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Performance Portability Motivation

Xeon• Processor

Intel Multicore

Intel Manycore

NVIDIA GPU

AMD Multicore/APU

IBM Power

CAV11-11101

THUNDERX 
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• Several many/multi-core architectures central to DOE HPC
• Applications struggle to obtain good performance on all of these
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Performance Portability Motivation
• Example: Architecture Change NVIDIA Pascal to Volta

• Warps can arbitrarily, permanently diverge, and branches can now
interleave

• Took 2 man months to fix in Kokkos for just 3 code positions

• Without abstraction: —400 places in Trilinos (excluding Kokkos) would
need fixes

• Timeline for Architectures:

• In Bold: requires new approach for performance for the first time

2012

IBM BGQ (Sequoia, Mira)

NVIDIA Kepler (Titan)

2016

Intel KNL
(Trinity, Cori )

2018

NVIDIA Volta (Summit, Sierra)

ARM (Astra)

2021

Intel A21?

AMD GPU?

NVIDIA GPU?

1 Decade of HPC will have seen 4-5 "new" paradigm
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Performance Portability or Bust?
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• Optimistic estimate: 10% of application needs to get rewritten
for adoption of Shared Memory Parallel Programming Model

• Typical Apps: 300k — 600k Lines

• Uintah: 500k, QMCPack: 400k, LAMMPS: 600k; QuantumEspresso: 400k

• Typical App Port thus 2-3 Man-Years

• Sandia maintains a couple dozen of those

• Large Scientific Libraries

• E3SM: 1,000k Lines x 10% => 5 Man-Years

• Trilinos: 4,000k Lines x 10% => 20 Man-Years

Sandia alone: 50-80 Man Years

Convincing applications to support even one MPI+X
programming model challenging

CCCR



Kokkos Ecosystem for Performance Portability 14 Lsaaegnes

Kokkos

Tools

( Debugging )

Profiling

Tuning

Science and Engineering Applications

Trilinos

Kokkos EcoSystem

Kokkos Kernels

( Linear Algebra Kernels
( Graph

Kernels

 Kokkos Core
Parallel
Execution 

Parallel Data
Structures 

Kokkos
Support

( Documentation

Tutorials )

Bootcamps

App support )

1111114
11111 11M-

Multi-Core Many-Core APU CPU + GPU

Kokkos Core: parallel
patterns and data
structures, supports
several execution and
memory spaces

Kokkos Kernels:
performance portable
BLAS, sparse, and graph
algorithms and kernels

Kokkos Tools: debugging
and profiling support

Kokkos Ecosystem addresses complexity of supporting numerous
many/multi-core architectures that are central to DOE HPC enterprise



Why Kokkos?
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• Support multiple back-ends

• Pthread, OpenMP, CUDA, Intel TBB, Qthreads

• Work closely with hardware vendors

• Support multiple data layout options

• Column vs Row Major ; Device/CPU memory

• Support different parallelism

• Nested loop support; vector, threads, warps, etc.

• Task parallelism

• Growing Kokkos Support

• Community: ORNL, LANL, CSCS, Juelich, Slack Channel (80+ members)

• Kokkos abstractions migrating to C++ standard

Kokkos team eager to engage with new customers to
support new applications and architectures

1:CCR



DOE Kokkos Users

We don't actually know who all is using Kokkos. Partial ECP List:
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SNL ATDM Apps Base (SPARC, EMPIRE, Nimble,...) SNL ATDM PMR This is Kokkos ;-)

LANL ATDM Apps In Parts LANL ATDM PMR Experimenting

EXAALT Base Code KokkosSupport

SNL ATDM DevTools Base Code (in parts)QMCPack Evaluation

ExaWind Base Code ExaPapi Integrates KokkosTools

SNL ATDM Math Base CodeExaAM Experimenting

LatticeQCD Experimenting ForTrilinos Base Code

PEEKS Base CodeProxyApp Base Code (in parts)

Additionally:
Many ASC applications at Sandia are porting or
using Kokkos in their base code.
Many applications leverage Kokkos through
Trilinos framework's solvers.

COPA Base Code

ExaGraph Base Code (in parts)

ExaLearn Committed (in parts)

• Kokkos (originally SNL effort) becoming community-wide effort
• Kokkos has a growing DOE user base



Kokkos and Greater H PC Community
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• Many Institutions outside of DOE started experimenting with Kokkos or have

projects that are already committed

• Additional institutions leveraging Kokkos indirectly via Trilinos solvers



What is Kokkos?

