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Motivation

Flow in Nuclear Reactor (Turbulent CFD) Tokamak Equilibrium (MHD)

Climate Modeling Multi-scale Materials Modeling
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Motivation

Flow in Nuclear Reactor (Turbulent CFD) Tokamak Equilibrium (MHD)

We are working to develop data-informed models ...

Climate Modeling Multi-scale Materials Modeling
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Data-informed Physics-Based Predictions

Optimization,
Inversion,
Data-assimilation
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FORCINGS,

ASSUMPTIONS

Forward
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MODEL

OBSERVED

DATA

Data-informed
physics-based
predictions

Consistent Bayes AMS Fall SE Sectional 5 / 38



Outline

co Stochastic Inverse Problems
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A Deterministic Inverse Problem

N
Problem

Model

•
0 01 02 03 01 05 08 07

Given a deterministic observation, Q, find A c A such that Q(A) =
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A Deterministic Inverse Problem

N
Problem

Model

•
0 01 02 03 01 05 08 07

Given a deterministic observation, Q, find A e A such that Q(A) =

• Solutions may not be unique without additional assumptions.

• Requires solving several deterministic forward problems.
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A Stochastic Inverse Problem

Model

Noise

I 02 0 0 05 02 07

Given a deterministic observation, (:2, and an assumed noise model, find the
parameters that are most likely to have produced the data.
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A Stochastic Inverse Problem

Model

Noise

I 02 0 0 05 02 07

Given a deterministic observation, (:2, and an assumed noise model, find the
parameters that are most likely to have produced the data.

a Solutions may not be unique without additional assumptions.

a Requires solving several deterministic forward problems.
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A Different Stochastic Inverse Problem

Model

Problem

J

Given a probability density on observations, find a probability density on A such
that the push-forward matches the given density on the observed data.
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A Different Stochastic Inverse Problem

Model

Problem

J

Given a probability density on observations, find a probability density on A such
that the push-forward matches the given density on the observed data.

o Solutions may not be unique without additional assumptions.

o We only need to solve a single stochastic forward problem.
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Notation

We assume we are given:

Q A finite-dimensional parameter space, A.

• A parameter-to-observation/data map, Q:AD=Q (A)

O An observed probability measure on (D, BD), denoted pgs, that has a
density, 7Gb5

CO A probability measure on (A,BA), denoted pritOr, that has a density, 7pArior.
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Notation

We assume we are given:

Q A finite-dimensional parameter space, A.

• A parameter-to-observation/data map, Q:AD=Q (A)

O An observed probability measure on (D, BD), denoted pgs, that has a
density, 7Gb5.

CO A probability measure on (A,BA), denoted pritOr, that has a density, 7pArior 

We need to compute:

• The push-forward of the prior through the model.

o In other words, we need to solve a forward UQ problem using the prior.

o We use 
71Q(prior) 

to denote this push-forward density.
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A Key Assumption

Predictability Assumption

We assume that the observed probability measure, Fr, is absolutely continuous

with respect to the push-forward of the prior, Pr,
Q(prior)

Good Prior Bad Prior
(Cannot predict all observations)
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A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018)

The probability measure Prt on (A, BA) defined by

fv. fAn (q)
Frt A) — 7prior (A)  

Q(

pfi

spri 

v 
(A

A 

(Q))

)) 

ditA
,q(A)) c tiv(q), V A E BA

or), Q0
D

solves the stochastic inverse problem.

Tirn Wildey (tnlwilde@sandia.gov) Consistent Bayes AMS Fall SE Sectional 12 /38



A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018)

The probability measure pirt on (A, BA) defined by

p l; OS t(A )
ior 71-clbs( cy A))(fAn,-,(q) likr (À) fiDITCpprior)(Q0))0A,q(A)) d u,v(q), VA E BA

solves the stochastic inverse problem.

Corollary (BJW., SISC 2018)

The posterior measure of A is 1.
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The posterior measure of A is 1.
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A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018)

The probability measure pirt on (A, BA) defined by

p l; OS t(A )
ior 71-clbs( cy A))(fAn,-,(q) likr (À) fiDITCpprior)(Q0))0A,q(A)) d u,v(q), VA E BA

solves the stochastic inverse problem.

Corollary (BJW., SISC 2018)

The posterior measure of A is 1.

Theorem (BJW., SISC 2018)

Prt is stable with respect to perturbations in Pgs.

All the details can be found in: "Combining Push-forward Measures and Bayes'
Rule to Construct Consistent Solutions to Stochastic Inverse Problems", BJW.
SISC 40 (2), 2018.
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A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018)

The probability measure Prt on (A, BA) defined by

fv. fAnQ-'(q)
Flost(A)_ 7prior (A) 

7Q(79fispri 
v

A 

( 

Q

A))

)) 

ditA
,q(A)) c tiv(q), V A E BAor), 0

D

solves the stochastic inverse problem.

