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Climate Modeling Multi-scale Materials Modeling
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Data-informed Physics-Based Predictions
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© Stochastic Inverse Problems
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A Deterministic Inverse Problem

Given a deterministic observation, Q, find A € A such that Q(\) = Q.
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A Deterministic Inverse Problem

£

Given a deterministic observation, Q, find A € A such that Q(\) =

@ Solutions may not be unique without additional assumptions.

@ Requires solving several deterministic forward problems.
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A Stochastic Inverse Problem

=)  Model +4/_\\# .

Noise

Problem

Given a deterministic observation, @ and an assumed noise model, find the
parameters that are most likely to have produced the data.
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- - Model -I-//A\\- .

Problem

Given a deterministic observation, @ and an assumed noise model, find the
parameters that are most likely to have produced the data.

@ Solutions may not be unique without additional assumptions.

@ Requires solving several deterministic forward problems.
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A Different Stochastic Inverse Problem

Problem

Given a probability density on observations, find a probability density on A such
that the push-forward matches the given density on the observed data.

Tim Wildey (tmwilde@sandia.gov) Consistent Bayes AMS Fall SE Sectional 9/38



Problem

Given a probability density on observations, find a probability density on A such
that the push-forward matches the given density on the observed data.

@ Solutions may not be unique without additional assumptions.
o We only need to solve a single stochastic forward problem.
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Notation

We assume we are given:

@ A finite-dimensional parameter space, A.
@ A parameter-to-observation/data map, Q : A — D = Q(A)
@ An observed probability measure on (D, Bp), denoted P, that has a

density, w%s.

prior

@ A probability measure on (A, By), denoted PX”“, that has a density,
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We assume we are given:

@ A finite-dimensional parameter space, A.
@ A parameter-to-observation/data map, Q : A — D = Q(A)
© An observed probability measure on (D, Bp), denoted P, that has a

density, w%s.

prior

@ A probability measure on (A, By), denoted PX”°', that has a density,

We need to compute:
@ The push-forward of the prior through the model.

@ In other words, we need to solve a forward UQ problem using the prior.
Q(prior
D

o We use 7 ) to denote this push-forward density.
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A Key Assumption

Predictability Assumption

We assume that the observed probability measure, P, is absolutely continuous

with respect to the push-forward of the prior, Pg(p”m).
7l_obs 71_obs
D D
ﬂg(prior) 7Tg(prior)
Good Prior Bad Prior
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A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018)
The probability measure PR on (A, By) defined by

post _ o prior W%bs( Q( )‘) )
'D/\ (A) - /D (/AﬂQ‘l(q) w ()\)ﬂ.g(prior)(Q()\)) duA7q(A)> d/‘LD(q)’ VA € Ba

solves the stochastic inverse problem.
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A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018)

The probability measure PR on (A, Bp) defined by

PE=(A) = [

., obs A
</ ﬂ/;zr/or()\)mcjul\ﬂ()\)) dN’D(q), VA € B/\
D \JAnQ-1(q)

TP (Q(N))

solves the stochastic inverse problem.

Corollary (BJW., SISC 2018)

The posterior measure of \ is 1.
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A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018)
The probability measure PR on (A, Bp) defined by

post _ o prior ﬂ%bs( Q( )‘) )
PA (A) = /D </AHQ—1(q) A ()\)ﬂ.g(prior)(Q(A))d/J/\AJ()‘)) dup(q), VA € B

solves the stochastic inverse problem.

Corollary (BJW., SISC 2018)

The posterior measure of \ is 1.

Theorem (BJW., SISC 2018)

PR is stable with respect to perturbations in P,

All the details can be found in: “Combining Push-forward Measures and Bayes'

Rule to Construct Consistent Solutions to Stochastic Inverse Problems”, BJW.
SISC 40 (2), 2018.
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A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018)

The probability measure PR on (A, By) defined by

post _ 71_prior obs( Q( )‘))
PO = [ ([ gy ™ O iy ne) o). ¥A< By

solves the stochastic inverse problem.

The posterior density is:

S rior 7T'Dbs(Q()‘))
TR () = 7 (/\)—Q(grior) :
o (Q(A))
o Both 7™ and 73 are given.

(prior)

o Computing 7rQ requires a forward propagation of the prior.

Q(prior)

o Given 7p , we can investigate different posteriors for different w3
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A Parameterized Nonlinear System

Consider a parameterized nonlinear system of equations:

)\1X12 s X22 = 17

xf — )\2x22 =

@ The quantity of interest is the second component: g(\) = x».
o Assume that we observe g(\) ~ N(0.3,0.0252).
@ We consider a uniform prior.

