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Tensor = Multi-way Array
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National
Laboratories

Vector

Size: 3

1

2 

Matrix

Size: 3 X 4
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X
  x(2 3)

3-way Tensor

Size: 3 X 4 X 3
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x

x(2, 3, 1, 2)
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aamph Ir@rnacr tam Chmadaty
Source: Bro, R, Muki-way Analysis in the Food Industry. Models, Algorithms,
and Applications. 1998. Ph.D. Thesis, University of Amsterdam. Download from
"amino acids" at http://www.models.life.ku.dk/nwavdatal.
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Emission Fluorescence Spectroscopy for Single
Sample Creates a Matrix of Measurements
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Goal: Figure out what's in

a given set of chemical

samples
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Emission Fluorescence Spectroscopy for
Multiple Samples Creates a 3-way Tensor
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Goal: Figure out what's in
a given set of chemical

samples

...

J

Bro, PhD Thesis, 1998.

3-way Tensor

Size: 5 x 201 x 61

5 samples

201 emissions

61 excitations
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aannip[1@ Ir@rnacr tam H@uroochrn©@
Source: Wiiiiams, et ai. Unsupervised Discovery of Demixed, Low-dimensional
Neural Dynamics across Multiple Timescales through Tensor Components
Analysis. Neuron, 2018. https://doi.org/10.1016/Lneuron.2018.05.015 
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Activity of Single Neuron Measured Over
Time Produces Vector Data
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Thanks to Schnitzer Group @ Stanford

Mark Schnitzer, Fori Wang, Tony Kim

Microscope by

lnscopix

mouse

in maze

neural activity via

calcium imaging

Williams et al., Neuron, 2018

111 time bins
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Multiple Neurons Measured Over Time
Produces Matrix
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Thanks to Schnitzer Group @ Stanford

Mark Schnitzer, Fori Wang, Tony Kim

Microscope by

Inscopix

C

mouse

in "maze" neural activity

Williams et al., Neuron, 2018

282 neurons x 111 time bins
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Multiple Trials Produces 3-way Tensor
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Trial 50 Trial 150 Trial 250

282 neurons x 111 time bins x 300 trials

• •

•
• •

•

A..

300 Trials over 5 Days
, •

  Start West

. . 0  Conditions Swap Twice•
• • . • • • -•!*

4k a
South

+ Turn North

+ Turn South

Williams et al., Neuron, 2018
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lasEnrioll@ fr©r tcm Scpcisli Odom@
Source: Opsahl and Panzarasa, Clustering in weighted networks. Social Networks, 2009,

• , http://doi.org/10.1016/j.socnet.2009.02.002 and

4,...:. https://toreopsahl.com/datasets/#online social network 
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Chat Network is a Matrix

One Day of Interactions

..,26

128 134

19 22

35

21
I11

15 8

Opsahl and Panzarasa, Social Networks, 2009

Sandia
National
Laboratodes

Sparse Matrix (200 x 200)

• •

• ••

•

• •

•

•

•

do • *

•

•

• •

•
•

•

•

•

1 if i sent message to j
x(i, j) =

0 otherwise

10/29/2018 Kolda - RED Lecture @ NCSU 13



Time-Evolving Chat Network is a Tensor
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•
•
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• 0' • ••

•

• 3-way binary tensor
Sender (200)

Receiver (200)

Day (195)

• 9,764 nonzeros
(very sparse, 0.1%)

1 if i messages j on day k
X "k =

0 otherwise

Hong, Kolda, Duersch, arXiv, 2018
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Tensor Decomposition: A Mathematical Tool
for Analysis of Tensor Data
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National
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Express the tensor as th
sum of meaningful parts,
which is the starting
point for data analysis
activities

Mathematics play a role in....
• Defining the error metric
• Developing efficient algorithms

Includes visualization,
clustering, filling in
missing entries, etc.

