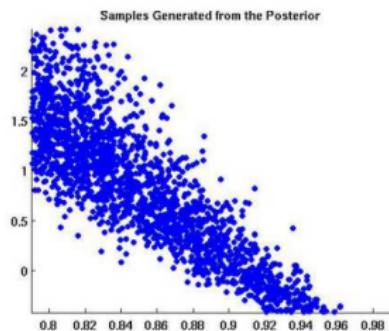


# A Parameterized Nonlinear System

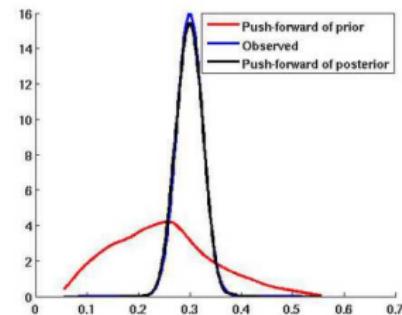


Samples from the posterior

# A Parameterized Nonlinear System

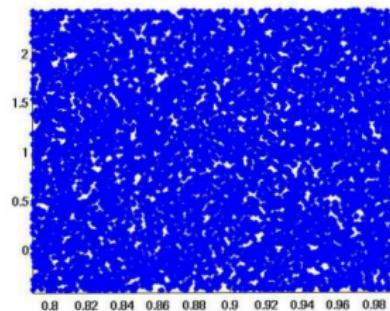


Samples from the posterior

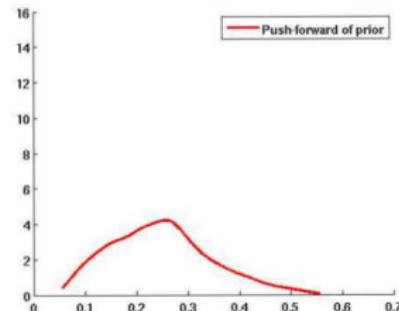


Observed and push-forward densities in  $\mathcal{D}$

# Exploring Different Observed Densities

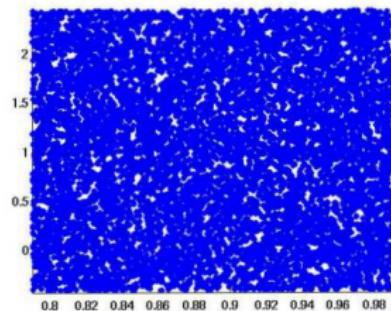


Prior

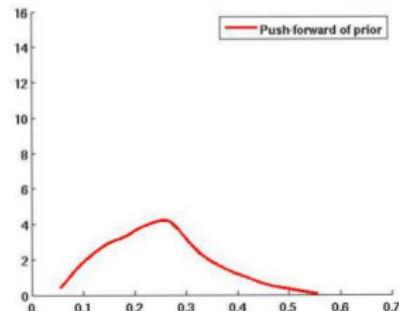


Push-forward of Prior

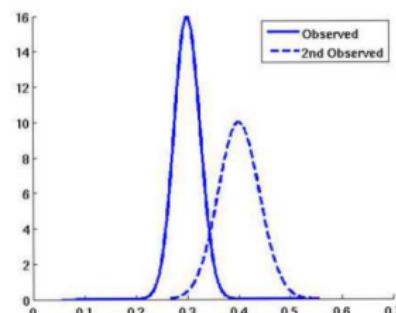
# Exploring Different Observed Densities



