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| Outline

This talk represents some early work as part of a project to develop
a specification framework for mechanical shock.
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‘ The Current Framework is
One-Dimensional

Currently, we specify shocks with the shock response spectrum (SRS).

> Mean, variance, and tolerance limits are defined (per frequency) as a function of amplitude.
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The shock response spectrum is ill-equipped to describe transient motion.

° It contains no information about the duration and little information on the time-dependent
character of the event.

> More information is always required to specity a shock for laboratory testing.

One-dimension may not be sufficient




‘ Comparing Events

In order to define a mean, variance, ot tolerance limits
on an ensemble of events -- we need to define what it
means for one event to be different from another.
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A comparison method is proposed that can handle
differences across time and frequency.

It may be used to help define an appropriate
ensemble for statistical analysis.

The tools used to define that space include the
continuous wavelet transform and singular value
decomposition.
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l Continuous Wavelet Transform
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| The transform:
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The inverse (with admissibility criterion, C):
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C must be positive and finite for the inverse to exist.

Wavelet Magnitude

The magnitude of the transform

can be thought of as a
correlation between W and f.

Frequency (Hz)
30 25 20

40 35 !
45 Time (sec)




.| Continuous Wavelet Transform

Wavelet Magnitude
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m is the number of ‘frequencies’
n is the number of points in the time history




.| Singular Value Decomposition (SVD)

Y = ysyT

mxn mxm mxmn Nxn

[V]'

U contains the left singular vectors of A (eigenvectors of Y Y 1)
V contains the right singular vectors of A (eigenvectors of YTY)
S?are the eigenvalues, in rank-order

An approximation for Y can be made by only retaining singular values up to a
desired number (< m).




‘ Method B

Wavelet Transform Signals A and B

1.
() . Decompose with SVD
Yy Ly 3. Compute Cosine Angles for N desired
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number of singular values

4. Subtract the absolute value from 1 to
convert to a distance
5. Compute Euclidian distances between U
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T10 Be prepared to explain what this means, intuitively.
Tom, 10/16/2018



Numerical Example — -
! Direct Comparison ‘

Same frequency, different envelope

|Cosine|

U Matrix Correlation V Matrix Correlation
Distance: 0.53827 Distance: 1.0444

|Cosine|

0 2 4 6 0 2 4 6
Singular Value Rank Singular Value Rank

Natural Frequency (Hz)

| ’R

__ 05

C)

(=

£, i !\ A B

T TUAN

3

< o5 d u

) |
0 5 10 15 20
Time (sec)

10"
8
= s / M
: /
)
Lr)..
Q 10"
7
o /
£ 102 /
s
= /

1072 10™" 10° 10" 10?

Distance 1.05

The SRS gives you some indication
that these signals are different, but
little way to gauge by how much.




Numerical Example —
*" Model Parameters
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With a known model, permutate the comparison
signal and look for low distance values.

In this case, the sample signal was given by x,:

w

25 w(n) = 05(1 — cos (2m——),0 < n < 4095

2 x4(t) = ||w (e‘°'5t)|| sin(10¢t)
35 0<t<40.95

Cyclic Frequency
(o))

The comparison signal had the same form:
0.5

x4(t) = ||w (e || sin(ct)

Decay Rate 01 S d S 2
This method might be useful for 1<c<12

estimating parameters in a The heat map at left shows that the lowest distance
statistical model. (dark blue) is located at d = 0.5 and ¢ = 10.

This corresponds to high correlation for the sample
signal and the comparison signal for those
parameters.




‘ Conclusion

Wavelet decomposition with SVD has been used in multiple forms as a
method of feature extraction for various types of pattern recondition
analysis.

It has also been used to estimate modal parameters for aerospace
applications.

This method shows that it 1s possible to examine time and frequency
behavior in a quantifiable way.

However, a lot of work needs to be done to show that this method can be
used as basis for specification development.
> Robustness to noise has not been investigated

> Sensitivity of the method to different wavelets has only been examined in
a Cursory way.

° Estimation methods with an approximate inverse need to be developed [T14
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T14 Do you want to add a comment on random processes? Do so only if you think it is appropriate.
Tom, 10/16/2018



_| References

Rao, Raghuveer M., and Ajit S. Bopardikar. 1998. Wavelet transforms: introduction to
theory and applications. Reading, Mass: Addison-Wesley.

Fisher, Stephen D. 1999. Complex: variables. Mineola, N.Y.: Dover Publication

Murphy, Kevin P. 2012. Machine learning: a probabilistic perspective. Cambridge, MA:
MIT Press.

Brenner, Martin J. "Non-stationary dynamics data analysis with wavelet-SVD
filtering." Mechanical systems and signal processing 17, no. 4 (2003): 765-786

Hassanpour, Hamid, Mostefa Mesbah, and Boualem Boashash. "Time-frequency

feature extraction of newborn EEG seizure using SVD-based techniques."
EURASIP Journal on Applied Signal Processing 2004 (2004): 2544-2554..




13

Acceleration (G)

Acceleration (G)

Acceleration (G)

Acceleration (G)

Backup- Sample Data
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Hann window :
_ _ e
w(n) = 0.5(1 — cos (27r 4095),0 <n <4095
Baseline:
x,(t) = ||w (e7%2Y)||sin(5¢) ,0 < t < 40.95
Different Envelope
x2() = |lw (e=**9) I sin(5¢)

Time dependent frequency

x3(t) = ||w (e7%5)||sin(f (®) ), f(t) = 5—0.1¢

Different frequency
x4 (t) = ||w (e7%*H)|| sin(10t)

Sum

Xs(t) = x1 + x5 + X3+ x4
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‘ Example Decomposition
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Amplitude Difference

Approximation
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Reconstruction
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Point-Wise Reconstruction Error

Error, rms: 5.0789
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In this case, 6 singular values account

for 90% of the behavior.

The resulting approximation has a
point-wise error that peaks at 6%.
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Only a few singular values are needed for a reasonable approximation
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Backup- Singular Values

ia Singular Values First 20 Cumulative Summed Singular Values
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The number of singular values (consequently, the size of the feature space) will
depend on the relative complexity of the signal.
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Backup — Capturing Behavior

Single-Sided Amplitude Spectrum of X(t)
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The reconstruction (red) for the first singular value shows that it captures most of
the behavior of the original time history.

As opposed to a Fourier decomposition, it contains multiple frequencies.