• Templated C++ Library

• Goal: Write algorithms once, run everywhere (almost) optimally

• Serve as substrate layer of sparse matrix and vector kernels

• Kokkos::View() accommodates performance-aware
multidimensional array data objects

• Light-weight C++ class

• Parallelizing loops using C++ language standard

• Lambda, Functors

• Extensive support of atomics

• Substantial DOE investment

• ECP/ATDM software technology (Ecosystem -$3M/year)

• Many DOE ECP and ASC applications use Kokkos

Sandia
National
Laboratories
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Parallel Loops with Kokkos

To
-c
o
u)

w
o

o
S,

for (size t i = 0; i < N; ++i)

{
/* loop body */

}

#pragma omp parallel for

for (size t i = 0; i < N; ++i)

{
/* loop body */

}

parallel for (( N, [=], (const size t i)

{
/* loop body */

}); 
)

• Provide parallel loop operations using C++ language features

• Conceptually, the usage is no more difficult than OpenMP.
The annotations just go in different places.
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Array Access with Kokkos
Kokkos::View<double **, Layout, Space>

View<double **, Right, Host>

Row-major

Thread 0 reEd

Thread 1 reads

vow 
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View<double **, Left, CUDA>

Column-major

Thread 0 reads

Thread 1 reads

Contiguous reads per thread

0100000
P11111111111
IffiltigingII
IIIIIIIIIIII
HAKIMn
1111111,1111
U
"

111111111
" " " "

111111

Coalesced reads within w
a
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p
 
.
 



HPPDA and Kokkos
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HPC

PPC

HPDA

HPPDA

Large-Scale
Data Analytics

—
• Performance-Portable Computing (PPC) (Sandia: Kokkos)

• High-Performance Data Analytics (HPDA)

• Use HPC to do big data analytics faster

• High-Performance-Portable Data Analytics (HPPDA)

• Use PPC to enable H P DA on DOE platforms (Sandia: Kokkos)

Leverage significant DOE investment in performance portability
computing to impact large-scale data analytics

CCCR



Use Case 1: Grafiki
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• Formerly TriData — Trilinos for Large-Scale Data Analysis

• Leverages Trilinos Framework (Sandia National Labs)

High performance linear algebra, traditional focus on CSE

High performing eigensolvers, linear solvers

Scales to billions of matrix rows/vertices

• Vision: Sparse Linear Algebra-Based Data Analysis

• Apply sparse linear algebra techniques to data analysis

• Target: very large data problems

• Target: distributed memory and single node HPC architectures

• Additionally

• Vehicle for improving how Trilinos can be leveraged for data analytics
(e.g., submatrix extraction, preconditioning, load-balancing)

• Support GraphBLAS-like linear algebra analysis techniques

• Focus: Graph and Hypergraph Analysis

1:CCR



Grafiki Capabilities

• Eigen solver based capabilities
• Spectral Clustering, Vertex/Edge eigencentrality (graphs, hypergraphs)

• Supports several eigensolvers (through Trilinos): LOBPCG, TraceMin-

Davidson, Riemannian Trust Region, Block Krylov-Schur

• Linear solver based capability
• Mean hitting time analysis on graphs

• Support for different linear solvers (typically use CG) and preconditioners

• Other
• K-means++, metrics (conductance, modularity, jaccard index)

• Random graph and hypergraph models, hypothesis testing
techniques/infrastructure for evaluation of clustering software

Sandia
National
Laboratories

CCCR



Hypergraphs

Emails

1 2 3

Amy x

Bob x

Carl x x

Dan x x

Ed x

Relational Data

Graph

Bob

Amy Carl

Ed4'
Edges connect
2 vertices

• Generalization of graph

• Convenient representation of relational data

• Computation and storage advantages

Hypergraph

Bob

Hyperedges connect
1 or more vertices

Sandia
National
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Grafiki Approach

Grafiki

Distributed Memory (DM)

• Clusters, supercomputers

• Tpetra (MPI, DM data structures)

• Kokkos (node level parallelism)

Sandia
National
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Workstation

• CPUs, GPUs, KNLs,

• Kokkos

• MTGL

Goal: Write algorithms once, run on both types of architectures

CCCR



Grafiki Software Stack

Trilinos Solvers

Solver Adapters

Distributed memory computations

J

Sandia
National
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Multi-Core
J

Many-Core

4111111 mom

\JR-- DDR j

CPU +GPU

Portable on-node performance

Flexible solver adapters enable solution for both architectures

CCCR



Mean Hitting Time Results
MHT: Linear solver based analytic

Hitting Times: Speedup over IBM Power8 Serial

40.00

35.00

30.00

0_ 25.00
=
-o
w 20.00cu
o_
(r)

15.00

10.00

5.00

0.00

(Number of Edges)

• Tpetra Power8 1

• Tpetra Pascal DM Grafiki/Tpetra on GPU

YouTube Livalournall

(34 M)
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• Solver/Kokkos stack allows analytic to be written in
architecture agnostic manner - no architecture optimization

• GPU computation is up to 35x speedup over host serial



Grafiki Spectral Clustering Results

Spectral clustering: Eigensolver based analytic
Spectral Clustering: Speedup over Serial

