This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2018- 12353C

A S § » s
¥ Y/ 1/ '
. #
i .‘- .
=g -
: = -
; R
NN ".‘
1
.

ngh Performance Portable Data Analytics
Software Using the Kokkos Ecosystem

— kokkos Michael Wolf
= CLSAC 2018 (November 1, 2018)

U.8. DEPARTMENT OF VU YA =)
@ E"ERGY .v‘ & Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly

ANt Sty Attt owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2018-

Acknowledgements) B,

= Kokkos (slides from Christian Trott, Siva Rajamanickam)

= Grafiki (previously TriData)

= MW, Danny Dunlavy, Rich Lehoucq, Jon Berry, Nathan Ellingwood,
Daniel Bourgeois (Rice)

= Tensor Work (slides from Dunlavy’s TRICAP talk)

= Data Analytics: Danny Dunlavy, Keita Teranishi, Rich Lehoucq, Richard
Barrett, Tammy Kolda, Chris Forster (NVIDIA), Karen Devine

= Related Work: Eric Phipps, Siva Rajamanickam
= Kokkos Kernels for Graph/Data Analytics

= Siva Rajamanickam (Pl), MW, Mehmet Deveci (Intel), Jon Berry,
Abdurrahman Yassar (GT), Umit Catalyurek (GT)

Performance Portability Motivation @&

Intel Multicore

Intel Manycore AMD Multicore/APU

« Several many/multi-core architectures central to DOE HPC
« Applications struggle to obtain good performance on all of these

Performance Portability Motivation @&.

= Example: Architecture Change NVIDIA Pascal to Volta

= Warps can arbitrarily, permanently diverge, and branches can now
interleave

= Took 2 man months to fix in Kokkos for just 3 code positions

= Without abstraction: ~400 places in Trilinos (excluding Kokkos) would
need fixes

= Timeline for Architectures:

= |n Bold: requires new approach for performance for the first time

2012 2016 2018 2021
?
IBM BGQ (Sequoia, Mira) Intel KN NVIDIA Volta (Summit, Sierra) "ol A212
Trinity, Cori ?
NVIDIA Kepler (Titan) (Trinity, Cori) AMD GPU?

S NVIDIA GPU?

1 Decade of HPC will have seen 4-5 “new” paradigms!

Performance Portability or Bust? W&

10 LOC / hour ~ 20k LOC / year

= Optimistic estimate: 10% of application needs to get rewritten
for adoption of Shared Memory Parallel Programming Model

= Typical Apps: 300k — 600k Lines
= Uintah: 500k, QMCPack: 400k, LAMMPS: 600k; QuantumEspresso: 400k

= Typical App Port thus 2-3 Man-Years
= Sandia maintains a couple dozen of those

= Large Scientific Libraries
= E3SM: 1,000k Lines x 10% =>5 Man-Years
= Trilinos: 4,000k Lines x 10% => 20 Man-Years

Sandia alone: 50-80 Man Years

Convincing applications to support even one MPI+X
programming model challenging

Kokkos Ecosystem for Performance Portability

th

(& N\
Science and Engineering Applications - \\
Kokkos Kokkos
Tools Trilinos Support
Documentation |
Kokkos EcoSystem
Debugging Kokkos Kernels donia’s
Profiling Linear Algebra Kernels Gf@—l;q Bootcamps
TRty Kokkos Core ST enor
Parallel Parallel Data
Execution Structures _ JJ
v L 4
Q ;/ J) \ @ J
Multi-Core Many-Co APU CPU + GPU

Kokkos Core: parallel
patterns and data
structures, supports
several execution and
memory spaces

Kokkos Kernels:
performance portable
BLAS, sparse, and graph
algorithms and kernels

Kokkos Tools: debugging
and profiling support

Kokkos Ecosystem addresses complexity of supporting numerous
many/multi-core architectures that are central to DOE HPC enterprise

#CCR

Why Kokkos? UL

= Support multiple back-ends
= Pthread, OpenMP, CUDA, Intel TBB, Qthreads
= Work closely with hardware vendors

= Support multiple data layout options

= Column vs Row Major ; Device/CPU memory

= Support different parallelism
= Nested loop support; vector, threads, warps, etc.
= Task parallelism

= Growing Kokkos Support

= Community: ORNL, LANL, CSCS, Juelich, Slack Channel (80+ members)
= Kokkos abstractions migrating to C++ standard

Kokkos team eager to engage with new customers to
support new applications and architectures

DOE Kokkos Users

7| Netora

We don’t actually know who all is using Kokkos. Partial ECP List:

Application ___[State [l Software Technology [State

SNLATDM Apps Base (SPARC, EMPIRE, Nimble,...)
LANL ATDM Apps In Parts

EXAALT Base Code
QMCPack Evaluation

ExaWind Base Code

ExaAM Experimenting
LatticeQCD Experimenting
ProxyApp Base Code (in parts)
COPA Base Code
ExaGraph Base Code (in parts)
ExalLearn Committed (in parts)

SNL ATDM PMR This is Kokkos ;-)
LANL ATDM PMR Experimenting
KokkosSupport

SNL ATDM DevTools Base Code (in parts)
ExaPapi Integrates KokkosTools
SNL ATDM Math Base Code

ForTrilinos Base Code

PEEKS Base Code
Additionally:

« Many ASC applications at Sandia are porting or
using Kokkos in their base code.