Related Concepts
for Matrices

• Singular value
decomposition (SVD)

• Principal component
analysis (PCA) — Tipping
& Bishop, 1999

• Independent component
analysis (ICA)

• Nonnegative matrix
factorization (NMF)

• Sparse matrix
factorization

• Matrix completion

Kolda - RED Lecture @ NCSU



Break Tensor into Understandable Parts...
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Data Tensor
Trixrtxp

M

Model Tensor
mxnxp mxnxp mxnxp

+

Key: The parts have structure!

mxnxp

10/29/2018 Kolda - RED Lecture @ NCSU 17
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Rank-1 Tensors are the "Parts" Laboratories

Given three vectors:

a E b E Rn, E RP

The outer product is

aoboc E RT"n"

mnp data

Simpler
Pa rt

L__ _Jr'

irnxnxp

••
•

m+n+ p data

a

ci

pijk = ai bj ck

b

10/29/2018 Kolda - RED Lecture @ NCSU 18



CANDECOMP/PARAFAC (CP) Tensor
Factorization Uncovers the Rank-1 Parts
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Oata Zow-Rad Noid

/
x =

_ al

r

-,--311= YX ac,ob,ocŒ =
a=1

+

a,

A, B, C

Factop, /
Na6-/me

Hitchcock, 1927; Carroll and Chang, 1970; Harshman, 1970

b2
 1

m

 1 br

 i
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ionalIn Chemistry, Tensor Decomposition Discovers •i•
Make-up of Samples Laboratories

Goal: Figure out what's in
a given set of chemical

samples

1 .•

• Fluorescence
measurements of samples
containing 3 amino acids

Tryptophan

Tyrosine

Phenylalanine

Bro, PhD Thesis, 1998.

3-way Tensor

Size: 5 x 201 x 61

5 samples

201 emissions

61 excitations
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Each Component is One Row of Visualization
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1

Sample

1
Emission

x

emission
a2

Excitation

ar

Bro, PhD Thesis, 1998.
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First Column is all the "a" Vectors
Sample Emission

7  
,

1 2 3 4 5

emission

100 150 200

Excitation

e I'

20 40 60
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Rank-3 Tensor Decomposition Shows Sample
of Each Amino Acid in Each Sample
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1
1
1
1
1

1
1

1
1

1 1
1
1

Emission

_..,/, 1 1 

LA.' 2%3. 0 4%.50 0

4

Excitation

,

,
50 100 150 200 0 20

.
40 60

Tryptophan

Tyrosine

Phenylalanine

Using multiple samples makes this problem easier
to solve than using a single sample!

Bro, PhD Thesis, 1998.

W- - N1-- -11-4-A--11-k
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Formulate CP Tensor Decomposition
as an Optimization Problem
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Oata Zow-Ra I Node/

M

mxnxp
—

C1

bi

al

 b2  br

+ + • • • +

a2

n X r
71,

o o cc, — 11A, B,
1

mxr pxr

ar

\9
Optimization Problem: M11114 — J1111 = LdVijk rnijk)

I I tlp rql Ar 9 ‘—` 

3

Kolda & Bader, SIREV, 2009
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Rewriting Things in Terms of Matrices!
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Unfolding tensor into a matrix reorganizes the entries

1 :/
mxnxp

1->

(really wide matrix)

m x np

X(i) = m x np matrix, (i,j,k) 1—> (i,j + (n — 1)k)

X(2) = n x mp matrix, (i,j,k) 1—> (j,i + (m — 1)k)

X(3) = p x mn matrix, (i,j,k) 1—> (k,i + (m — 1)j)

Unfolded model can be written as matrix multiply

M
1-> A

mxnxp m x r

1_ (C c), Bir ____

r x np

C Q B is the "Khatri-Rao" product, a matrix of size
np x r where entry (j + (n — 1)k, r) is bjrCkr

Kolda & Bader, SIREV, 2009

M(1) = A(C Q B)T

M(2) = B(C Q A)T

M(3) = C(B Q A)T

10/29/2018 Kolda - RED Lecture @ NCSU



Computing the Gradient of the Optimization
Problem using Unfoldings
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min F(A, B, C) - IX — M112 subject to AI = L[A, B, CII

Rewrite in terms of the mode-1 unfolding...