50

45

40

15

10

•Tpetra Power8

•Tpetra GPU: Kepler

•Tpetra GPU: Pascal

DM Grafiki/Tpetra on GPU

20 core IBM Power 8

• Solver/Kokkos stack allows analytic to be written in
architecture agnostic manner

• GPU computation up to 45x speedup over host serial

Sandia
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Grafiki Centrality Results: Tpetra and MTGL

EV centrality: Eigensolver based analytic

90.00 
Eigenvector Centrality: Speedup vs. Serial 

80.00

70.00

60.00
o_
-g 50.00

a
a)

40.00
cr)

30.00

20.00

10.00

0.00

(Number of Edges)

20 core IBM Power 8

C o pa pe rs

Tpetra CPU (20 threads)

Tpetra GPU

MTGL GPU

MouseGene Livejournall

• Solver/Kokkos stack allows analytic to be written in
architecture agnostic manner

• GPU computation is up to 80x speedup over host serial

Sandia
National
Laboratories



Use Case 2: Scalable Tensor Factorizations

• Motivation: Count Data

• Network analysis

• Term-document analysis

• Email analysis

• Link prediction

• Web page analysis

• Large, Sparse Data

• Number of dimensions = 4, 5, 6, ...

• Example tensor size: 104 x 104 x 106 x 106 x 107

• Example densities: 10-8 to 10-16

• Targeting several multi/many-core architectures
• Intel CPU, Intel MIC, NVIDIA GPU, IBM Power 9, etc.

Sandia
National
Laboratories
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CP Tensor Decomposition

CANDECOMP/PARAFAC (CP) Model

cl
b1 )k2
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Model: M
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Xijk Mijk Ar air bjr Ckr
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CR "\

bR

J

• Express the important feature of data using a small number of
vector outer products

Hitchcock (1927), Harshman (1970), Carroll and Chang (1970)

7ZCCR



CP-ALS using Kokkos

140

120

100

z 80-0

CL
60

40

20

0

CP-ALS speedup over original, serial TTB

131.8

HSW CPU KNL K80 GPU P100 GPU

TTB-Kokkos Genten Genten-Perm
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POC: Eric Phipps (etphipp©sandia.gov)
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CP-ALS using Kokkos + Trilinos

• CP-ALS for huge sparse tensors in distributed memory

• 1.6TB tensor (82B nonzeros) on 4096 cores

Weak-Scaling Random 20M nz per Process

• CP-ALS time MTTKRP time20

18
o
ft; 16

15, 14

_Iv) 12

10

L) 8

ti 6

4

2

0

Sandia
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16 64 256 1024 4096

Number of Processes (One node = 16 Processes)

POC: Karen Devine (kddevin@sandia.gov)

1:CCR



Poisson for Sparse Count Data

Gaussian (typical)
The random variable x is a

continuous real-valued number.

x N (rn, a2)

exp( (x2721)2 )
P (X = x) =  

/ r o-2

0.8 —

0.6 —

,̀:c, 0.4 —
a

0.2 —

0.0 —

-4 -2 0
x

4

Poisson
The random variable x is a

discrete nonnegative integer.

x rd Poisson(m)

exp(-7-0mx
P (X = x) =  

x!

0.35 —

0.30 —

0.25 —

0.20 —

:f

cr 0.15 —

0.10 —

0.05 —

0.00

• m=1

• m=4

• m=10

0 5 10
k

15 20
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Sparse Poisson Tensor Factorization r7‘-' 
11 

Files

 b2

rNj Poisson

- al

Model: Poisson distribution (nonnegative factorization)

X ijk Poisson(mijk) where mijk

• Nonconvex problem!

Ar air

-aR

bjr Ckr

J

• Constrained minimization problem (decomposed vectors are non-negative)

• Alternating Poisson Regression (Chi and Kolda, 2011)
• Assume (d-1) factor matrices are known and solve for the remaining one

• Multiplicative Updates (CP-APR-MU) by Chi and Kolda (2011)
• Damped Newton and Quasi-Newton method for Row-subproblems
(CP-APR-PDNR) by Hansen, Plantenga and Kolda (2014)



Parallel CP-APR-MU

C U

CP-AP MU X, R;

2

a
4

7

9

10

1.1

12

13

14

15 U

p(X)

)]

x
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CP-APR-MU Performance Test

■ Strong Scalability
■ Problem size is fixed

■ Random Tensor
■ 3K x 4K x 5K, 10M nonzero entries
■ 100 outer iterations

■ Realistic Problems
■ Count Data (Non-negative)
■ Available at http://frostt.io/ 
■ 10 outer iterations

■ Double Precision

LBNL

NELL-2

NELL-1

Sandia
National
Laboratories

Dimensions Nonzeros Rank

2Kx 4Kx 2Kx 4Kx 866K

12K x 9K x 29K

3M x 2M x 25M

Delicious 500K x 17M x 3M x 1K

1.7M

77M

144M

140M

10

10

29
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CP-APR-MU on CPU (Random)