* Many applications leverage Kokkos through
Trilinos framework’s solvers.

« Kokkos (originally SNL effort) becoming community-wide effort
 Kokkos has a growing DOE user base

Kokkos and Greater HPC Community @&,

Max-Planck-Institut
OF UTAH
‘ \ AMD
ARL U.S.NAVAL
ESEARC

University of LABORATORY
i BRISTOL . S
. A) JULICH A ApM
T FORSCHUNGSZENTRUM
<& CSCS

EH UNIVERSITY OF S ® s acacso st
¢¥ CAMBRIDGE

= Many Institutions outside of DOE started experimenting with Kokkos or have
projects that are already committed

= Additional institutions leveraging Kokkos indirectly via Trilinos solvers

What is Kokkos? ==

= Templated C++ Library
= Goal: Write algorithms once, run everywhere (almost) optimally
= Serve as substrate layer of sparse matrix and vector kernels

= Kokkos::View() accommodates performance-aware
multidimensional array data objects
= Light-weight C++ class
= Parallelizing loops using C++ language standard

= |Lambda, Functors

= Extensive support of atomics

= Substantial DOE investment

= ECP/ATDM software technology (Ecosystem ~$3M/year)
= Many DOE ECP and ASC applications use Kokkos

Parallel Loops with Kokkos UL

for (size & i = 02 i < Iz 4+i)

©
g {
$ /* loop body */
}
o #pragma omp parallel for
S for (size t i = 0; i < N; ++1i)
C { -
o
Q /* loop body */
@
}
5 parallel for ((N, [=], (const size t 1)
1> {
= /* loop body */
X e

" Provide parallel loop operations using C++ language features

= Conceptually, the usage is no more difficult than OpenMP.
The annotations just go in different places.

#CCR

= National
Array Access with Kokkos Luf— =
Kokkos: :View<double **, Layout, Space>
View<double **, Right, Host> View<double **, Left, CUDA>
Row-major Column-major
Thread 0 reads Thread 0 reqds

Thread 1 reads Thread 1 reads

=N
=

diem UIYlIM SpeaJ padsa|eo)

g
o
L7
.
=

NG P
HH N
HH N i
A A AR R
EEENE

ol
M
W
1
il
ik
H
<

EEEEE NS
EEEEEN =

[

Contiguous reads per thread

Sandia

HPPDA a okkos e

= Performance-Portable Computing (PPC) (Sandia: Kokkos)
= High-Performance Data Analytics (HPDA)
= Use HPC to do big data analytics faster
= High-Performance-Portable Data Analytics (HPPDA)
= Use PPCto enable HPDA on DOE platforms (Sandia: Kokkos)

Leverage significant DOE investment in performance portability
computing to impact large-scale data analytics

Use Case 1: Grafiki i)

= Formerly TriData — Trilinos for Large-Scale Data Analysis
= Leverages Trilinos Framework (Sandia National Labs)
= High performance linear algebra, traditional focus on CSE
= High performing eigensolvers, linear solvers
= Scales to billions of matrix rows/vertices
= Vision: Sparse Linear Algebra-Based Data Analysis
= Apply sparse linear algebra techniques to data analysis
= Target: very large data problems
= Target: distributed memory and single node HPC architectures

= Additionally

= Vehicle for improving how Trilinos can be leveraged for data analytics
(e.g., submatrix extraction, preconditioning, load-balancing)

= Support GraphBLAS-like linear algebra analysis techniques
= Focus: Graph and Hypergraph Analysis

#CCR

Grafiki Capabilities =R

= Eigen solver based capabilities
= Spectral Clustering, Vertex/Edge eigencentrality (graphs, hypergraphs)
= Supports several eigensolvers (through Trilinos): LOBPCG, TraceMin-
Davidson, Riemannian Trust Region, Block Krylov-Schur
= Linear solver based capability
= Mean hitting time analysis on graphs
= Support for different linear solvers (typically use CG) and preconditioners

= QOther

= K-means++, metrics (conductance, modularity, jaccard index)

= Random graph and hypergraph models, hypothesis testing
techniques/infrastructure for evaluation of clustering software

Hypergraphs UL

Ermails Graph Hypergraph
Bob Q Bob

Carl
s
)
n
-

4 Dan
_ Edges connect
Relational Data 2 vertices Hyperedges connect

1 or more vertices
= Generalization of graph
= Convenient representation of relational data
= Computation and storage advantages

#CCR

Grafiki Approach UL

Grafiki

Distributed Memory (DM) Workstation
= Clusters, supercomputers = CPUs, GPUs, KNLs, ...
= Tpetra (MPIl, DM data structures) = Kokkos
= Kokkos (node level parallelism) = MTGL