@ We use 10,000 samples from the prior and a standard KDE to approximate
the push-forward of the prior.
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A Parameterized Nonlinear System

o L Tl PR e
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A Parameterized Nonlinear System
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A Parameterized Nonlinear System
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Prior Push-forward of Prior

14
12
10
8
6
a
2
0 01 02 03 04 05 06 07

Observed density

Consistent Bayes AMS Fall SE Sectional 14 /38




A Parameterized Nonlinear System

Samples Generated from the Posterior
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A Parameterized Nonlinear System

Samples Generated from the Posterior
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Exploring Different Observed Densities
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Exploring Different Observed Densities
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Exploring Different Observed Densities
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Exploring Different Observed Densities
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© Comparison with the standard Bayesian formulation
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Relationship with Statistical Bayesian Inference

Using Bayes theorem we can define a different posterior density [Stuart 2010;
Gelman et al 2013; Jaynes 1998, ...]:

m(qlA)

ﬁ_xost()\| q) = erior(A) C )
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Relationship with Statistical Bayesian Inference

Using Bayes theorem we can define a different posterior density [Stuart 2010;
Gelman et al 2013; Jaynes 1998, ...]:

~ pOS rior ™q A
7o (Mg) = nr () TN,

Let A =[—1, 1] and consider the simple nonlinear map

g\ =X p =153 5

Here, p is not uncertain and are used to vary the nonlinearity.
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Relationship with Statistical Bayesian Inference

Using Bayes theorem we can define a different posterior density [Stuart 2010;
Gelman et al 2013; Jaynes 1998, ...|:

"POSt()\|q) prlor()\)w(cg)‘).

Let A =[—1, 1] and consider the simple nonlinear map

g\ =X p =153 5

Here, p is not uncertain and are used to vary the nonlinearity.

@ Assume a uniform prior and the observed density is given by
7S ~ N(0.25,0.12).

° For the statistical Bayesian approach, we use an observed value of
g = 0.25 and assume a Gaussian noise model 7 ~ N(0,0.12).
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Comparing Push-forwards for Linear and Nonlinear Maps

45 7
= PF-Statistical Bayes = PF-Statistical Bayes
41| = PF-Consistent Bayes 1 6H PF-Consistent Bayes i 4
35 © Observed J ©  Observed "
||~~~ PF-Prior 5~~~ PF-Prior - ]
3 S i
1
25 1 ar " 1
p
d
2 1 3k : o g
ifp
15 1 e
L ] 1
& ]
1 1 1
s ( 1
05 ====mmmmmm e e « 2
-
" oLessninses =
= 05 0 05 1 =i 05 0 05 il
Linear map (p=1) Nonlinear map (p = 5)

Tim Wildey (tmwilde@sandia.gov) Consistent Bayes AMS Fall SE Sectional  20/38



Ll == ~PF-Prior

~ PF-Statistical Bayes

H ==PF-Consistent Bayes | »

©  Observed

a5
~ PF-Statistical Bayes
4 I PF-Consistent Bayes
°
asH Observed
~ = " PF-Prior
3
25
2
15
1
05| [ Sime s emnaresioys vl MmO e re———
0 ?
=1 05 0 05 i !

Linear map (p =1)

Nonlinear map (p = 5)

The statistical and consistent Bayesian formulations solve different problems,
have different posteriors and make different predictions.
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@ A natural verification procedure
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Determining Convergence

How do we know when we've generated enough samples from the posterior?
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Determining Convergence

How do we know when we've generated enough samples from the posterior?

@ For MCMC, one typically uses autocorrelation, mixing of chain,
Gelman/Rubin statistic, etc.
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Determining Convergence

How do we know when we've generated enough samples from the posterior?

e For MCMC, one typically uses autocorrelation, mixing of chain,
Gelman/Rubin statistic, etc.

o For our approach, we know one thing about the posterior ...

e The push-forward of the posterior matches the measure/density on
the observations.

@ We can use this to assess convergence regardless of the sampling scheme.
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Determining Convergence

How do we know when we've generated enough samples from the posterior?

e For MCMC, one typically uses autocorrelation, mixing of chain,
Gelman/Rubin statistic, etc.

o For our approach, we know one thing about the posterior ...

e The push-forward of the posterior matches the measure/density on
the observations.

@ We can use this to assess convergence regardless of the sampling scheme.

With three caveats ...
@ Convergence will typically stagnate due to the approximation of the

push-forward of the prior.
@ Cannot determine if all modes of the posterior have been identified.

@ Not sensitive to how un-informed directions are explored.
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Determining Convergence

How do we know when we've generated enough samples from the posterior?

e For MCMC, one typically uses autocorrelation, mixing of chain,
Gelman/Rubin statistic, etc.

o For our approach, we know one thing about the posterior ...

e The push-forward of the posterior matches the measure/density on
the observations.