2000

1200

1000

800

600

400

200

0

I

CP-APR-MU method, 100 outer-iterations, (3000 x 4000 x
5000, 10M nonzero entries), R=100, 2 Haswell (14 core)
CPUs per node, MKL-11.3.3, HyperThreading disabled

1 2

F
cores

• Pi • Phi+ Update

l 1 M
24 26 28
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Results: CPAPR-MU Scalability

-1-

Random

LBNL

NELL-2

NELL-1

Delicious

Time(s)

1849*

39

1157

3365

4170

KNL
(Cache Mode)

68-core CPU

Speedup Time(s) Speedup

1 84 22.01

1 33 1.18

1 100 11.02

1 257 10.86

1 3463 1.41

NVIDIA
P100 GPU

Time(s)

44.76

2.99

47.17

Sandia
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NVIDIA
V100 GPU

Speedup Time(s)

41.31 30.05

13.04 2.09

24.52 28.80

100 outer iterations for the random problem
10 outer iterations for realistic problems

* Pre-Kokkos C++ code on 2 Haswell CPUs: 1-core, 2136 sec

Speedup

61.53

18.66

40.17



Parallel CP-APR-PDNR

lgorith 3-APR-PD

9
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13

CP-APR-PDNR
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Output: u
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s I, d
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1 (/4')/
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Use Case 3: Finding Triangles with Kokkos

Kernels for Node-Level Performance

• Kokkos

ica ions

• inos

KokkosKe

Multi-Core Many-Core

• Tools for performance portable node-level parallelism

• Manages data access patterns, execution spaces, memory spaces

• Performance portability not trivial for sparse matrix and graph algorithms

• Kokkos Kernels

• Layer of performance-portable kernels for high performance

• Sparse/Graph: SpMV, SpGEMM, triangle enumeration

DDR

CPU + GPU

Sandia
National
Laboratories

Kokkos Kernels for performance-portable sparse/graph kernels

CCCR



KokkosKernels and IEEE/DARPA Graph Challenge

KKTri

Sandia
National
Laboratories

F Linear Algebra Based 1
Triangle Counting

1114.ftimm-

KKMEM: KokkosKernels
Matrix-Matrix Multiply

* *
* *

*

c

SpGEMM
*
*
*

*

A

•
*

*

B

• 2017 IEEE/DARPA Graph Challenge Submission

• Wolf, Deveci, Berry, Hammond, Rajamanickam: "Fast Linear Algebra-

Based Triangle Counting with KokkosKernels."

• Triangle Counting Champion (focus: single node)

• Counted 34.8B triangles in 1.2B edge graph in 43 secs (Twitter2010)

Vision: Build software on top of highly optimized KokkosKernels
kernels (e.g., KKTri) to impact applications

CCCR



Linear Algebra-Based Triangle Counting

Matrix-matrix
multiplication /

wedge

• C(i,k) = # of wedges with endpoints i,k

Sandia
National
Laboratories

D=C.*L

Element-wise
multiplication

triangle?

• D(i,k) = # of triangles with vertices i,k
• Filters out wedges i-x-k when edge i,k
doesn't exist

• New linear algebra-based triangle counting method

• Uses lower triangle part of adjacency matrix, L

• Method: (L*L).*L)

• "Visits" each triangle/wedge once

• Once triangle is "visited," Kokkos functor used to count triangles
• Other operations can be performed on each triangle

Kokkos Functor enables "Visitor Pattern," which
can add more flexibility to linear algebra approach

CCCR



KKTri Speedup Relative to State of the Art

Comparison with Best Ligra Method (Shun, Tangwongsan, 2015)

u
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O. 3.00

cu 2.50
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V) 2.00

1.50

1.00

Synthetic graphs
Geomean: 1.2x

• ■ I ■ ■ I

"Real" graphs
Geomean: 2.0x
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Intel Haswell
32 cores
64 threads

0.50
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of2c.,

KKTri's linear algebra-based triangle counting outperforms
state-of-the-art graph-centric method
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Graph Challenge: Lessons Learned Wanes
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Triangle Counting Challenge Submissions
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KKTri

o Other submissions
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o
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Plot courtesy of Jeremy Kepner,
MIT Lincoln Laboratory

10
8 

10
9 

10
10

Size (Total Edges)
1011 1012

• Linear algebra approach
can be competitive

• Avoiding unnecessary
computation essential

• Data compression often
helps performance

• Visitor pattern can add
more flexibility to linear

algebra approach

Linear algebra-based KKTri as good as or better than
other state-of-the-art methods



GraphChallenge 2018

• Kokkos Kernels-based triangle counting KKTri-Cilk

• Replaced Kokkos/OpenMP with Cilk

• Demonstrated improved usage of hyperthreading

• Faster than Kokkos/OpenMP implementation on 63 of 78 instances

• Example of HPDA driving Kokkos development

• Focus on improving hyperthread usage; Cilk backend

• KKTri-Cilk surpasses 109 for the rate measure on a single
multicore node.