Goal: Write algorithms once, run on both types of architectures

Grafiki Software Stack) e,

Grafiki

Trilinos Solvers

Multi-Core Many-Core CPU+GPU

Distributed memory computations Portable on-node performance

Flexible solver adapters enable solution for both architectures

Mean Hitting Time Results

MHT: Linear solver based analyti

C

Hitting Times: Speedup over IBM Power8 Serial
40.00
|
3500 Tpetra Power8 —
o 25.00
>
©
© 20.00
Q
“ 15.00
10.00
0.00
YouTube LiveJournall
(Number of Edges) (2 M) (34 M)

« Solver/[Kokkos stack allows analytic to be written in

architecture agnostic

manner — no architecture optimization

 GPU computation is up to 35x speedup over host serial

Grafiki Spectral Clustering Results @&

Spectral clustering: Eigensolver based analytic
Spectral Clustering: Speedup over Serial

50

DM Grafiki/Tpetra on GPU

45 B Tpetra Power8

B Tpetra GPU: Kepler
40
M Tpetra GPU: Pascal
35
30
= 20 core IBM Power 8
2 25
Q.
(%]
20
15
: I
—]

Flicker Copapers Livelournall

(2]

« Solver/[Kokkos stack allows analytic to be written in
architecture agnostic manner
 GPU computation up to 45x speedup over host serial

Grafiki Centrality Results: Tpetra and MTGL ([@)E=.

EV centrality: Eigensolver based analytic

Eigenvector Centrality: Speedup vs. Serial

90.00
B Tpetra CPU (20 threads)
80.00 = Tpetra GPU
— 20 core IBM Power 8 petra
' B MTGL GPU
60.00
S
5 50.00
Q
8 40.00
(V]
30.00
20.00
10,00 l l
0.00
Copapers MouseGene LiveJournall
(Number of Edges) (15 M) (14 M) (43 M)

« Solver/Kokkos stack allows analytic to be written in
architecture agnostic manner
« GPU computation is up to 80x speedup over host serial

Use Case 2: Scalable Tensor Factorizations ()&=,

= Motivation: Count Data
= Network analysis
= Term-document analysis
= Email analysis
= Link prediction
= Web page analysis
= Large, Sparse Data
= Number of dimensions =4, 5, 6, ...
= Example tensor size: 10* x 10* x 10° x 108 x 10’

= Example densities: 108 to 101

= Targeting several multi/many-core architectures
= |ntel CPU, Intel MIC, NVIDIA GPU, IBM Power 9, etc.

CP Tensor Decomposition)

CANDECOMP/PARAFAC (CP) Model

Ci1 Co CRr
(VAR S VAR WARN

+ +o ot

=
2

\ - al - a9 “aAR J

MOdeIM = Z)\r Ay Ob'r O Cp

Tijk = Mijk = E Ar Qip Ogp Chop

r

= Express the important feature of data using a small number of

vector outer products
Hitchcock (1927), Harshman (1970), Carroll and Chang (1970)

"=) Sandia
‘0% || National
s Laboratories

CP-ALS using Kokkos

CP-ALS speedup over original, serial TTB
140 131.8

120

100

00
o

(*))
o

x-Speedup

20

HSW CPU KNL K80 GPU P100 GPU

TTB-Kokkos Genten Genten-Perm
POC: Eric Phipps (etphipp@sandia.gov)

CP-ALS using Kokkos + Trilinos .

= CP-ALS for huge sparse tensors in distributed memory
= 1.6TB tensor (82B nonzeros) on 4096 cores

Weak-Scaling Random 20M nz per Process

20 B CP-ALStime B MTTKRP time

c 18
O
E 16
Q14
v 12
<
a 10
O 8
2 6
()]
g4
= 2

0

1024 4096

Number of Processes (One node = 16 Processes)

POC: Karen Devine (kddevin@sandia.gov)

Poisson for Sparse Count Data

Gaussian (typical) Poisson
The random variable x is a The random variable x is a
continuous real-valued number. discrete nonnegative integer.
x ~ N(m,o?) x ~ Poisson(m)
(w_m)z i
expl— exp(—m)m
P(X =) = 2P 5or) P(X = z) = 2P ')
V21?2 X!
. !‘ = m=0,0°=0.2
° 7 — m=0,0?=1
— m=0,0°=5

—_— = m=-20°=05

04 —

0.0 —

Sparse Poisson Tensor Factorization

C1 Co CRr
[/\1_/ b)\2_/ b)\R_/ bR\

~ Poisson -+ s v

y _a | a, lan

Model: Poisson distribution (nonnegative factorization)
x;jr ~ Poisson(m;;r) where m;;, = Z Ap Gir Djp Cpp

= Nonconvex problem! "

= Constrained minimization problem (decomposed vectors are non-negative)

= Alternating Poisson Regression (Chi and Kolda, 2011)
= Assume (d-1) factor matrices are known and solve for the remaining one

« Multiplicative Updates (CP-APR-MU) by Chi and Kolda (2011)
« Damped Newton and Quasi-Newton method for Row-subproblems

(CP-APR-PDNR) by Hansen, Plantenga and Kolda (2014)