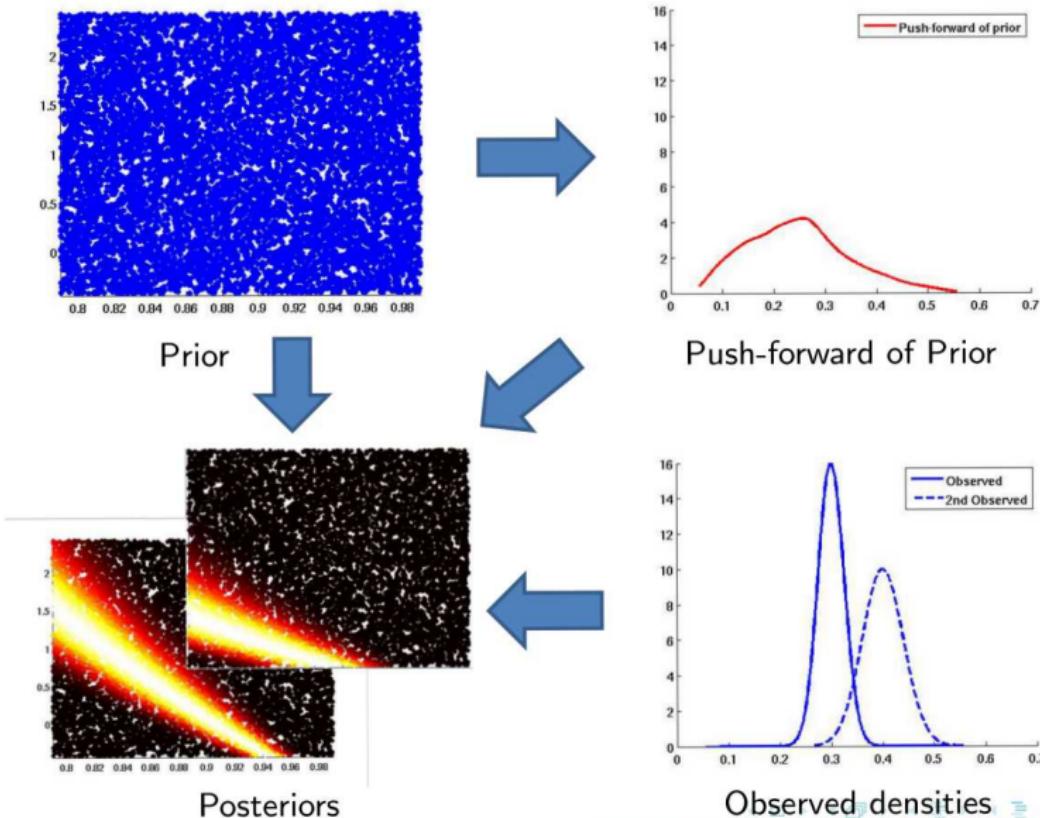
Prior



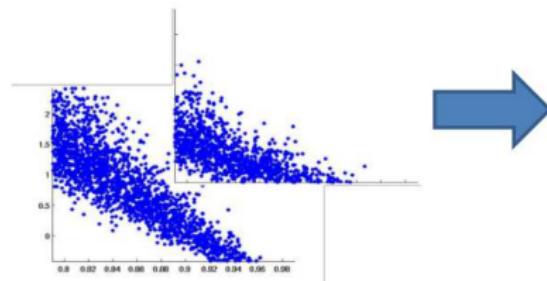
Push-forward of Prior



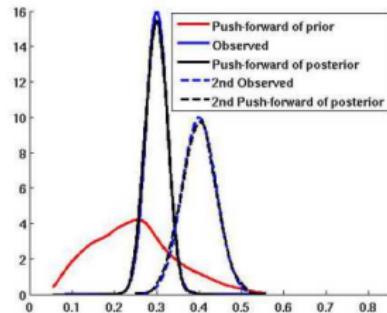
# Exploring Different Observed Densities



# Exploring Different Observed Densities



Samples from the posteriors



Observed and push-forward densities in  $\mathcal{D}$

# Outline

- 1 Motivation
- 2 Stochastic Inverse Problems
- 3 Comparison with the standard Bayesian formulation
- 4 A natural verification procedure
- 5 Applications
- 6 Conclusions and Future Work

# Relationship with Statistical Bayesian Inference

Using Bayes theorem we can define a different posterior density [Stuart 2010; Gelman et al 2013; Jaynes 1998, ...]:

$$\tilde{\pi}_\Lambda^{\text{post}}(\lambda|q) = \pi_\Lambda^{\text{prior}}(\lambda) \frac{\pi(q|\lambda)}{C}.$$

# Relationship with Statistical Bayesian Inference

Using Bayes theorem we can define a different posterior density [Stuart 2010; Gelman et al 2013; Jaynes 1998, ...]:

$$\tilde{\pi}_{\Lambda}^{\text{post}}(\lambda|q) = \pi_{\Lambda}^{\text{prior}}(\lambda) \frac{\pi(q|\lambda)}{C}.$$

## Example

Let  $\Lambda = [-1, 1]$  and consider the simple nonlinear map

$$q(\lambda) = \lambda^p, \quad p = 1, 3, 5, \dots$$

Here,  $p$  is not uncertain and are used to vary the nonlinearity.

# Relationship with Statistical Bayesian Inference

Using Bayes theorem we can define a different posterior density [Stuart 2010; Gelman et al 2013; Jaynes 1998, ...]:

$$\tilde{\pi}_{\Lambda}^{\text{post}}(\lambda|q) = \pi_{\Lambda}^{\text{prior}}(\lambda) \frac{\pi(q|\lambda)}{C}.$$