• KKTri-Cilk is also faster than state-of-the-art graph library-
based implementation on a single multicore node (up to 7x)

• 2017 IEEE/DARPA Graph Challenge Submission

Sandia
National
Laboratories
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Strong Scaling Experiments
Friendster

o KK-CILK

KK-OMP

TCM-CILK

TCM-OMP

20 40 60 80 100
Number of Threads

•—• KK-CILK

KK-OMP

TCM-CILK

*—* TCM-OMP

20 40
Number of Threads

60 80 100

100- —

80
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03 103
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0 10°

13)

UJ 
X 10
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UK-2005

KK-CILK

KK-OMP

TCM-CILK

TCM-OMP

•

 1, 
20 40 60 80 100
Number of Threads

KK-CILK

• o KK-OMP

TCM-CILK

TCM-OMP

20 40 60 80 100
Nurnber of Threads
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KKTri-Cilk scales the best in
both problems

uk-2005 graph has a very
good ordering: highly local

computations (best rate).

Friendster graph's
distribution is in between

(best scalability).

Scaling is with respect to the best sequential execution time.

Slide credit: Siva Rajamanickam



Relative Speedup Experiments
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Skylake Haswell KNL
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• Comparisons of KKTri-Cilk with TCM, a state-of-the-art graph library [Shun et al.]

• Relative speedup in 3 architectures compared to TCM

• KKTri outperforms TCM in 23 of 27 cases

• KKTri can achieve up to 7x speedup on graphs that have a good natural ordering

such as wb-edu, uk-2005, and uk-2007

Slide credit: Siva Rajamanickam



Summary
Single Algorithm,

Multiple Architectures

Algl I

Igorithm
eveloper

Limited
Productivity

Multiple Algorithms,
Single Architectures

Alg2

Algorith
  Develope

Alg4

Sandia
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Multiple Algorithms,
Multiple Architectures

Alg

Limited-time Performance
(HW becomes obsolete)

Good Balance of
Productivity, Performance

• Performance-Portable Kokkos enables productivity of algorithm
developer and performance on several architectures

• 3 Use Case: Grafiki, tensors, Kokkos Kernels triangle counting

CCCR



Conclusions

• Results show promise of Kokkos for HPDA

• Improvements to Kokkos (based on HPDA experience) will

yield additional performance improvements

• More work ahead

• Algorithms, optimized kernels, integration, architectures, ...

• Machine learning — ECP ExaLearn Co-Design Center

• Much software is available

• Kokkos: https://github.com/kokkos/kokkos

• Kokkos Kernels: https://github.com/kokkos/kokkos-kernels

• SparTen: https://gitlab.com/tensors/sparten

• GenTen: https://gitlab.com/tensors/genten

• Triangle Counting: https://github.com/Mantevo/miniTri

• Coming soon: Grafiki

Sandia
National
Laboratories
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Thank you

• Contact: mmwolf@sandia.gov
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Kokkos What about Alternatives?
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National
Laboratories

• RAJA: Closest thing to Kokkos (if you include CHAI and Umpire)

• More inward focused on LLNL apps

• Used to be a couple years behind in basic performance portability

capabilities: now in pretty good shape (lead of Coral2 procurement helped

with vendor attention)

• Nothing like KokkosKernels though.

• OpenMP 4.5: In Theory Vendor Supported

• We need at least OpenMP 5.0 to have a chance with our apps

• IBM Compiler is just about where we may have a chance to compile our

codes

• Compile time with IBM is atrocious though: —5 days for Trilinos + App just

for P9

• No support for virtual functions: required by ASC production apps

• NVIDIA doesn't provide an OpenMP 4.5 compiler

1:CCR



Vendor Collaborations

• AMD: Strong engagement on Kokkos backend for AMD GPUs

• AMD staff visited Sandia for multi day coding session

• Appended PathForward F2F meeting with extra day for Kokkos discussions

• NVIDIA: Collaboration on C++ Proposals and Early Evaluation of

NVSHMEM

• Working on C++ executors, making sure they are usable for HPC

• Implemented NVSHMEM backend for Kokkos Remote Memory Spaces

• ARM: Preparation for ARM HPC deployments

• Helping to stabilize the software stack, find issues with compilers etc.