#CCR

Parallel CP-APR-MU) S,

Algorithm 1: CP-APR-MU in source

1 CP-APR-MU X, M R;
Input)

: ode Tensor X of size Iy x Is x ...Iy and the
number of mmpmmm R
@Mpma Kmm Tensor M = [X; AV ... AN
mitial :;1;'::* R})

3 é’ — cmmmmﬂt@ﬁmﬁl@xMap(X}

6 , en ' 7ZeT08
T M(—d]sl:nbute(Mn) (ScaletheelementsofA"by)\)
8 1 0 oomputePl(M £®)
9 for i=1,...,10 do
10 ” @(’m} sutePhi
" Ag;) - (n)q,'gn)
12
13
14

15

CP-APR-MU Performance Test) =

= Strong Scalability
= Problem size is fixed
= Random Tensor
= 3K x 4K x 5K, 10M nonzero entries
= 100 outer iterations
= Realistic Problems
= Count Data (Non-negative)
= Available at http://frostt.io/
= 10 outer iterations

= Double Precision

LBNL 2K x 4K x 2K x 4K x 866K 1.7M
NELL-2 12K x 9K x 29K 7TM 10
NELL-1 3M x 2M x 25M 144M 10

Delicious 500K x 17M x 3M x 1K 140M 10

CP-APR-MU on CPU (Random) .

CP-APR-MU method, 100 outer-iterations, (3000 x 4000 x
5000, 10M nonzero entries), R=100, 2 Haswell (14 core)
CPUs per node, MKL-11.3.3, HyperThreading disabled

2000
1800

1600
mPi mPhi+ Update

—_
N
o
o

RN
N
o
o

time (seconds)

o

800
600
400
) I I AN
1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

cores

o

Results: CPAPR-MU Scalability UL

CPU (Caﬁym';de) NVIDIA NVIDIA
1-core 68-core CPU P100 GPU V100 GPU

Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup

Random 1849* 1 84 22.01 4476 41.31 30.05 61.53
LBNL 39 1 33 1.18 2.99 13.04 2.09 18.66
NELL-2 1157 1 100 11.02 4717 2452 28.80 40.17
NELL-1 3365 1 257 10.86

Delicious 4170 1 3463 1.41

100 outer iterations for the random problem

10 outer iterations for realistic problems
* Pre-Kokkos C++ code on 2 Haswell CPUs: 1-core, 2136 sec

Parallel CP-APR-PDNR B,

Algorithm 1: CP-APR-PDNR. in source

1 CP-APR-PDNR X, M, R;
Input Sp@m@ N-m@d@ Tensor X of size Iy X Iy x ...Ix and the
=[x Am A@m

5: | fm n=1,...,N do
6 ‘ ::H hﬂt@(M ’ ﬂ) ':{ ycal
7 II(™ ¢« computePi(4, £™)
)
9

e the elements of A™ by A)

parallel fori=1,...,1I, do

| ar W%@mpmmmagz X 1, £™)
10 end
11 M < normalize(M, A, n) i
12 end }
13 until all mode subproblems converged;

Use Case 3: Finding Triangles with Kokkos gz
Kernels for Node-Level Performance

~ Applications
B -

Tri Io's
| Koa;kkos;;'Kevrnels |
s Kokkos o
=B /| * |
= Kokkos MG Ml | AR CPU + GPU

= Tools for performance portable node-level parallelism

= Manages data access patterns, execution spaces, memory spaces

= Performance portability not trivial for sparse matrix and graph algorithms
= Kokkos Kernels

= Layer of performance-portable kernels for high performance
= Sparse/Graph: SpMV, SpGEMM, triangle enumeration

Kokkos Kernels for performance-portable sparse/graph kernels

KokkosKernels and IEEE/DARPA Graph Challenge @ =

KKTri
—
Linear Algebra Based KKMEM: KokkosKernels
Triangle Counting Matrix-Matrix Multiply
L C A B iy

= 2017 IEEE/DARPA Graph Challenge Submission

= Wolf, Deveci, Berry, Hammond, Rajamanickam: “Fast Linear Algebra-
Based Triangle Counting with KokkosKernels.”

= Triangle Counting Champion (focus: single node)
= Counted 34.8B triangles in 1.2B edge graph in 43 secs (Twitter2010)

Vision: Build software on top of highly optimized KokkosKernels
kernels (e.g., KKTri) to impact applications

Linear Algebra-Based Triangle Counting @z

Matrix-matrix
multiplication

Element-wise
multiplication

triangle?

wedge

* D(i,k) = # of triangles with vertices i,k
* Filters out wedges i-x-k when edge i,k
doesn’t exist

» C(i,k) = # of wedges with endpoints i,k

= New linear algebra-based triangle counting method
= Uses lower triangle part of adjacency matrix, L
= Method: (L*L).*L)
= “Visits” each triangle/wedge once
= Once triangle is “visited,” Kokkos functor used to count triangles

= Other operations can be performed on each triangle

Kokkos Functor enables “Visitor Pattern,” which
can add more flexibility to linear algebra approach

KKTri Speedup Relative to State of the Art [Ez.