@ We can use this to assess convergence regardless of the sampling scheme.

With three caveats ...
@ Convergence will typically stagnate due to the approximation of the

push-forward of the prior.
@ Cannot determine if all modes of the posterior have been identified.

@ Not sensitive to how un-informed directions are explored.

In general, we have found the push-forward of the posterior to be very useful in
assess the convergence of the sampling procedure.
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© Applications
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Resistive MHD with a Surrogate Model

@ 3D resistive MHD generator
BVEC
o VMS stabilized FEM approximation Iﬁ;&’ﬁg
i\ il
@ Qol - avg. induced magnetic energy: |

B + BY) dQ
2#0 /( )

@ Treat 4 input parameters as
uncertain with uniform prior

Parameter | Min.  Max.

@ Re-used an existing LHS study Viscosity 1.0E-3 1.0E-2
with 100 samples Vol. source | 1.0E-1  5.0E-1

@ Build surrogate model using Resistivity | 1.0E-1  1.0E1
Gaussian process regression Density 1.0E-1 1.0E1

@ 50,000 samples of surrogate used to
compute push-forward of prior
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rior Matches Observations

We assume a Gaussian density for the Qol with mean 1.55E-3 and 10% standard

deviation.
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Additive Manufacturing (3D Printing)
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At Sandia, We Make Dog Bones
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Additive Manufacturing Can Produce Extreme Properties

2000 XHateh
3w (Edge)

N

Wrougrt
(Center

Greater ¢ \

isr:ir;i:iyield Less elongation
304 L Strain
(J. Michael, SNL) (J. Carroll, SNL)
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Inversion Using a Linear Elastic Model

Uniform Prior and Gaussian Observations

p 0t

~—— Push-forward of prior
—— Observed

0
27 28 29 3 3.1 32 33 34 35
Quantity of Interest %107

Quantity of interest is the average y-displacement in upper half of connector.
Random parameters: v ~ U(0.38,0.42), and E ~ U(1.0e3,2.0e3).

Evaluate model at 1,000 samples from the prior
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Push-forward of the Posterior Matches Observations

10 4
22 2510 v
—— Push-forward of prior
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Tokamak Disruption Mitigation

The tokamak is an experimental machine designed to harness the energy of fusion.

* SawoothRegion (<11, | /2 e
N g e

 Core ConfinementRegion =

+ Magneic| Islimt\—.‘ Y:m“

+ Edge Pedestal Region— —

Plasma
+ Scrape-off Layer. Tarbulence

VacuumMall X 3
MHED
Conductors/Antenna Eqhr

Phsns-Wal  LargeSce [ Raditve (* Monic | Hetng
Interacions | Insables | (Tranpart | PhysicsCarret Drvg ITER

T e i sl proceses w3 ok e

Image courtesy of W. Wang, PPPL

Disruption mitigation is essential for ITER and tokamak fusion.

t=1.2129 1.2135 1.2141 1.2147 1.2153 1.2159 1.2165

05 Ro‘(:“)og Image courtesy of X. Tang, LANL
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Tokamak Disruption Mitigation

@ In a disruption, plasma temperature will drop from
10 keV to a few eV in a few ms.

@ This energy can be mostly channeled through
runaway electrons.

@ Complete avoidance is impractical
@ Optimal scenario is to avoid runaway avalanche

@ Semi-analytic theory of the runaway threshold
recently developed (McDevitt et al. 2018)

@ Provides versatile tool for determining conditions
under which a large runaway population can be
avoided

@ Depends on the strength of the magnetic field, the
electron temperature and the charge state
distribution of the impurity populations.

Above threshold
A
3
v >
A Below threshold
| >>>
v >
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The Prior-predictive and the Data

8.5

‘; ® Push-forward of prior
® Data

Critical E field

OX Merger
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The Marginals of the Posterior
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The Posterior-predictive and the Data

® Push-forward of posterior
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@ Conclusions and Future Work
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Conclusions and Future Work

@ Our goal is to develop scalable, data-informed physics-based models to
make credible predictions and optimize design of experiments.

@ Many approaches exist for incorporating data into a simulation.
o Deterministic optimization, Bayesian methods, OUU, data assimilation, etc.
o The consistent Bayesian formulation provides a solution to a specific
stochastic inverse problem.
@ Approach naturally provides a verifiable quantity (push-forward of posterior).
@ Push-forward of the prior is dominant computational expense.
o Can leverage existing scalable/efficient approaches for forward UQ

o Surrogate models, e.g., Gaussian processes, polynomial chaos, sparse grid
collocation, etc.
o Multi-level and multi-fidelity methods

o Other sampling approaches, e.g., importance sampling and MCMC, are also
possible
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Thanks! Questions?
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