• ARM developers participated in UK Kokkos training

• Intel: Working on ECP PathForward Architecture Backend for Kokkos

Sandia
National
Laboratories
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HPPDA and Kokkos
■ Performance-Portable Computing (PPC)

• Sandia: Kokkos

■ High-Performance Data Analytics
(HPDA)
• Use HPC to do big data analytics faster

• Apply DOE HPC investment to analytics

■ High-Performance-Portable Data
Analytics (HPPDA)
• Use PPC to enable HPDA on DOE platfor

• Kokkos is key to Sandia work

■ Strategically plan PPC/HPPDA
• Consider HPPDA an "app", represent on

Kokkos-core

• Create feedback between HPC/PPC and
HPDA

• Kokkos improvements yield better
performing HPDA applications

Sandia
National
Laboratories

)Large-sca
Data analyti s

HPC Hardware, techniques

techniques

HP

Techniq -s
Deep Lear ,ing
Graphs
Tensors
Architectures
ManyCore, GPU
FPGA,TPU

Image credit: Jon Berry
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Hypergraphs

Amy

Bob

Carl

Ed 
Dan

Edges connect
2 vertices

G(V, E)

Hypergraph

Hyperedges connect
1 or more vertices G(V, H)

• Generalization of graph

• Hyperedges represent multiway relationships between vertices

• Hyperedge — set of 1 or more vertices

• Key feature: hyperedges can connect more than 2 vertices

Sandia
National
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L

Why Hypergraphs?

Emails

1 2 3

Amy ; x

Bob x

Carl x x

Dan x x

Ed x

Relational Data

Graph

Bob

Amy Carl

Ed

Hypergraph

Bob

• Convenient representation of relational data

• E.g., Each email represented by hyperedge (a subset of users)

• Multiway relationships can be represented nonambiguously

• Computation and storage advantages

Sandia
National
Laboratories
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Incidence Matrices

1 1
1

1 1

1

1

Hypergraph incidence matrix

1 1 1 1

1

1 ' 1 1 1

1 1 1

1 1 1

Graph Incidence matrix

■ Compute with hypergraph incidence matrices when possible
■ Relational data is often stored as hypergraph incidence matrix*

■ Avoids costly SpGEMM operation for building adjacency matrices

■ Dynamic data: easier to update incidence matrices than adjacency matrices

■ Trilinos solver operators make this easy

■ Hypergraphs require significantly less storage space and fewer
operations than graphs generated using clique expansion

Sandia
National
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*Kepner, Jeremy, et al. "Dynamic distributed dimensional data model (D4M) database and computation system." Acoustics, Speech and Signal
Processing (ICASSP), 2012 IEEE lnternational Conference on. IEEE, 2012.



TriData Mean Hitting Time (MHT) Results
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(Number ot Edges)

Number of Iterations

com-Youtube
(2.9 M)

■ MHT

■ Precond. MHT

■ Norm. MHT

com-LiveJournal com-Orkut
(34.7 M) (117 M`

MHT for largest connected component
Original graphs from: snap.stanford.edu
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( Figure is U)

Preconditioning and normalization greatly improves convergence
(up to 50x reduction in number of iterations)
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Use Case 2: Scalable Tensor Factorizations

• Motivation: Count Data

• Network analysis

• Term-document analysis

• Email analysis

• Link prediction

• Web page analysis

• Large, Sparse Data

• Number of dimensions = 4, 5, 6, ...

• Example tensor size: 104 x 104 x 106 x 106 x 107

• Example densities: 10-8 to 10-16

• Targeting several multi/many-core architectures
• Intel CPU, Intel MIC, NVIDIA GPU, IBM Power 9, etc.

Sandia
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CP Tensor Decomposition

CANDECOMP/PARAFAC (CP) Model

cl
b1 )k2

_E

al

Model: M
r

b7

ai;

A, ar 0 br 0 cr

Xijk Mijk Ar air bjr Ckr

gr=% Sandra
National
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CR "\

bR

J

• Express the important feature of data using a small number of
vector outer products

Hitchcock (1927), Harshman (1970), Carroll and Chang (1970)
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Poisson for Sparse Count Data

Gaussian (typical)
The random variable x is a

continuous real-valued number.

x N (rn, a2)

exp( (x2721)2 )
P (X = x) =  

/ r o-2

0.8 —

0.6 —

,̀:c, 0.4 —
a

0.2 —

0.0 —

-4 -2 0
x

4

Poisson
The random variable x is a

discrete nonnegative integer.

x rd Poisson(m)

exp(-7-0mx
P (X = x) =  

x!

0.35 —

0.30 —

0.25 —

0.20 —

:f

cr 0.15 —

0.10 —

0.05 —

0.00

• m=1

• m=4

• m=10

0 5 10
k

15 20
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Sparse Poisson Tensor Factorization

^/ Poisson

al

 b2

a9

Model: Poisson distribution (nonnegative factorization)

AR

Xijk Poisson(miik) where Tilijk - A,. ai,. bp.

• Nonconvex problem!
• Assume R is given

• Minimization problem with constraints
• The decomposed vectors must be non-negative

• Alternating Poisson Regression (Chi and Kolda, 2011)
• Assume (d-1) factor matrices are known and solve for the remaining one

bR

aR

Sandia
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J

Ckr
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Alternating Poisson Regression (CP-APR
Sandia
National
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Repeat until converged...