The posterior density is:

7eAosto) _ 7rpArlorpo 
7,Q(pri 

7rDb.s(Q(A)) 

or(Q(A))•
D

o Both 7rZior and 7q)bs are given.

GI Computing 7r.D
Q(prior)

requires a forward propagation of the prior.
o ,o Given 713,
(p
rior)we can investigate different posteriors for different 'FP.
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A Parameterized Nonlinear System

Example

Consider a parameterized nonlinear system of equations:

Xi2 + 4 = 1,

xl— 2 2 x2 1

o The quantity of interest is the second component: q(A) = x2.

o Assume that we observe q(A) — N(0.3, 0.0252).

o We consider a uniform prior.

o We use 10,000 samples from the prior and a standard KDE to approximate
the push-forward of the prior.
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A Parameterized Nonlinear System

0.0 0.02 0.89 0.08 OM 0.8 0.92 0.99 0.90 0.08

P rior
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A Parameterized Nonlinear System

0.0 0.92 0.89 0.96 0.98 0.8 0.92 0.9,1 0.96 0.08

Prior Push-forward of Prior

0.7
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A Parameterized Nonlinear System

0.0 0.02 0.89 0.08 0.08 0.9 0.92 0.99 0.00 0.98

Prior

0 0.1 OA

Push-forward of Prior

0.7

i—oeseiveel

% 0.1 02 03 OA 0.5 OD 07

Observed density
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A Parameterized Nonlinear System

0 b
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A Parameterized Nonlinear System

e• •

.s

0.5

Samples Generated from Posterior

092 O.. 0. 0.

Samples from the posterior
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A Parameterized Nonlinear System
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Exploring Different Observed Densities

0.0 0.02 0.09 0.06 OM 0.0 0.02 0 91 6

Prior

0 0.1 OA 08

Push-forward of Prior
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Exploring Different Observed Densities
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Exploring Different Observed Densities
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Exploring Different Observed Densities
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Outline

Comparison with the standard Bayesian formulation
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Relationship with Statistical Bayesian Inference

Using Bayes theorem we can define a difFerent posterior density [Stuart 2010;

Gelman et al 2013; Jaynes 1998, ...]:

irq)ost (A I 7rpAr;or/A) 7r(q1A).
C
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Relationship with Statistical Bayesian Inference

Using Bayes theorem we can define a difFerent posterior density [Stuart 2010;

Gelman et al 2013; Jaynes 1998, ...]:

irq)ost (A I q) 7rpAr;or/A) 7r(qIA).
C

Example

Let A = [—IA] and consider the simple nonlinear map

q(A) = AP , p = 1,3,5,....

Here, p is not uncertain and are used to vary the nonlinearity.
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Relationship with Statistical Bayesian Inference

Using Bayes theorem we can define a difFerent posterior density [Stuart 2010;
Gelman et al 2013; Jaynes 1998, ...]:

irq)ost (A I q) 7rpAr;or(A) 7r(qIA).
C

Let A =[-1.1] and consider the simple nonlinear map

q(A) = AP, p = 1,3,5,....

Here, p is not uncertain and are used to vary the nonlinearity.

• Assume a uniform prior and the observed density is given by
7(2'1's ,--, N(0.25, 0.12).

• For the statistical Bayesian approach, we use an observed value of
= 0.25 and assume a Gaussian noise model ri N(0, 0.12).
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Comparing Push-forwards for Linear and Nonlinear Maps

4.5

4
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Comparing Push-forwards for Linear and Nonlinear Maps

4S 

4

35-

3 -
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05 -

0.5 0 05

Linear map (p = 1)

- PF-StatIstical Bayes

- PF-Consistent Bayes

• Observed

PF-Prlor

05

Nonlinear map (p = 5)

The statistical and consistent Bayesian formulations solve different problems,

have different posteriors and make different predictions.
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Outline

A natural verification procedure
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Determining Convergence

How do we know when we've generated enough samples from the posterior?
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Determining Convergence

How do we know when we've generated enough samples from the posterior?

a For MCMC, one typically uses autocorrelation, mixing of chain,
Gelman/Rubin statistic, etc.
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Determining Convergence

How do we know when we've generated enough samples from the posterior?

a For MCMC, one typically uses autocorrelation, mixing of chain,
Gelman/Rubin statistic, etc.

o For our approach, we know one thing about the posterior ...
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Determining Convergence

Question:

How do we know when we've generated enough samples from the posterior?

• For MCMC, one typically uses autocorrelation, mixing of chain,
Gelman/Rubin statistic, etc.

fa For our approach, we know one thing about the posterior ...

• The push-forward of the posterior matches the measure/density on
the observations.

o We can use this to assess convergence regardless of the sampling scheme.

 J
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Determining Convergence

Question:

How do we know when we've generated enough samples from the posterior? J
• For MCMC, one typically uses autocorrelation, mixing of chain,

Gelman/Rubin statistic, etc.

• For our approach, we know one thing about the posterior ...

a The push-forward of the posterior matches the measure/density on
the observations.

o We can use this to assess convergence regardless of the sampling scheme.