## Example

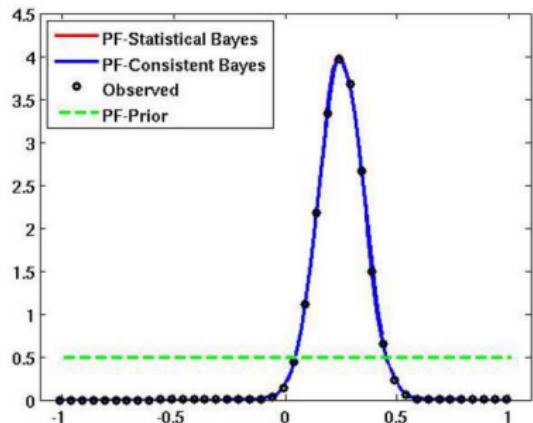
Let  $\Lambda = [-1, 1]$  and consider the simple nonlinear map

$$q(\lambda) = \lambda^p, \quad p = 1, 3, 5, \dots$$

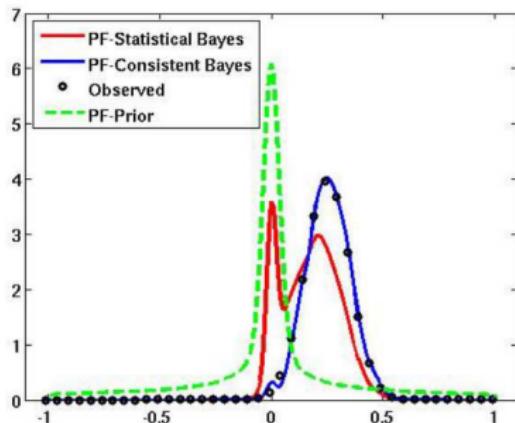
Here,  $p$  is not uncertain and are used to vary the nonlinearity.

- Assume a uniform prior and the observed density is given by  $\pi_{\mathcal{D}}^{\text{obs}} \sim N(0.25, 0.1^2)$ .
- For the statistical Bayesian approach, we use an observed value of  $\hat{q} = 0.25$  and assume a Gaussian noise model  $\eta \sim N(0, 0.1^2)$ .

# Comparing Push-forwards for Linear and Nonlinear Maps

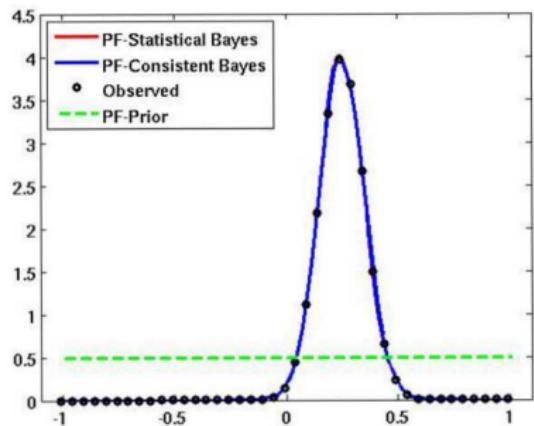


Linear map ( $p = 1$ )

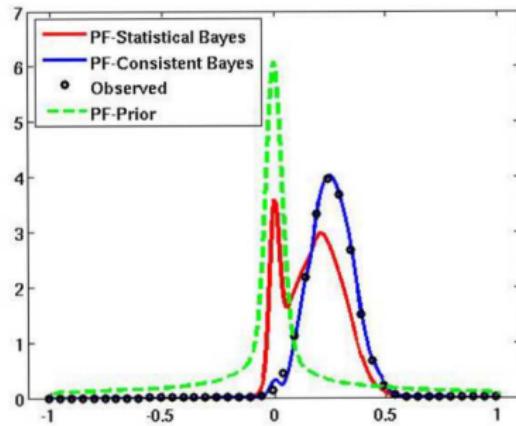


Nonlinear map ( $p = 5$ )

# Comparing Push-forwards for Linear and Nonlinear Maps



Linear map ( $p = 1$ )



Nonlinear map ( $p = 5$ )

The statistical and consistent Bayesian formulations **solve different problems**, **have different posteriors** and **make different predictions**.

# Outline

- 1 Motivation
- 2 Stochastic Inverse Problems
- 3 Comparison with the standard Bayesian formulation
- 4 A natural verification procedure
- 5 Applications
- 6 Conclusions and Future Work

# Determining Convergence

## Question:

How do we know when we've generated enough samples from the posterior?

# Determining Convergence

## Question:

How do we know when we've generated enough samples from the posterior?

- For MCMC, one typically uses autocorrelation, mixing of chain, Gelman/Rubin statistic, etc.

# Determining Convergence

## Question:

How do we know when we've generated enough samples from the posterior?

- For MCMC, one typically uses autocorrelation, mixing of chain, Gelman/Rubin statistic, etc.
- For our approach, we know one thing about the posterior ...

# Determining Convergence

## Question:

How do we know when we've generated enough samples from the posterior?

- For MCMC, one typically uses autocorrelation, mixing of chain, Gelman/Rubin statistic, etc.
- For our approach, we know one thing about the posterior ...
- **The push-forward of the posterior matches the measure/density on the observations.**
- We can use this to assess convergence regardless of the sampling scheme.

# Determining Convergence

## Question:

How do we know when we've generated enough samples from the posterior?