Comparison with Best Ligra Method (Shun, Tangwongsan, 2015)

450

L "Real” graphs Intel Haswell
Geomean: 2.0x 32 cores

64 threads
o 3.00 -
% ,., Synthetic glmahs
] Geomean: 1.2x
v 2.00 :
=y |
1.00 I I I B - = I

0.50

D O A A AV A AR O QY AL > O O O &L
Q'\' Q\' 0'\/ Q'\« Q"’ Q'\/ Q'\r 0} QQ 6%@6,,’\&0&&@@ ’Q’b ’\90 "90 "9'\ 89\.0
Q {" x\b R < L& &
be er tb,Q IbQ IbQ IbQ IbQ ra,Q ;Q' o ‘9 Q\ @fb QNN 43\ 3
O R O O A A S S <
<)

)

KKTri’s linear algebra-based triangle counting outperforms
state-of-the-art graph-centric method

Graph Challenge: Lessons Learned @&

Triangle Counting Challenge Submissions

109 ! T I T T T
O]
o : Lessons Learned
T .8l O | .
g 10 q ' | ™ Linear algebra approach
§ [' 5 O] can be competitive
107 L O E &
g o = Avoiding unnecessary
o & computation essential
o 10 O E .
= i | = Data compression often
© 10 o] helps performance
(o} E
E— _ | | = Visitor pattern can add
§ 04 L | more flexibility to linear
" | o Other submissions | piot courtesy of Jeremy Kepner, algebra approach
5 I MIT Lincoln Laboratory T
10 L coov el Y G I O L | paal L Lol L ool L L
195 10’ 108 10° pg 2 10" 1ok

Size (Total Edges)

Linear algebra-based KKTri as good as or better than
other state-of-the-art methods

GraphChallenge 2018 &,

= Kokkos Kernels-based triangle counting KKTri-Cilk
= Replaced Kokkos/OpenMP with Cilk
= Demonstrated improved usage of hyperthreading
= Faster than Kokkos/OpenMP implementation on 63 of 78 instances

= Example of HPDA driving Kokkos development
= Focus on improving hyperthread usage; Cilk backend
= KKTri-Cilk surpasses 10° for the rate measure on a single
multicore node.

= KKTri-Cilk is also faster than state-of-the-art graph library-
based implementation on a single multicore node (up to 7x)

= 2017 IEEE/DARPA Graph Challenge Submission

Execution Time (s) (log scale)

Friendster
10
e KK-CILK
80 'm m KK-OMP
TCM-CILK/o

20 40 60 80 100
Number of Threads

KK-CILK
3 KK-OMP
+ TCM-CILK
TCM-OMP

— ;\\\?} =

e ﬁ

20 40 60 80 100
Number of Threads

Speedup

Execution Time (s) (log scale)

Strong Scaling Experiments

UK-2005
10
e KK-CILK
80 |m m KK-OMP
-~ TCM-CILK
60 w « TCM-OMP
40
e
20 e ==

0] e e |
Number of Threads
10°
e o KK-CILK
102 | KK-OMP
w\‘ =+ TCM-CILK
101;\\ *—* TCM-OMP
.
;. N R
i .—7,””,,,,, SIS
10° —
10"

0 20 40 60 80 100

Number of Threads

KKTri-Cilk scales the best in
both problems

uk-2005 graph has a very
good ordering: highly local
computations (best rate).

Friendster graph’s
distribution is in between
(best scalability).

Scaling is with respect to the best sequential execution time.

Slide credit: Siva Rajamanickam

Relative Speedup Experiments) .

co

I Skylake [Haswell B KNL

)] ~

9]

Relative Speedup
w B~

N

=

o

scal8
scal9
Skttr

= Comparisons of KKTri-Cilk with TCM, a state-of-the-art graph library [Shun et al.]
= Relative speedup in 3 architectures compared to TCM
= KKTri outperforms TCM in 23 of 27 cases

= KKTri can achieve up to 7x speedup on graphs that have a good natural ordering
such as wb-edu, uk-2005, and uk-2007

Slide credit: Siva Rajamanickam

Summary .

Single Algorithm, Multiple Algorithms, Multiple Algorithms,
 Multiple Architectures Single Architectures Multiple Architectures

Limited-time Performance Good Balance of
(HW becomes obsolete) Productivity, Performance

« Performance-Portable Kokkos enables productivity of algorithm
developer and performance on several architectures
« 3 Use Case: Grafiki, tensors, Kokkos Kernels triangle counting

Conclusions

= Results show promise of Kokkos for HPDA

= |mprovements to Kokkos (based on HPDA experience) will
vield additional performance improvements

= More work ahead
= Algorithms, optimized kernels, integration, architectures, ...

Machine learning — ECP ExaLearn Co-Design Center

= Much software is available

Kokkos: https://github.com/kokkos/kokkos

Kokkos Kernels: https://github.com/kokkos/kokkos-kernels
SparTen: https://gitlab.com/tensors/sparten

GenTen: https://gitlab.com/tensors/genten

Triangle Counting: https://github.com/Mantevo/miniTri

Coming soon: Grafiki

Thank you

= Contact: mmwolf@sandia.gov

Sandia

Extra e

Kokkos =

Kokkos — What about Alternatives? @&
= RAJA: Closest thing to Kokkos (if you include CHAI and Umpire)

More inward focused on LLNL apps

Used to be a couple years behind in basic performance portability
capabilities: now in pretty good shape (lead of Coral2 procurement helped
with vendor attention)

Nothing like KokkosKernels though.

