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2 Properties of the Er:T system

Erbium = HCP

ErT2 3-phase = FCC

13-phase extends from 2.0 - —2.2.

Sub-stoichiometric 13-phase due to
stoichiometric deficiency 8.

ErT2_ 8 x

o x is excess Tritium in octahedral sites

O 8 is stoichiometry deficiency such that Erbium
sites can not bind Tritium causing an over-
counting

o We often observe 1-2% oxygen as large Er203
chunks and as nano-clusters.

O Other impurities like other RE's
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3 Overview of this Study

1
500 nm thick Erbium film deposited via e-beam PVD on Silicor)
Molybdenum interaction barrier.

Expect 10-15% swelling upon conversion to ErT2.

Average stoichiometric deficiency of 8 — 0.1.

TEM to image bubbles

XRD for lattice changes

Nano-Indentation for mechanical property changes

IBA/ERD for helium retention

500 nm Erbium

100 nm Molybdenum

(100) Silicon Wafer

Load Run iiiiimmlill
1 1.844

1 1.927

2 1.842

2 1.987

3 1.851

3 1.909

Average 1.893

Std. Dev. 0.058



4 Helium Bubble Shape

Helium stored in platelets oriented
along (111) planes.

4 (111) planes in FCC, only observe 2
at a time in TEM.

Width — 1-2 nm.

Platelets v. Spheres

Surface Energy 2y
Ratio of = —

Strain Energy

> 0.1 Sphere
< 0.1 Platelet

ErT2 - 0.06
ZrT2 - 0.26

•

•

—108-112°

He: Er 0.074

40 nm

Theory work of Don Cowgill



5 Helium Bubble Spatial Distribution

Bubbles observed evenly distributed throughout film.

Grain Boundary decoration only when GB aligns along (111) plane

Bubbles observed around Er203 pieces.

Oxide Grain boundary with bubbles Grain boundary without bubbles



6 Helium Bubble Growth and Interactions I
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7 Helium Bubble Growth and Interactions II

Bubbles begin to link later in life.

Length stops growing, width begins to increase.

Becomes very difficult to even define what is a bubble.



8 Helium Bubble Transition Point
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9 Evidence for Bubble Growth Model
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10 Helium Bubble Pressure
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11 Helium Release

Early life helium storage —100%.

Critical release occurs at He:M —0.33
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12 Conclusions and Further Questions

At -0.33 He:M
"critical release"
then it dies

Nano-cracks

At 0.14 He:M growth mode
transitions from nano-crack
to dipole-expansion

Question: Is the self-
trapping mechanism
appropriate for
stoichiometric metal
tritides?
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