- For MCMC, one typically uses autocorrelation, mixing of chain, Gelman/Rubin statistic, etc.
- For our approach, we know one thing about the posterior ...
- **The push-forward of the posterior matches the measure/density on the observations.**
- We can use this to assess convergence regardless of the sampling scheme.

With three caveats ...

# Determining Convergence

## Question:

How do we know when we've generated enough samples from the posterior?

- For MCMC, one typically uses autocorrelation, mixing of chain, Gelman/Rubin statistic, etc.
- For our approach, we know one thing about the posterior ...
- **The push-forward of the posterior matches the measure/density on the observations.**
- We can use this to assess convergence regardless of the sampling scheme.

With three caveats ...

- ① Convergence will typically stagnate due to the approximation of the push-forward of the prior.
- ② Cannot determine if all modes of the posterior have been identified.
- ③ Not sensitive to how un-informed directions are explored.

# Determining Convergence

## Question:

How do we know when we've generated enough samples from the posterior?

- For MCMC, one typically uses autocorrelation, mixing of chain, Gelman/Rubin statistic, etc.
- For our approach, we know one thing about the posterior ...
- **The push-forward of the posterior matches the measure/density on the observations.**
- We can use this to assess convergence regardless of the sampling scheme.

With three caveats ...

- ① Convergence will typically stagnate due to the approximation of the push-forward of the prior.
- ② Cannot determine if all modes of the posterior have been identified.
- ③ Not sensitive to how un-informed directions are explored.

In general, we have found the push-forward of the posterior to be very useful in assess the convergence of the sampling procedure.

# Outline

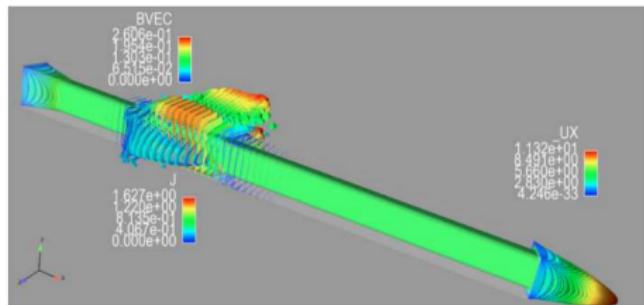
- 1 Motivation
- 2 Stochastic Inverse Problems
- 3 Comparison with the standard Bayesian formulation
- 4 A natural verification procedure
- 5 Applications
- 6 Conclusions and Future Work

# Resistive MHD with a Surrogate Model

- 3D resistive MHD generator
- VMS stabilized FEM approximation
- QoI - avg. induced magnetic energy:

$$Q = \frac{1}{2\mu_0} \int_{\Omega} (B_x^2 + B_y^2) \, d\Omega$$

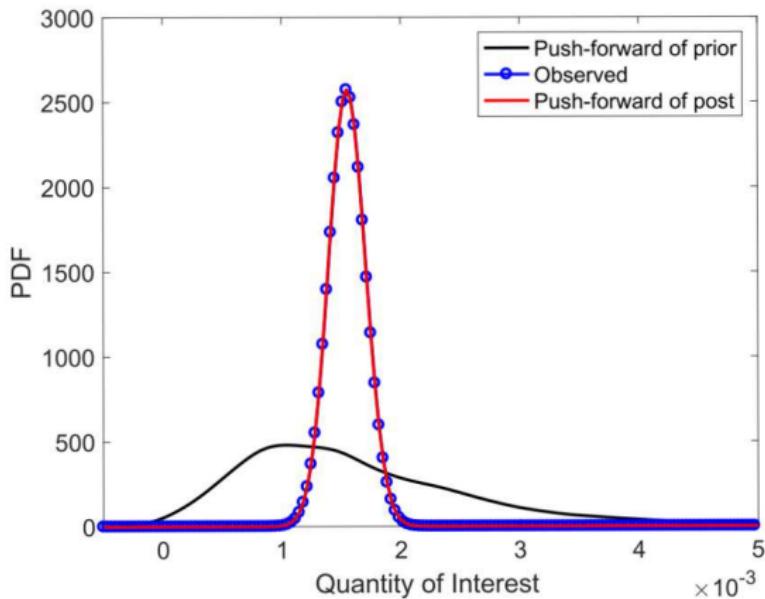
- Treat 4 input parameters as uncertain with uniform prior
- **Re-used an existing LHS study with 100 samples**
- Build surrogate model using Gaussian process regression
- 50,000 samples of surrogate used to compute push-forward of prior