1. arg min Inijk — Xijk log rnijk s.t. M =
A>o 

ijk

2. A eTA, A A • diag(1/A)

3. n arg min
11>n

ijk

Mijk — Xijk log rnijk s.t. M =

4. A eTB, B B • diag(1/A)

5. 0 arg min
0>o— zjk

ar 0 br 0 Cr
r

ar Br cr
r

ijk Xijk log miik s.t. M = ar 0 br 0 er

6. A <— eTC, C C • diag(1/A)

Fix B,C;
solve for A

Piy A ,— c'!•,. — - - 
solve for B

1 Fix A,B;
solve for C

Convergence
Theory 

Theorem: The CP-APR algorithm will converge to a constrained
stationary point if the subproblems are strictly convex and solved
exactly at each iteration. (Chi and Kolda, 2011)

CCCR



CP-APR
thm
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4

0 A (

X /2 x d the

1) ) A0t))

f (A( ))

Minimization problem is expressed as:

minx o (A ) )

77;ZCCR 6 0



CP-APR NLaSaiodiol ries

1: CPA R, A

R (X

Output:
2

3

4

d the

4
12 major approaches
• Multiplicative Updates by Chi and Kolda (2011)
• Damped Newton and Quasi-Newton method
for Row-subproblems by Hansen, Plantenga
and Kolda (2014)

CCCR



Key Elements of MU and PDNR methods

Multiplicative Update (MU)

• Key computations
• Khatri-Rao Product

• Key features
• Factor matrix is

updated all at once

Sandia
National
Laboratories

Projected Damped Newton
for Row-subproblems (PDNR) 

• Key computations
• Khatri-Rao Product 11
• Constrained Non-linear

Newton-based
optimization for each
row

• Key features
• Factor matrix can be

updated by rows

• Exploits the convexity of
row-subproblems

CCCR



CP-APR-MU
A 1: CP-APR- U, u ill

CP-AP U (X, M);
N-

2

3

4

7

9

10

11

12

:14 U

n 1, ,N do
B 4— (A( ) 57)A is u
Let 11(') = (AW) 0 A0'14) 0 A("°-1) 0 . Amy'
,

0( ) (x(.0 0 ma,011( ) 0)01( ))
B 4—B* ( )

0

eTB

) BA-3
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CP-APR-PDNR
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Algorithm 1: CPAPR-PDNR algorithm

i CPAPRYDNR (X, .A4),
Input : Sparse N-mode Tensor X of size /1 x /2 x IN and the

number of components R
Output: Kruskal Tensor .A4 = [À, A(1) ... A(N)]

2 Initialize
3 repeat
4 for  n = 1, , N do

5 (n) 
(A(N) 0 0 A(n+1) A(n-1) ® A(1)7

6 for i = 1,  , In do 

7 (Tind bCri) s.t. min frow(bi(n), Xi(n), II(n))
\- b n) >z s_

8

9

10

end

= eTB(n) where B(n) = [bj_n) . . . b n

A(n) B(n)A-11 where A = diag(A)

11 end

12 until all m,ode subproblems converged;

Key Computations

CCCR 64



Parallel CP-APR-MU

A : CP-APR li

It. CP-AP MU X,

4

5

65

7

9

10

1.1

12

15

;;

B074

liu
put: Kr

fo ‘1,

put

e T44 11

f.,0 101 II ;41 I :1

X of x /2 x

A; AM A(N)]

n = I, ,N do
4— it- (M,n) a in

M distribute0d,n) (Scale the el
ren) computeNM, COO)
f = 1, ,10 do

ii0a) 4_ put ,0 1 i )

At—1 4— 41) 4414

M normaisseW, A, n)

until ail mode v

t

1,

Ii411 11.:I41 III

1, 4
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Parallel CP-APR-PDNR

lgorith

9
10
11
12

CP-APR-PDN
Input W S

DU
Output: Kru

( 1 t

Utrii t tit(

n = 1 ,N do
+- distri utet (S

1104 computePi(A,
NNN 

 en))
tititi

1 2

tzu

kl_for I, • do

' I I '

tr)

veP NHL 7.14,

h X 12 X .1N IN an the

A A )
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Performance Test

N Strong Scalability
• Problem size is fixed

N Random Tensor
• 3K x 4K x 5K, 10M nonzero entries
• 100 outer iterations

N Realistic Problems
• Count Data (Non-negative)
• Available at http://frostt.io/ 
• 10 outer iterations

N Double Precision

LBNL

NELL-2

NELL-1

Delicious

Sandia
National
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Dimensions I Nonzeros Rank

2Kx 4Kx 2Kx 4Kx 866K

12K x 9K x 29K

3M x 2M x 25M

1.7M

77M

144M

10

500K x 17M x 3M x 1K 140M 10
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CPAPR-MU on CPU (Random)