= OpenMP 4.5: In Theory Vendor Supported

We need at least OpenMP 5.0 to have a chance with our apps

IBM Compiler is just about where we may have a chance to compile our
codes

Compile time with IBM is atrocious though: ~5 days for Trilinos + App just
for P9

No support for virtual functions: required by ASC production apps
NVIDIA doesn’t provide an OpenMP 4.5 compiler

Vendor Collaborations) e,

= AMD: Strong engagement on Kokkos backend for AMD GPUs
= AMD staff visited Sandia for multi day coding session
= Appended PathForward F2F meeting with extra day for Kokkos discussions

= NVIDIA: Collaboration on C++ Proposals and Early Evaluation of
NVSHMEM

= Working on C++ executors, making sure they are usable for HPC

= |mplemented NVSHMEM backend for Kokkos Remote Memory Spaces
= ARM: Preparation for ARM HPC deployments

= Helping to stabilize the software stack, find issues with compilers etc.

= ARM developers participated in UK Kokkos training
= Intel: Working on ECP PathForward Architecture Backend for Kokkos

HPPDA and Kokkos) =

= Performance-Portable Computing (PPC)
= Sandia: Kokkos Large-sode

= High-Performance Data Analytics Data analytigs
(HPDA) HPC Hardwarel techniques

= Use HPC to do big data analytics faster techniques
= Apply DOE HPC investment to analytics

= High-Performance-Portable Data
Analytics (HPPDA)
= Use PPC to enable HPDA on DOE platforms
= Kokkos is key to Sandia work

= Strategically plan PPC/HPPDA

= Consider HPPDA an “app”, represent on
Kokkos-core

= Create feedback between HPC/PPC and
HPDA

= Kokkos improvements yield better
performing HPDA applications

Tensors
Architectures
ManyCore, GPU
FPGA,TPU

Image credit: Jon Berry

Grafiki

Hypergraphs

Amy

Ed

Carl

Dan
Edges connect

2 vertices G(V, E)

= Generalization of graph

= Hyperedges represent multiway relationships between vertices

Hyperedges connect
1 or more vertices

G(V, H)

= Hyperedge — set of 1 or more vertices

= Key feature: hyperedges can connect more than 2 vertices

Why Hypergraphs? UL

Graph Hypergraph
Bob

Emails
Q Bob

Users

Ed

Relational Data

= Convenient representation of relational data

= E.g., Each email represented by hyperedge (a subset of users)
= Multiway relationships can be represented nonambiguously
= Computation and storage advantages

#CCR

Incidence Matrices L

1 1 1 1111 1
1 1
1 1 11 1 111
1 1 1 1 1 1 1
1 1 11 1 1 11 1
Hypergraph incidence matrix Graph Incidence matrix

= Compute with hypergraph incidence matrices when possible
= Relational data is often stored as hypergraph incidence matrix*
= Avoids costly Sp GEMM operation for building adjacency matrices
= Dynamic data: easier to update incidence matrices than adjacency matrices

= Trilinos solver operators make this easy

= Hypergraphs require significantly less storage space and fewer
operations than graphs generated using clique expansion

TriData Mean Hitting Time (MHT) Results =

Number of lterations

100000 T
® Precond. MHT
10000 = Norm. MHT
(%]
c
Q
E 1000
2
g 1
o)
(%)
) I I
1 F. . U
com-Youtube com-LiveJournal com-Orkut (Figureis U)
(Number of Edges) (2.9 M) (34.7 M) (117 M)

MHT for largest connected component
Original graphs from: snap.stanford.edu

Preconditioning and normalization greatly improves convergence
(up to 50x reduction in number of iterations)

Tensors

Use Case 2: Scalable Tensor Factorizations ()&=,

= Motivation: Count Data
= Network analysis
= Term-document analysis
= Email analysis
= Link prediction
= Web page analysis
= Large, Sparse Data
= Number of dimensions =4, 5, 6, ...
= Example tensor size: 10* x 10* x 10° x 108 x 10’

= Example densities: 108 to 101

= Targeting several multi/many-core architectures
= |ntel CPU, Intel MIC, NVIDIA GPU, IBM Power 9, etc.