With three caveats ...
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Determining Convergence

How do we know when we've generated enough samples from the posterior?

a For MCMC, one typically uses autocorrelation, mixing of chain,
Gelman/Rubin statistic, etc.

o For our approach, we know one thing about the posterior ...

a The push-forward of the posterior matches the measure/density on
the observations.

o We can use this to assess convergence regardless of the sampling scheme.

With three caveats ...

• Convergence will typically stagnate due to the approximation of the
push-forward of the prior.

• Cannot determine if all modes of the posterior have been identified.

O Not sensitive to how un-informed directions are explored.
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Determining Convergence

How do we know when we've generated enough samples from the posterior?

a For MCMC, one typically uses autocorrelation, mixing of chain,
Gelman/Rubin statistic, etc.

o For our approach, we know one thing about the posterior ...

o The push-forward of the posterior matches the measure/density on
the observations.

o We can use this to assess convergence regardless of the sampling scheme.

With three caveats ...

• Convergence will typically stagnate due to the approximation of the
push-forward of the prior.

• Cannot determine if all modes of the posterior have been identified.

O Not sensitive to how un-informed directions are explored.

In general, we have found the push-forward of the posterior to be very useful in
assess the convergence of the sampling procedure.
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Outline

Applications
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Resistive MHD with a Surrogate Model

o 3D resistive MHD generator

o VMS stabilized FEM approximation

o Qol - avg. induced magnetic energy:

Q =  1  I (B, E33) ciS2
2lio Q

o Treat 4 input parameters as
uncertain with uniform prior

co Re-used an existing LHS study
with 100 samples

o Build surrogate model using
Gaussian process regression

o 50,000 samples of surrogate used to
compute push-forward of prior

Parameter Min. Max.
Viscosity
Vol. source
Resistivity
Density

1.0E-3 1.0E-2
1.0E-1 5.0E-1
1.0E-1 1.0E1
1.0E-1 1.0E1
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Push-forward of the Posterior Matches Observations

We assume a Gaussian density for the Qol with mean 1.55E-3 and 10% standard

deviation.

3000

2500

2000

u_
1500

1000

500

— Push-forward of prior
—a— Observed
— Push-forward of post 

2 3

Quantity of Interest

5

x 10-3
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Additive Manufacturing (3D Printing)
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At Sandia, We Make Dog Bones
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Additive Manufacturing Can Produce Extreme Properties

304 L

(J. Michael, SNL)

0.7
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02

0.1
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Greater
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JO 40 50 BO 0 110
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Inversion Using a Linear Elastic Model
Uniform Prior and Gaussian Observations

ur"-*M.

164.049

-42.769

121.49

2.106e

0.5

• V 
17 2.8

—Push-folward of prior
—Observed

2.9 3 3.1 3 2

Quantity of !Interest

3 3 3A 3 5

x

Quantity of interest is the average y-displacement in upper half of connector.

Random parameters: v — U(0.38, 0.42), and E U(1.0e3, 2.0e3).

Evaluate model at 1,000 samples from the prior
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Push-forward of the Posterior Matches Observations

2.2

2.15

2.1

2.05

2 2
rn

;3_ 1.95

1.9

1.85

0.28 0.29 0.3 0.31
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Tokamak Disruption Mitigation

The tokamak is an experimental machine designed to harness the energy of fusion.
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Tokamak Disruption Mitigation

• In a disruption, plasma temperature will drop from
10 keV to a few eV in a few ms.

• This energy can be mostly channeled through
runaway electrons.

• Complete avoidance is impractical

• Optimal scenario is to avoid runaway avalanche

• Semi-analytic theory of the runaway threshold
recently developed (McDevitt et al. 2018)

• Provides versatile tool for determining conditions
under which a large runaway population can be
avoided

• Depends on the strength of the magnetic field, the
electron temperature and the charge state
distribution of the impurity populations.

Above threshold

Below threshold

y-1
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The Prior-predictive and the Data
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The Marginals of the Posterior
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The Posterior-predictive and the Data
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Outline

Conclusions and Future Work
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Conclusions and Future Work

o Our goal is to develop scalable, data-informed physics-based models to
make credible predictions and optimize design of experiments.

o Many approaches exist for incorporating data into a simulation.
o Deterministic optimization, Bayesian methods, OUU, data assimilation, etc.

o The consistent Bayesian formulation provides a solution to a specific
stochastic inverse problem.

o Approach naturally provides a verifiable quantity (push-forward of posterior).

o Push-forward of the prior is dominant computational expense.

o Can leverage existing scalable/efficient approaches for forward UQ
o Surrogate models, e.g., Gaussian processes, polynomial chaos, sparse grid

collocation, etc.
o Multi-level and multi-fidelity methods

o Other sampling approaches, e.g., importance sampling and MCMC, are also
possible
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Thanks! Questions?
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Thank you for your attention!

Questions?
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