2000

1200

1000

800

600

400

200

0

I

CP-APR-MU method, 100 outer-iterations, (3000 x 4000 x
5000, 10M nonzero entries), R=100, 2 Haswell (14 core)
CPUs per node, MKL-11.3.3, HyperThreading disabled

1 2

F
cores

• Pi • Phi+ Update

l 1 M
24 26 28
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Results: CPAPR-MU Scalability

-1-

Random

LBNL

NELL-2

NELL-1

Delicious

Time(s)

1849*

39

1157

3365

4170

KNL
(Cache Mode)

68-core CPU

Speedup Time(s) Speedup

1 84 22.01

1 33 1.18

1 100 11.02

1 257 10.86

1 3463 1.41

NVIDIA
P100 GPU

Time(s)

44.76

2.99

47.17

Sandia
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NVIDIA
V100 GPU

Speedup Time(s)

41.31 30.05

13.04 2.09

24.52 28.80

100 outer iterations for the random problem
10 outer iterations for realistic problems

* Pre-Kokkos C++ code on 2 Haswell CPUs: 1-core, 2136 sec

Speedup

61.53

18.66

40.17



CPAPR-PDNR on CPU(Random)

2500

2000

-0

o
(-) 1500

(/)

E 1000

500

0

CpAPR-PDNR method, 100 outer-iterations, 1831221 inner
iterations total, (3000 x 4000 x 5000, 10M nonzero entries), R=10,
2 Haswell (14 core) CPUs per node, OpenBLAS, LAPACK-3.7.0,

HyperThreading disabled

1

• Pi • RowSub
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1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

cores

CCCR



Results: CPAPR-PDNR Scalability

Random

LBNL

NELL-2

NELL-1

Delicious

Sandia
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Haswell CPU
cor

2 Haswell CPUs
14 cores

2 Haswell CPUs
28 core

Time(s) Speedup Time(s) Speedup Time(s)

238 1 23.7 10.03 14.6

1049 1 187 2.35 191

5378

17212

28053

1 326

1 4241

1 3684

6.63

4.05

5.15

100 outer iterations for the random problem
10 outer iterations for realistic problems
* Pre-Kokkos C++ code spends 3270 sec on 1 core

319

3974

3138

Speedup

16.28

2.30

6.77

4.33

6.05
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CP-ALS using Kokkos

140

120

100

z 80-0

CL
60

40

20

0

CP-ALS speedup over original, serial TTB

131.8

HSW CPU KNL K80 GPU P100 GPU

TTB-Kokkos Genten Genten-Perm
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POC: Eric Phipps (etphipp©sandia.gov)

CCCR



CP-ALS using Kokkos + Trilinos

• CP-ALS for huge sparse tensors in distributed memory

• 1.6TB tensor (82B nonzeros) on 4096 MPI processes

Weak-Scaling Random 20M nz per Process

• CP-ALS time MTTKRP time20

18
o
ft; 16

15, 14

_Iv) 12

10

L) 8

ti 6

4

2

0
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16 64 256 1024 4096

Number of Processes (One node = 16 Processes)

POC: Karen Devine (kddevin@sandia.gov)
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GC 2: Matrix Compression

row

Column Indices

2 3 6 8 321 322 323 325 327 Compression

0 10

332 174
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Column set indices

Local column ids

■ Compression used to improve performance

■ Encodes columns using fewer integers

■ Reduces number of operations and memory required in symbolic phase

■ Allows "vectorized" bitwise union/intersection of different rows

■ Effectiveness of compression varies greatly with data

■ Large random graphs compress poorly (R-Mat <1% compression storage)

■ However, still helpful for many random graphs (e.g., power-law) —
effective for dense rows (improves load balance, operation count)

Compression consistently improves triangle counting performance



GC 3: Visitor Pattern

• KKMEM based triangle counting supports visitor pattern

• Concept fundamental to BGL and MTGL

• Functor passed to triangle identification function, which
allows method to be run once triangle is found

• For triangle counting: triangleCount++;

• Flexibility allows for more complex analysis of triangles, miniTri

Sandia
National
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Visitor pattern support provides additional flexibility to analysts

BGL = Boost Graph Library, MTGL = MultiThreaded Graph Library



Summary
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• Overview of Kokkos Ecosystem for Performance Portability

• Parallel patterns, data structures to support performant parallel
computing on many/multi-core nodes

• Goal: Write algorithms once, run everywhere (almost) optimally

• Core to increasing number of DOE HPC/ECP applications

• Potential to greatly impact High Performance Data Analytics (HPDA)

• Two examples of Kokkos impacting HPDA

• Grafiki — linear algebra based graph/hypergraph analysis

• Scalable tensor analysis (SparTen, GenTen)

• Kokkos enabled fair performance on GPUs/CPUs; improvements needed

• Example of highly optimized Kokkos-based graph analysis kernel

• Triangle counting/enumeration KKTri (using Kokkos Kernels)
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