CP Tensor Decomposition)

CANDECOMP/PARAFAC (CP) Model

Ci1 Co CRr
(VAR S VAR WARN

+ +o ot

=
2

\ - al - a9 “aAR J

MOdeIM = Z)\r Ay Ob'r O Cp

Tijk = Mijk = E Ar Qip Ogp Chop

r

= Express the important feature of data using a small number of

vector outer products
Hitchcock (1927), Harshman (1970), Carroll and Chang (1970)

Poisson for Sparse Count Data

Gaussian (typical) Poisson
The random variable x is a The random variable x is a
continuous real-valued number. discrete nonnegative integer.
x ~ N(m,o?) x ~ Poisson(m)
(w_m)z i
expl— exp(—m)m
P(X =) = 2P 5or) P(X = z) = 2P ')
V21?2 X!
. !‘ = m=0,0°=0.2
° 7 — m=0,0?=1
— m=0,0°=5

—_— = m=-20°=05

04 —

0.0 —

Sparse Poisson Tensor Factorization @&

C1 C2 CR
[Al/ bi A by Ard pR\

| ~ Poisson -+ SRl o

x |
y L L L

Model: Poisson distribution (nonnegative factorization)
z;jk ~ Poisson(m;;r) where m;;i = Z Ay Qi Ui Gl

T

= Nonconvex problem!
= Assume R is given

= Minimization problem with constraints
= The decomposed vectors must be non-negative

= Alternating Poisson Regression (Chi and Kolda, 2011)
= Assume (d-1) factor matrices are known and solve for the remaining one

#CCR

Alternating Poisson Regression (CP-APR)

Repeat until converged...

1. A + argmin m Tiiklogm,ie s.t. M = a, o b, oc, .
gA>OZ ijk — Lijk 108 M5k Z r Fix B,C,

’L]k‘ =
_ _ solve for A
2. A< eTA; A « A -diag(1/)

3. B « argmin m Tiiklogm,ie s.t. M = a,ob,oc
ngoZ ik T gk R0 ik Z : Fix A,C;

gk =
_ _ solve for B
4. XA+ e'B; B + B -diag(1/\)
5. C < argmin Y mgr — ik logmgi s.t. M = a, o by o€, _
C>O%; ’ ’ ’ Z Fix A,B;
solve for C

6. A< eTC; C « C-diag(1/))

(5]

Theorem: The CP-APR algorithm will converge to a constrained
stationary point if the subproblems are strictly convex and solved
exactly at each iteration. (Chi and Kolda, 2011)

Theory

U Convergence

#CCR

CP-APR L

ﬁm}%‘“

£ w m

Minimization problem is expressed as:

min g g f{A™) = eT [A™IT™ — X, * log(A

#CCR

CP-APR B

hmpwt : Sparse | ize I X I, x ... In and the

nber @f -:faw R

M= [AD . A®)

ATV — X () * log[AV

Key Elements of MU and PDNR methods'® =

T Projected Damped Newton
Multiplicative Update (MU) for Row-subproblems (PDNR)
= Key computations " Key computations
P PR
= Khatri-Rao Product [T{® = Khatri-Rao Product [I(™)

= Constrained Non-linear
Newton-based
optimization for each

row
= Key features = Key features
= Factor matrix is = Factor matrix can be
updated all at once updated by rows

= Exploits the convexity of
row-subproblems

CP-APR-MU .

Algorithm 1: CP-APR-MU, Multipli
1 CP-APR-MU (X, M

]
Input : 8 I?i*..:&.%l rse N-mode Tensor X of size

cative Upndate

Iy xIs x ... Iy and t

-k

mmmme

ﬁwm~ﬁ ., N do
B+ gﬁ.@m} + S}A QS is used to remove inad OTOs
Let I® = (AM @...0 A*t) g A@W@ ®.. Am)T
fori=1,...,10 do
&) ¢ (X(n) @ max(BI™, &)) ()T
B+ Bx o

© ® 9T s BN

11 ::EB

Sandia
CP-APR-PDNR .)]-=
Algorithm 1: CPAPR-PDNR algorithm

1 CPAPR _PDNR (X, M);

Input : Sparse N-mode Tensor X of size I; X Iy X ... Iy and the
number of components R

Output: Kruskal Tensor M = [A\; A .. AN)]

Initialize

repeat

forn=1,...,N do

9 A =T B where B(") = [bgn) by
10 A« BMA~L where A = diag(\)
11 end Key Computations

12 until all mode subproblems converged;

Parallel CP-APR-MU) e

.. Iy and the

- | - o
M(——d]sl;nbube(Mn)(ScaletheelmnenjsofA“by,\)
8 ™ « compuicPi(lM,)
9 for i=1,...,10 do

@Eﬁm} + computePhi
u || AR
12 end

Parallel CP-APR-PDNR B,

Algorithm 1: CP-

1 CP-APR-PDNR X, M, R;

Input : .. Iy and the

5

6 ¢ ‘ huﬁe(M ,n) (Scale t ents of A™ by A)
7 (™) compul;ePi(A £

8 parallel fori=1,...,1I, do

9

a® WS@WWBNR(@?Q x= 1, ()

wde sub pro blems m@a‘rgﬁiﬁg

Performance Test

= Strong Scalability
= Problem size is fixed

= Random Tensor
= 3K x 4K x 5K, 10M nonzero entries
= 100 outer iterations
= Realistic Problems
= Count Data (Non-negative)
= Available at http://frostt.io/
= 10 outer iterations

= Double Precision

LBNL 2K x 4K x 2K x 4K x 866K 1.7M
NELL-2 12K x 9K x 29K 7TM 10
NELL-1 3M x 2M x 25M 144M 10

Delicious 500K x 17M x 3M x 1K 140M 10

CPAPR-MU on CPU (Random) .