F(A, B, C) = -. 11X(1) — M(1) PF with M(i) = A(C ® B)T

Calculate the derivative using the chain rule...

oF ,
OA = 0((i) 

M(1)) 3 (X(i) — MO)) 
OA

= (X(i) — A4(1))(C 0 B) Ele/mentwise Product

= X(1) (C CI B) — A(CTC * BTB)
--.--

mxnp npxr mxr rxr

•
.

( OF
. ,:i = X(i) (C CD B) — A(CTC * BTB) 1
°II

• • • •

The worst
is over!

• • • • . • =MOWN,.

\ . .

A) — B(CTC * ATA) l

A) — C(BTB * ATA) I

. . . . . _ . /.
Acar, Dunlavy, Kolda, J. Chem., 2011
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Two Options for Optimization:
Alternating or Direct
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min F(A, B, C) — IX — M112 subject to AI = L[A, B, CII

. .
1 

gik-,: = X(1) (C O B) — A(CTC * BTB) i

I gi/E; = X(2)(C ® A) — B(CTC * ATA) :

i03CF = X(3) (B O A) — C(BTB * ATA) I

.

1 • • • • • • • • • • •

Advantages:
• Can use any optimization method!
• Easy to handle missing data

Option 1: Alternating Least Squares

Repeat until convergence...

X(1)

B X(2) (C A)(CTC * ATA)-1

C X(3) (B 0 A)(BTB * ATA)
-1

TC * T —1

Option 2: Direct Optimization

Advantages:
• Convex subproblems
• Guaranteed

decrease at each
step

Repeat until convergence...

[A, B, C] [A, B, C] — a[03AF , g BF , 33 CF ]

Acar, Dunlavy, Kolda, J. Chem., 2011
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In Neuroscience, Tensor Decomposition
Uncovers Patterns in Neuron Activity
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Trial 50 Trial 150 Trial 250

282 neurons x 111 time bins x 300 trials

•

• • • • •

•  

•  

•  

• •

• • • •

• •

. .

• • •

•

•
•

300 Trials over 5 Days
, •. Start West. 

. . 0. Conditions Swap Twice•
❖ TilArrirtit h

4k. a N.
+ Turn North

+ Turn South

• • • • •

Williams et al., Neuron, 2018
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Example Neuron Activity
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Thin lines

show 300

individual

trials

Thick line is

average

0 5

0

0 5

0

Neuron 26

20 40 60 80

Neuron 117

20 40 60 80

 Neuron 212

1

0 5

0
100 20 40 60 80

100 20 40 60 80

0.5

0
60 80 100 20 40 60 80

Hong, Kolda, Duersch, arXiv, 2018

1
Neuron 82

100 20 40 60 80

Neuron 176

100 20 40 60 80

1

0.5

0

Neuron 273

100

100

100 20 40 60 80 100
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Neuron Factor Vector Visualized as Bar Chart
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V. in1
al

Neuron Modes Plotted as a Bar Chart

(Red Lines Correspond to Examples in Previous Slide)

o

(ll
x

time

C1

b1

a2 ar

c,

Hong, Kolda, Duersch, arXiv, 2018
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Time Factor Vector Visualized as Line
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Laboratories

Time (within trial) Plotted as a Line

(Dashed Line is Zero)

Hong, Kolda, Duersch, arXiv, 2018
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Trial Factor Vector Visualized as
Color-Coded Scatter Plot
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r i

.01,"4"wilell"..tiorw

C1 1

Rule

Change

1

1

Trial Plotted as Scatter Graph Rule
Right turn = Green Change
Left turn = Orange

Filled = Reward

Hong, Kolda, Duersch, arXiv, 2018
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Visualization of CP Tensor Decomposition
Shows the Factors (Vectors)

Sandia
National
Laboratories

Neuron (_!caled) 

1 dhl 11 1

2
a)

li

time

Time Trial (Green/Orange = Turn ,Right/Left, Reward = Filled)

b1

a2

ANONOINIMOINWIIIIMOVy44ffiermmarriosio "IINWPRINIONftsmoViallIP

C2
Cr

br

Hong, Kolda, Duersch, arXiv, 2018
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Visualization of CP Tensor Decomposition
Shows the Factors (Vectors)

Sandia
National
Laboratories

Neuron (scaled)

6 idilklaidluAliiii1.11,.1

8

"` I • '1' • 1 ..