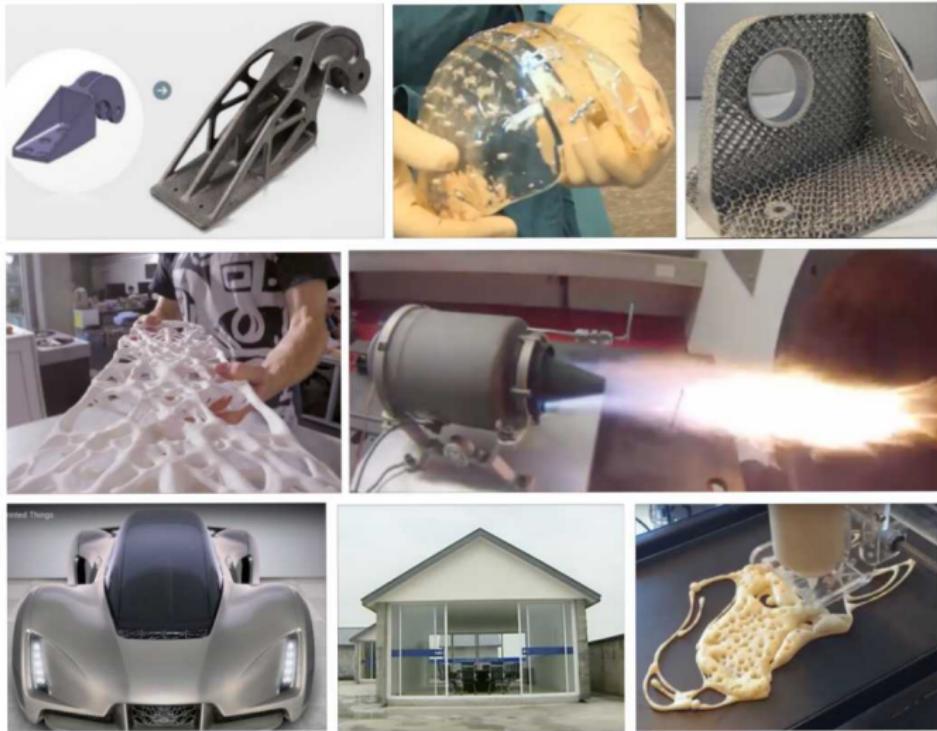
| Parameter   | Min.   | Max.   |
|-------------|--------|--------|
| Viscosity   | 1.0E-3 | 1.0E-2 |
| Vol. source | 1.0E-1 | 5.0E-1 |
| Resistivity | 1.0E-1 | 1.0E1  |
| Density     | 1.0E-1 | 1.0E1  |

# Push-forward of the Posterior Matches Observations

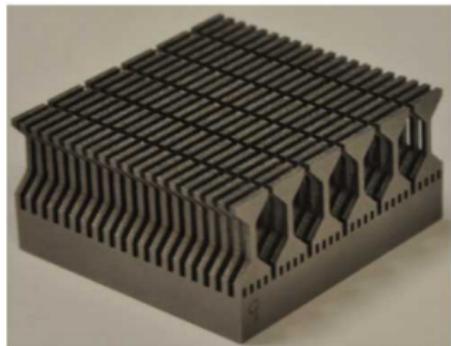
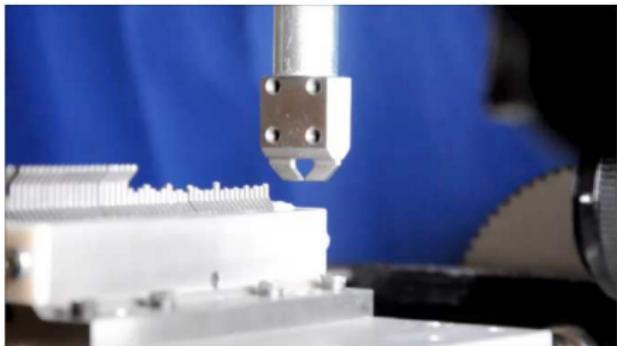
We assume a Gaussian density for the QoI with mean 1.55E-3 and 10% standard deviation.



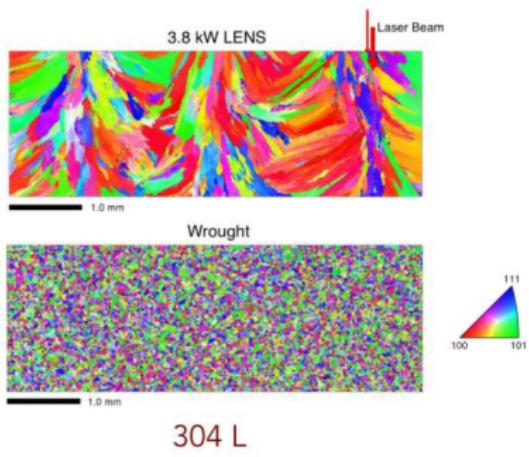
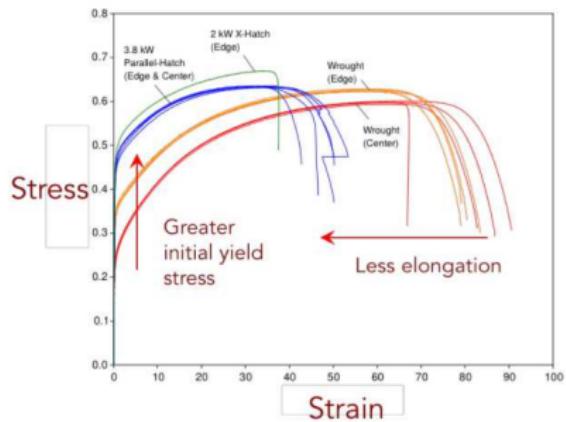
# Additive Manufacturing (3D Printing)