CP-APR-MU method, 100 outer-iterations, (3000 x 4000 x
5000, 10M nonzero entries), R=100, 2 Haswell (14 core)
CPUs per node, MKL-11.3.3, HyperThreading disabled

2000
1800

1600
mPi mPhi+ Update

—_
N
o
o

RN
N
o
o

time (seconds)

o

800
600
400
) I I AN
1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

cores

o

Results: CPAPR-MU Scalability UL

CPU (Caﬁym';de) NVIDIA NVIDIA
1-core 68-core CPU P100 GPU V100 GPU

Time(s) Speedup Time(s) Speedup Time(s) Speedup Time(s) Speedup

Random 1849* 1 84 22.01 4476 41.31 30.05 61.53
LBNL 39 1 33 1.18 2.99 13.04 2.09 18.66
NELL-2 1157 1 100 11.02 4717 2452 28.80 40.17
NELL-1 3365 1 257 10.86

Delicious 4170 1 3463 1.41

100 outer iterations for the random problem

10 outer iterations for realistic problems
* Pre-Kokkos C++ code on 2 Haswell CPUs: 1-core, 2136 sec

CPAPR-PDNR on CPU(Random) .

CpAPR-PDNR method, 100 outer-iterations, 1831221 inner
iterations total, (3000 x 4000 x 5000, 10M nonzero entries), R=10,
2 Haswell (14 core) CPUs per node, OpenBLAS, LAPACK-3.7.0,

HyperThreading disabled

2500

~— 2000

m Pi ® RowSub

time (seconds

-_—
o
o
o

500

O IIIII..IIIIII-
1T 2 4 66 8 10 12 14 16 18 20 22 24 26 28

cores

Results: CPAPR-PDNR Scalability) s,

Haswell CPU | 2 Haswell CPUs 2 Haswell CPUs
1 core 14 cores 28 cores

Time(s) Speedup Time(s) Speedup Time(s) Speedup
Random 238 1 23.7 10.03 14.6 16.28
LBNL 1049 1 187 2.35 191 2.30
NELL-2 5378 1 326 6.63 319 6.77
NELL-1 17212 1 4241 4.05 3974 4.33
Delicious 28053 1 3684 5.15 3138 6.05

100 outer iterations for the random problem

10 outer iterations for realistic problems
* Pre-Kokkos C++ code spends 3270 sec on 1 core

"=) Sandia
‘0% || National
s Laboratories

CP-ALS using Kokkos

CP-ALS speedup over original, serial TTB
140 131.8

120

100

00
o

(*))
o

x-Speedup

20

HSW CPU KNL K80 GPU P100 GPU

TTB-Kokkos Genten Genten-Perm
POC: Eric Phipps (etphipp@sandia.gov)

CP-ALS using Kokkos + Trilinos .

= CP-ALS for huge sparse tensors in distributed memory
= 1.6TB tensor (82B nonzeros) on 4096 MPI processes

Weak-Scaling Random 20M nz per Process

20 B CP-ALStime B MTTKRP time

c 18
O
E 16
Q14
v 12
<
a 10
O 8
2 6
()]
g4
= 2

0

1024 4096

Number of Processes (One node = 16 Processes)

POC: Karen Devine (kddevin@sandia.gov)

Graph Challenge

GC 2: Matrix Compression UL

Column Indices o | 10 | Column set indices
row | 2 | 3 | 6 | 8 [321]322(323|325|327 Compression

332|174 | Local column ids

= Compression used to improve performance
= Encodes columns using fewer integers
= Reduces number of operations and memory required in symbolic phase
= Allows "vectorized” bitwise union/intersection of different rows

= Effectiveness of compression varies greatly with data
= Large random graphs compress poorly (R-Mat <1% compression storage)

= However, still helpful for many random graphs (e.g., power-law) —
effective for dense rows (improves load balance, operation count)

Compression consistently improves triangle counting performance

#CCR

GC 3: Visitor Pattern ==

= KKMEM based triangle counting supports visitor pattern
= Concept fundamental to BGL and MTGL
= Functor passed to triangle identification function, which
allows method to be run once triangle is found

= For triangle counting: triangleCount++;
= Flexibility allows for more complex analysis of triangles, miniTri

Visitor pattern support provides additional flexibility to analysts

#CCR

Summary

= Qverview of Kokkos Ecosystem for Performance Portability

= Parallel patterns, data structures to support performant parallel
computing on many/multi-core nodes

" Goal: Write algorithms once, run everywhere (almost) optimally
= Core to increasing number of DOE HPC/ECP applications
= Potential to greatly impact High Performance Data Analytics (HPDA)

= Two examples of Kokkos impacting HPDA

= Grafiki — linear algebra based graph/hypergraph analysis

= Scalable tensor analysis (SparTen, GenTen)

= Kokkos enabled fair performance on GPUs/CPUs; improvements needed
= Example of highly optimized Kokkos-based graph analysis kernel

" Triangle counting/enumeration KKTri (using Kokkos Kernels)