LI, a b th J„.1

time

al&

Time

a1

b

a2

 Trial (Green/Orange = Turn Right/Left, Reward = Filled)
imp

,41

ar

0 50 100 150 200 250 0 50 100 0 50 100 150 200 250 300
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Rank-8 Decomposition of Mouse Data
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Neuron (scaledL 
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CP Tensor Decomposition "Sees" Reward
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8

Neuron (scaledL 
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CP Tensor Decomposition "Sees" Turn
Direction
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Neuron (!caled) 

I AIL tali 

r r /
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CP Tensor Decomposition "Sees" Turn
Direction and if Reward Received
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National
Laboratories
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Generalizing CP Loss Function (GCP)
Sandia
National
Laboratories

x

1

a
1 1

Usual CP loss function: F(A, B, C) =

Generalized CP (GCP) loss function: F(A, B, C)

+

>(
ijk

a
1 i

a
i l

jk — Triijk)2 with M(i) = A(C

f (xijk, jk)

Motivation: To handle non-Gaussian data, such as discrete or nonnegative.

Hong, Kolda, Duersch, arXiv, 2018

B T
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Statistical Framework for Loss Function
Sandia
National
Laboratories

Goal: Maximize the likelihood of a model that parameterizes a distribution

Data tensor entry Natural parameter Model entry

Xijk r‘-) p(Xijk 1 8iik) where f{ eZ jk )= Triiik

Probability density or

mass function (PDF/PMF)

Link function

(usually the identity)

Hong, Kolda, Duersch, arXiv, 2018
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Statistical Framework for Loss Function
Sandia
National
Laboratories

Goal: Maximize the likelihood of a model that parameterizes a distribution

Xijk (`-' P(Xijk 1 Oijk) where f(Oijk) = imijk

Because the entries of the data tensor (X) are conditionally independent, the
maximum likelihood estimate of model (M) is the solution to

max L(M, X)
3vi

fl P ( Xi j k Oijk)

id k

with f(Oijk) rnijk

We instead work with the negative log-likelihood (and eliminate 0):

min F (M, X) f (xijk, mijk) where f (xijk 1 mijk) — log p(xijk If ))

Hong, Kolda, Duersch, arXiv, 2018
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Generalized CP Optimization Problem
Requires User-Defined Loss Function

Sandia
National
Laboratodes

Oata Zow-Ra I Node/

r

a=

=

C1

, b 1

al

b2

+ + • • • +

a2

aa o ba o ca — bA, B, CII

,-.1, Ar 9

 1

ar

br

f (x , m) provided by user

7
Z

X-- X--. X--. e/
Optimization Problem: min 11 tit — Jvi 11 = L Ld 2_ ivijkl jk)

i j k

Hong, Kolda, Duersch, arXiv, 2018

Ild-Ar•

10/29/2018 Kolda - RED Lecture @ NCSU 48



10/29/2018

Sandia
National
Laboratories

aiRaiarielicely=i4cyalwaihd Chclica Voir
'Rh® Loso _FiuneRlim

Kolda - RED Lecture @ NCSU



Usually Assume Low-Rank plus White Noise

0.4

0.3

0.2

0.1

Distribution of White Noise

with a = 1

-µ = 0

0 5

Sandia
National
Laboratories

Standard assumption: Data has low-rank structure but contaminated

by uncorrelated white noise with constant standard deviation a:

xijk mijk + Eijk with Eid • 'k (Nj .Ar(0) a)

Xijk ^-) .Ar(Iiijk,a) with

PDF for Normal Distribution

p(x 1 til a) =

e—(x—µ)2 / 2a2

-\/27a2

Hong, Kolda, Duersch, arXiv, 2018

and

Pijk = Tnijk

r 1
Link Function

m = ,u,

, a constant ,
L
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Standard CP Corresponds to Gaussian
Distribution Assumption
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PDF for Normal Distribution

p(x 1 bt, a) = e (x-1/)2 / 2
a2

N/270-2

Negative log-likelihood:

Eliminate natural parameter
via link function:

Eliminate constants:

and

r 1
Link Function

Til = ill,

CI constant
L  J

- logp(4, a) ( x - u ) 2
2 a- 2 + 2 log(270-2)

70

60

50

,40
E
x 
`~ 30

f (x, rn) = (x2-0."21 )2 + 2 log(27ra2) 20

f (x, m) = (x - m)2

Hong, Kolda, Duersch, arXiv, 2018

10

- x = -2.0

- x = 0.0

- x = 3.0

-2 0 2 4

Model Value (m)

/

6
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Consider Bernoulli for Binary Data
(Version 1: Odds Link)
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% Bernoulli random variable

x E {0,1}

p = probability of a 1

p(x 1 p) = px (1- - 
p)(l-x) , x E 10,11

e f(p) =0 ..,t- 1
\> f- (m) =

P81— P)

m/(1+m)

Odds (m) Probability (p)

1/4

1

4

10

20%

50%

80%

90%

s

['PDF for Bernoulli Distribution

p(xl p) = px (1 - 10)(1-x)

x e { 0, 1 }

Negative log-likelihood:

— log p(x

and

Link Function

rn =  p
(1 - p)

p) = log  
1 

x log  p 

1 - p 1 - p

Eliminate natural parameter
via link function:

f (x , rn) = log(1 + rn) - x log rn, for rn > 0

Hong, Kolda, Duersch, arXiv, 2018
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Consider Bernoulli for Binary Data
(Version 1: Odds Link)
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5

4

—3
E
x 

'. 2

1

% Bernoulli random variable

x E {0,1}

p = probability of a 1

p(x 1 p) = px (1- - 
p)(l-x) , x E 10,11

x = 0.0

x = 1.0

2 4

Model Value (m)
6

PDF for Bernoulli Distribution

p(x 1 p) = px (1 - 10)(1-x)
x e { 0, 1 }

L J

Negative log-likelihood:

- log p(x

and

11r
Link Function

m = P 

(I- — p)
L J

p) = log  
1 

x log  p 

1 - p 1 - p

Eliminate natural parameter
via link function:

f (x, rn) = log(1 + rn) - x log rn, for m > 0

Hong, Kolda, Duersch, arXiv, 2018
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Consider Bernoulli for Binary Data
(Version 2: LogitLink)
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% Bernoulli random variable

x E {0,1}

p = probability of a 1

p(x 1 p) = Px (1 — 
p) (1-x) 1 

x E { 0, 1 }

\p`ik ob.bc f(p) = log(p / (1 — p))

oil; f-1 (m) = en 1 (1 + ern)

Log-Odds(m) Probability (p)

M7.39

o
1.39

2.30

4 20%

50%

80%

90%

-

[PDF for Bernoulli Distribution

p(x 1 p) = lox (1 — 10)(1- x)

x e { 0, 1 }

Negative log-likelihood:

— log p(x

and

Link Function

rn = log (1%)

p) = log  
1 

x log  p
1 — p 1 — p

Eliminate natural parameter
via link function:

f (x , rn) = log(1 + ern) — xrn for rn E

Hong, Kolda, Duersch, arXiv, 2018
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Consider Bernoulli for Binary Data
(Version 2: LogitLink)
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5

4

--- 3
E
x 
'.- 2

1

0
-4

% Bernoulli random variable

x E {0,1}

p = probability of a 1

p(x 1 p) = px (1- - 
p)(l-x) , x E 10,11

-2 0 2

Model Value (m)

x = 0.0

x = 1.0

4

[PDF for Bernoulli Distribution

p(x 1 p) = px (1 - 10)(1-x)
x e { 0, 1 }

Negative log-likelihood:

- log p(x

and

Link Function

rn = log (1%)

p) = log  
1 

x log  p
1 - p 1 - p

Eliminate natural parameter
via link function:

f (x , rn) = log(1 + ern) - xrn for fin E

Hong, Kolda, Duersch, arXiv, 2018
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Poisson Distribution for Count Data
(Version 1: Identity Link)
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A m-
PDF for Poisson Distribution

pA = e—AA' / x!