# At Sandia, We Make Dog Bones

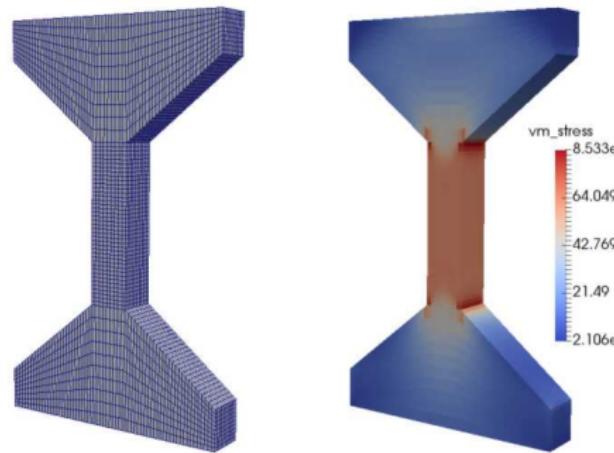
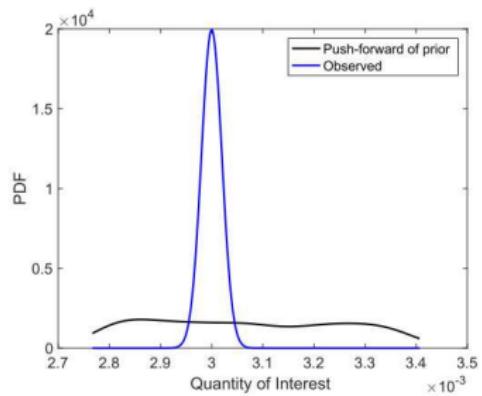


# Additive Manufacturing Can Produce Extreme Properties



# Inversion Using a Linear Elastic Model

Uniform Prior and Gaussian Observations

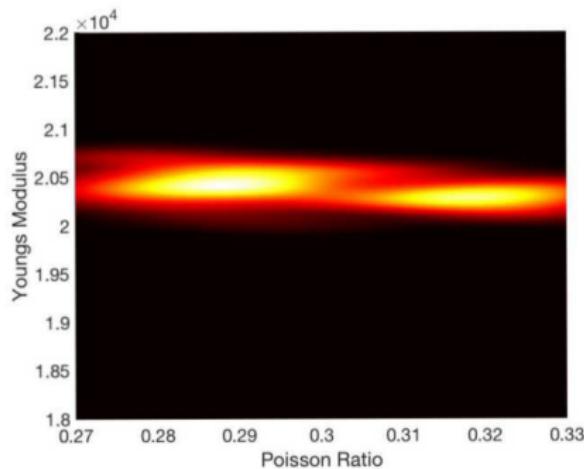
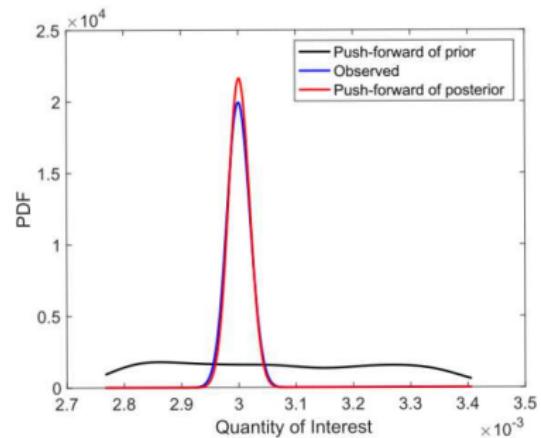


Quantity of interest is the average y-displacement in upper half of connector.

Random parameters:  $\nu \sim U(0.38, 0.42)$ , and  $E \sim U(1.0e3, 2.0e3)$ .

Evaluate model at 1,000 samples from the prior

# Push-forward of the Posterior Matches Observations



# Tokamak Disruption Mitigation

The tokamak is an experimental machine designed to harness the energy of fusion.