x e N

and

__ -. 50

( Link Function

m = À

f (x , m) = m — x log m for x E N, rn > 0

40

30

-10

x = 0.0

x = 1.0

x = 2.0

x = 5.0

0 2 4

Chi & Kolda (2012); Hansen, Plantenga, Kolda (2015); Hong, Kolda, Duersch, arXiv, 2018 Model Value (m)

6
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Poisson Distribution for Count Data
(Version 2: Log Link)
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PDF for Poisson Distribution

0 = e—AAx / x!

x E N

and

_.-1.....

1 Link Function

m = log(A)

f (x , rn) — ern — xm, for x E N, rn

Hong, Kolda, Duersch, arXiv, 2018

25

20

15

x = 0.0

x = 1.0

x = 2.0

x = 5.0

-2 0

Model Value (m)

2
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Gamma Distribution for Positive Data
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PDF for Gamma Distribution

Xk-1
p(x 1 k e—x/e, 0) = (

r (k) Ok

x > 0

and

Link Function

m = 0 1 k

k constant

f (x , rn) = log(m) + x 1 rn for x > 0, rn > 0

50

40

30

x- 20

10

0

x = 0.0

x = 0.4

x = 0.8

x = 1.5

0.5 1 1.5 2

Model Value (m)
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Summary of Loss Functions
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Distribution Link function Loss function Constraints

Ar(al a) m = (x—m)2 x, m E R,u,

Gamma(k, a) Ica log(m+c) x > 0, m > 0m = x 1 (m+c) +

Poisson(A) À log(m+c) x E N, m > 0m = m — x

m = log À em — xm x E N, m E R

Bernoulli(p) log(m+1)—x log(m+c) x E { 0, 1 } , m > 0m = p 1 (1—p)

log(1-Fern) — xm x E { 0,1}1 m em = log(p / (1 — p))

Exponential family: Normal, Gamma with k constant, Poisson with log link, Bernoulli with logit lin

Matrix case w/ exponential distributions: Collins, Dasgupta, Schapire, NIPS'02

Hong, Kolda, Duersch, arXiv, 2018
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Other Loss Functions
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Huber Loss

f (x , m; A) {(x — rn)220x - mil - A2
if — irrd < A

otherwise

Huber Loss with A = 0.25

Beta Divergence

0— 'irni3 1 1 xrn13-1 if /3 e \ { 0, 1 }0
f (x, ni; 0) = rn — x log m if /3 = 1 (Poisson)

ri + log Iti if "3 = 0 (Gamma)

o

—x = 0.10

—x = 0.60

— x = 1.10

—x = 1.60

Beta Divergence Loss with ig = 0.5

-2 0 2 4 6 0
Hong, Kolda, Duersch, arXiv, 2018

1 2 3 4
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Fitting the CP Tensor Decomposition:
Direct Optimization Derivation
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711, X 71 x p

=

C 1

bi, 

al

Cr72
 b2  br1

+ + • • • +

_ a2

Goal is to minimize: F(A, B, C) 11X - M112

OF

OA - 
(X(i) - M(1))(C o B)

OF

OB 
= (X(2) - M(2))(C 0 A)

OF

OC - 
(X(3) - M(3))(B o A)

ar

Hong, Kolda, Duersch, arXiv, 2018

-1

Direct Optimization

Repeat until convergence...

[A, B, C] [A, B, C] _ cv[ 00 AF , aaBF, 00 CF 
]
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Fitting the GCP Tensor Decomposition:
Direct Optimization Derivation
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711, X 71 x p

=

al

Goal is to minimize: F(A, B, C

_ 0 -
0 F
= f ' (X (1) ,M(l))(C B)

0 A

0 F

OB — 
f'(X(2), M(2))(C ® A)

0 F
= f' (X(3), M(3)) (B o A)

OC

ij

+

a2

f (x , rn)

Cr72
 b2  br i1

ar

-1

Direct Optimization

Repeat until convergence...

[A, B, C] [A, B, C] _ cv[ 00AF , aaBF, a0CF
]

f' is the derivative of f wrt m, evaluated elementwise

Hong, Kolda, Duersch, arXiv, 2018
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Social Network Binary Dataset
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• UC Irvine Chat NetworK
lt

3-way binary tensor

Sender (200) tl*P.

Receiver (200) 11 ll

Day (195)

9,764 nonzeros (very sparse)

• Use GCP to compute rank-7

decomposition

" 11

400

'cT3 300
0_

1.7.2 200
.cY3
$2 100

20 r

o • 1 0
0

or) 5o

20 40 60 80 100 120 140 160 180 200

day

Hong, Kolda, Duersch, arXiv, 2018

1111 1•[••lailaiw. 1;i•
5 10 15 20 25 30 35

number of interaction days

10/29/2018 Kolda - RED Lecture @ NCSU 66



Standard CP on
Social Network

f (x , m) = (x - m)2
Sandia
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Sender Receiver

1
LIAL L J. ,1 k ,L.

2
. • I I I

3

-L -I.

4
-L J•• ,, •-•-•414.

5
L. L4.-.61

6
111. I

7

0

I I JI 11.LILUh1l •

1.1111hIlliIIIIIL 

1

50 100 150 200 0

1 I  11101..1  l

 „..OLNIL_LLINL1I11>..d

  LuALLanindLJ.1 LAILUALLLALJAJALd

0- _lJ  L

50 100 150 200 0 50 100

Hong, Kolda, Duersch, arXiv, 2018
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1

Bernoulli Odds on
Social Network

Sender

LILL  di IIl.LA4u. Li. kb „.b.J....L_LIALL.K.

2
.1 1. Lk

4

5

6

7

.. l 1.1 1 1 .1 1 hl

d. —a+ I. IL . 1 I.1.1 a J l. 1 1. 1 

far, rn) = log(1 + rn) — x log rn

Receiver Day

I II , I. LI h 

el] u I Id111,1 , it , IL, ill. 1, DI ...

4 11111I lh 1 I il I

J .,„1“.,[111,11„111.1. L Lit I 

L. id I. 11111d Li 1 A.,

...1..iii...1....d.....iliiiiiL.1..Ji,,L..L.„.11..,.....-1-1-11.

0 50 100 150 200 0

.1.1L J.

k 1111 _ail. J. I Ai 

l, t ,,,e I II I

Juu 1,10 11111i1
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 __L 

 Ji

Li 111

. .11,1

100 150 200 0 50 100 150

Hong, Kolda, Duersch, arXiv, 2018
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Bernoulli Log-odds on f (x , m) = log(1 + e"') — xrn
Social Network
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1 1111 11111P1M1111111

2 E 11111 III MN III II

Sender

11

3 111

4 Atlalliillbilibidgd

5 .1,L114,111

6 "N

II

 Lig

10111

VVuuu

duilk111

 IV0h111111

111111111111 VUUV uVVUI 11 UVI

,II

111

110 VUUV

7 111141ii11111011

0

guh II hhihi 01.11 111

50 100 150

III 11L., II I I

Receiver

bl II 111 [[ lily lid

L.1

II II

v0101

II 11.1

II

110611

200 0

III

III

dil

IIIuV 11$11

11

50

Ib II II

Old

II

II II 111 11111

111 1.11

Vul 111 III ul

110

II

VI

1111111

DIA

111,111
ill', ill

► 11101 11

ripmermormiling 0111111Wwwqmppoil

11110111

1111 11 IIII 

100 150

11

Hong, Kolda, Duersch, arXiv, 2018

111 III

oppoppwrintionirplonfinnrInnnwripPriorranimmirmronrinfinpnwrinnfinpoplow

,140_,",6"itaithiudialh4L,J.„.ririprioririnrinirpoqpiipir9iul

1111111"ir

hL

I III I Tir nNfirinnpfliP, in.nr

illr1n11011910111100PP0010r0dd

 r.rpirniinftft,r.ftliglrigan

200 0 50 100 150
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Trial Conditions Change Twice, so Mouse
Must Adapt Strategy to Receive Reward
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trial 1 trial k
1 I I HI II II HI I LI II II I II II I