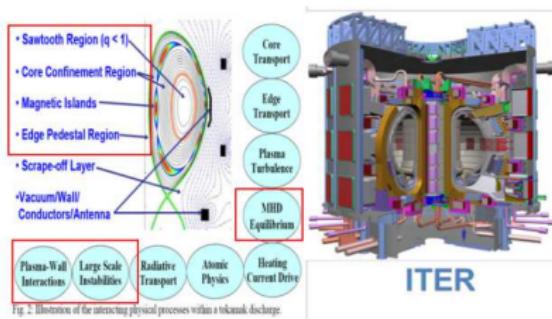
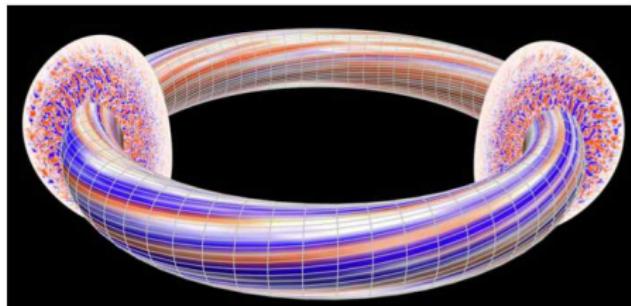


Image courtesy of W. Wang, PPPL

Disruption mitigation is essential for ITER and tokamak fusion.

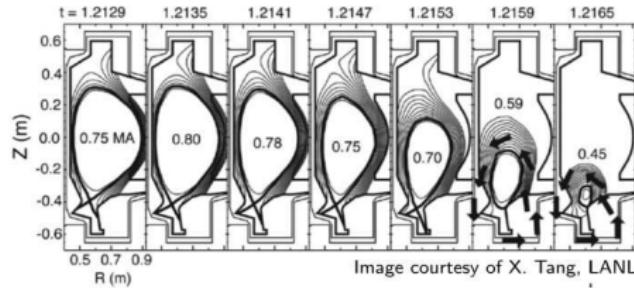
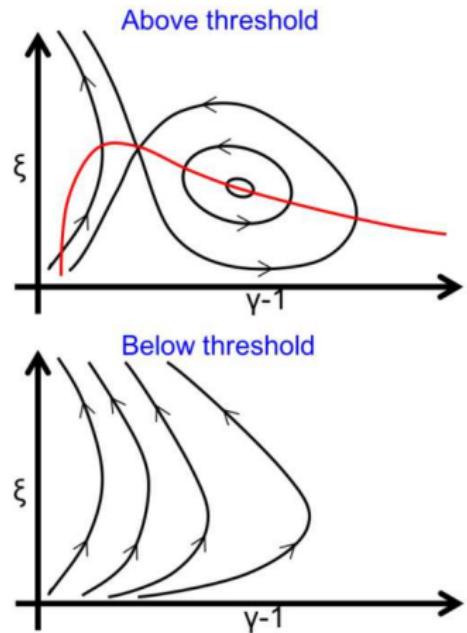


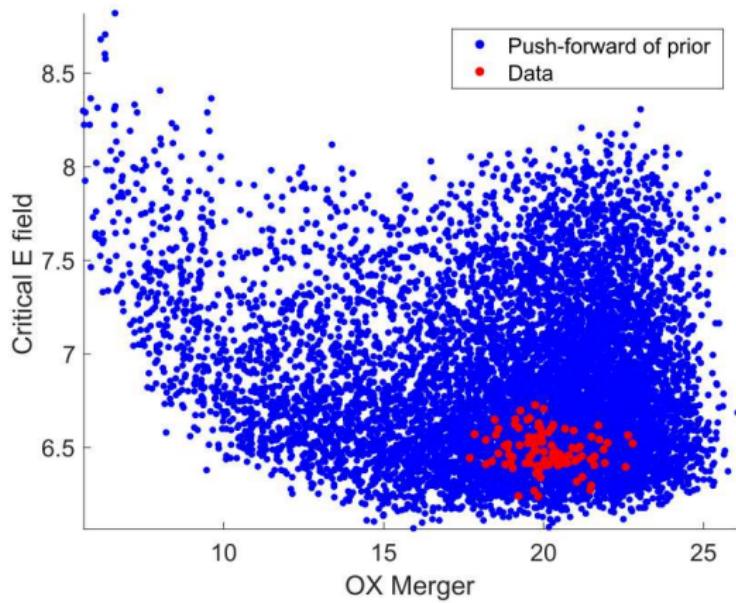
Image courtesy of X. Tang, LANL

# Tokamak Disruption Mitigation

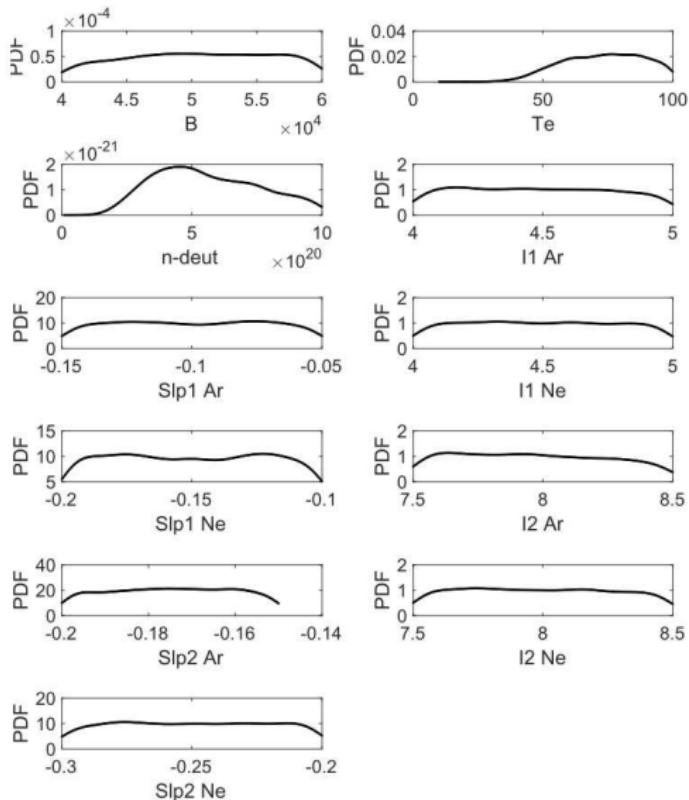
- In a disruption, plasma temperature will drop from 10 keV to a few eV in a few ms.
- This energy can be mostly channeled through runaway electrons.
- Complete avoidance is impractical
- Optimal scenario is to avoid runaway avalanche
- Semi-analytic theory of the runaway threshold recently developed (McDevitt et al. 2018)
- Provides versatile tool for determining conditions under which a large runaway population can be avoided
- Depends on the strength of the magnetic field, the electron temperature and the charge state distribution of the impurity populations.



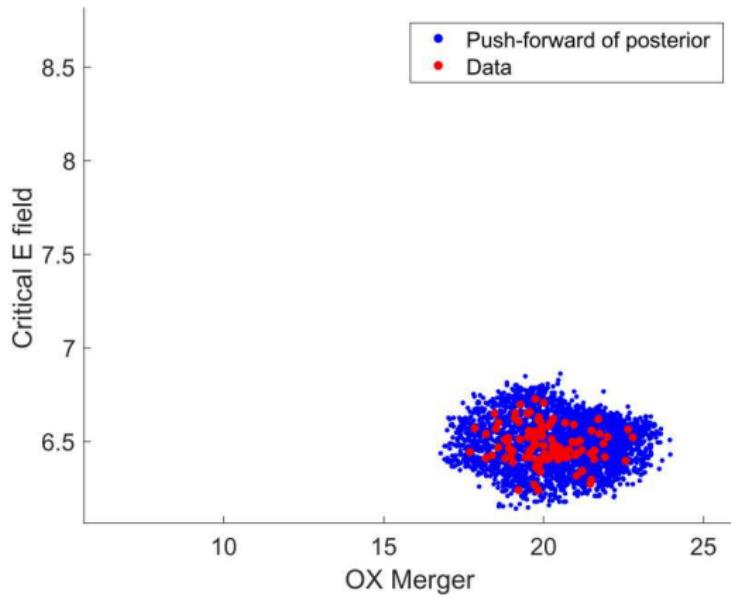
# The Prior-predictive and the Data



## The Marginals of the Posterior



# The Posterior-predictive and the Data



# Outline

- 1 Motivation
- 2 Stochastic Inverse Problems
- 3 Comparison with the standard Bayesian formulation
- 4 A natural verification procedure
- 5 Applications
- 6 Conclusions and Future Work

# Conclusions and Future Work

- Our goal is to develop **scalable, data-informed physics-based** models to make **credible predictions** and **optimize design of experiments**.
- Many approaches exist for incorporating data into a simulation.
  - Deterministic optimization, Bayesian methods, OUU, data assimilation, etc.
- The **consistent Bayesian** formulation provides a solution to a specific stochastic inverse problem.
- Approach naturally provides a **verifiable** quantity (push-forward of posterior).
- Push-forward of the prior is dominant computational expense.
- Can **leverage existing scalable/efficient approaches** for forward UQ
  - Surrogate models, e.g., Gaussian processes, polynomial chaos, sparse grid collocation, etc.
  - Multi-level and multi-fidelity methods
- Other sampling approaches, e.g., importance sampling and MCMC, are also possible

# Thanks! Questions?

## Acknowledgments

- T. Wildey's work was supported by the U.S. Department of Energy, Office of Science, Early Career Research Program.
- T. Butler's work was partially supported by DOE DE-SC0009286
- J. Jakeman's work was partially supported by DARPA EQUIPS

Thank you for your attention!

Questions?