I I II I I II I I I I . . •
c
o
L

time

• Simplified version of dataset from Neuron paper
• 300 Trials over 5 Days

• Conditions Swap Twice

+ Turn right

+ Turn left

+ Turn right

Williams et al., Neuron 2018; Hong, Kolda, Duersch, 2018
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Standard CP Solution f (x, rn) = (x — rn)2
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W d

Neuron (scaledL 

1 Al 1111 11611 11 killjb1411 I it )4,,jw 111,1 d I I 11

4

5

6

8

I
111 Of'ir 11' 1"

b. .1,11 II.

11witiga41,11.glalag

L .11
V'f.r1'1

14.1 b IL . 

)0

I LA,

„it a-rJ  r)r

L,LL  L

Time Trial (Green/Orange = Turn Right/Left, Reward = Filled)
filliONSOMMINIFIWOMe 000.140111W101414111WWWIP

.1011100.11%41/1041 1091"411410.41444,0061V S.1110 Sigle
410 • sell- • 16)...clj - 0 0  lib  AO e  gt  Ir 41  p *a it

ibmompilalliplillarkiR60;$000 ° 9D, 0 ftreisosiftWouftwoi•
ourvaielsommiabsole -ctr m 

-r

1461111.1111W111frO".01111010111011011400. #144114401111.1"4.0  
"0'

..0•6:101.414Not
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Reward!

Turn Ieft

Turn right

Turn
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1(x _ rn)2 if Ix — ml <
f (x m; 5 = -GCP with Huber Loss {5 (Ix - ml - (5) otherwise
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Neuron (scaled) 

2

3
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8
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India Rainfall Data
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• Kaggle/lndia Open Data Sets

115 years of data (1901-2015)

36 regions

12 months

<1% missing data

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

Monthly Rainfalls

500 1000 1500

Rainfall

2000 2500

Image source: Kumar, Jain & Singh. (2010). Analysis of long-term rainfall

trends in India. Hydrological Sciences Journal-journal Des Sciences

Hydrologiques 55. 484-496. 10.1080/02626667.2010.481373.
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Rain Patterns at Sample Locations
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1000

500

1000

500

Location 1
1000

500

Location 8
600

400

200

0   0
J FMAMJ JASOND J FMAMJ JASOND J FMAMJ JASOND

Location 15

Location 22
1000

500

Location 29
1000

500

0   0 0
J FMAMJ JASOND J FMAMJ JASOND J FMAMJ JASOND

Location 36
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Rainfall with Standard CP f (x rn) = — m)2
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1

2

3

4

5

Region

1111....•- . um

I I--m111111•1 11.11.•

1.11.1111,
0

Year

10 20 30 1900 1920 1940 1960 1980 2000

Month

J FMAMJ J ASOND
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GCP with Gamma Loss f (x , m) = log m + x/m
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Submit your work at simods.siam.org

SIAM JOURNAL ON

Mathematics
„of Data Science

SIAM Journal on Mathematics of Data Science (SIMODS) publishes

work that advances mathematical, statistical, and computational

methods in the realm of data and information sciences.

We invite papers that present significant advances in this context,

including applications to science, engineering, business, and medicine.

journals.siam.org/simods
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Conclusions
CP Tensor Decomposition

Powerful tool for data analysis
Higher-order analogue of PCA, SVD, NMF, etc.
Fit the model using numerical optimization

GCP Tensor Decomposition
Extends CP by allowing a different fit function

Motivated by need to fit binary, count, nonnegative data
Framework allows any continuously differentiable choice of
function and invertible link function
Ongoing work with stochastic gradient descent (SGD) to extend
to large-scale and sparse tensors

Applications of CP/GCP Tensor Decomposition
Neuroscience
Social Science
Chemistry

Text Analysis

Signal Processing

And many more!
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Thanks for your

attention! Email me at

tgkolda@sandia.gov 

with questions!

Tensor Toolbox

Tensor Toolbox

for MATLAB

www.tensortoolbox.org
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