Sa“dla ‘\ \ ::

National | o
SAND2018- 12349PE .

I.tlIJUIﬂI.UI Gy % r

S

> Tensor Decom positiomn:
A Mathematical Tool
ror Data Analysis

Wil Tamara G. Kolda
Sandia National Labs, Livermore, CA
QAP 208 www.kolda.net

Illustration by Chris Brigman

EEEEEEEEEEEE
Sandia National Laboratori a multimission laboratory managed and oper. tdbyNt nal Technology al dEg ring Solutions of Sandia, LLC, a wholly
owned subsidiary of Hon yw IIIt natiol II ., for the U.S. Department of Energy’s National Nuclear Secl tyAdm istration under contract DE-NA0003525. ENERGY

1

10/29/2018 Kolda - RED Lecture @ NCSU



Sandia
ED National —\F
Laboratories ;

Recent Student Interns

Acknowledgement of Collaborators

= D.Hong,T. G. Kolda, J. A. Duersch. Generalized Canonical Polyadic Tensor /
Decomposition. arXiv, 2018. http://arxiv.org/abs/1808.07452

= A.H. Williams, T. H. Kim, F. Wang, S. Vyas, S. I. Ryu, K. V. Shenoy, M. Schnitzer, T.
G. Kolda, S. Ganguli. Unsupervised Discovery of Demixed, Low-dimensional
Neural Dynamics across Multiple Timescales through Tensor Components
Analysis. Neuron, 98(6):1099-1115, 2018.
https://doi.org/10.1016/j.neuron.2018.05.015

i N
David Hong Brett Larsen

(Michigan) (Stanford)
\& /

-

=  QOlder relevant work

= E.C.Chi, T. G. Kolda. On Tensors, Sparsity, and Nonnegative Factorizations. SIAM Journal on
Matrix Analysis and Applications, 33(4):1272-1299, 2013.
https://doi.org/10.1137/110859063

\

= E. Acar, D. M. Dunlavy, T. G. Kolda. A Scalable Optimization Approach for Fitting Canonical
Tensor Decompositions. Journal of Chemometrics 25(2):67-86, 2011.
https://doi.org/10.1002/cem.1335

= T G. Kolda, B. W. Bader. Tensor Decompositions and Applications. SIAM Review 51(3):455-
500, 2009. https://doi.org/10.1137/07070111X

= Plus thanks to other collaborators including Cliff Anderson-Bergman, Casey Sam Sh Alex Williams
Battaglino, Grey Ballard, Karen Devine, Brett Larsen, Eric Phipps, Sam Sherman, am Sherman

Kina Winoto, and many more (Notre Dame) (U (Stanford) /

10/29/2018 Kolda - RED Lecture @ NCSU



Sandia  [fo
National (=
Tensor = Multi-way Array @ abornes T

( -
Vector
Size: 3 / 3-way Tensor \ 4-way Tensor
z(2) Size:3 X4 X3 Size: 3 X 4 X3 X2
1 7
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Dafta Tensors Come
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Example Tensor ffrom Chemistry

Source: Bro, R, Multi-way Analysis in the Food Industry. Models, Algorithms,
and Applications. 1998. Ph.D. Thesis, University of Amsterdam. Download from

“amino acids” at http://www.models.life.ku.dk/nwaydatal.
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o . Sandia
Emission Fluorescence Spectroscopy for Single National

. Laboratories
Sample Creates a Matrix of Measurements

Excitation |
Monochromator |

Goal: Figure out what’s in
a given set of chemical
samples

Sample 2
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Bro, PhD TheS|S, 1998. Excitation
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Emission Fluorescence Spectroscopy for @ e
Multiple Samples Creates a 3-way Tensor A

Goal: Figure out what’s in
a given set of chemical
samples

= 3-way Tensor
= Size:5x201x61

= 5samples

[ |

= 201 emissions
= 61 excitations

/S s 100
o, eyaiet

Bro, PhD Thesis, 1998.
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Example Tensor from Neurescience

Source: Williams, et al. Unsupervised Discovery of Demixed, Low-dimensional
Neural Dynamics across Multiple Timescales through Tensor Components

Analysis. Neuron, 2018. https://doi.org/10.1016/j.neuron.2018.05.015
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Activity of Single Neuron Measured Over @ Natowsl |
Time Produces Vector Data I

Thanks to Schnitzer Group @ Stanford

. . . 111 time bins
Mark Schnitzer, Fori Wang, Tony Kim
Microscope by
Inscopix
mouse neural activity via
in maze calcium imaging
,M-\J\AJ

Williams et al., Neuron, 2018
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Multiple Neurons Measured Over Time @ﬁ&"iﬂ‘ﬁm_
Produces Matrix o

Thanks to Schnitzer Group @ Stanford
Mark Schnitzer, Fori Wang, Tony Kim

Inscopix -

mouse
in “maze”

282 neurons X 111 time bins

Williams et al., Neuron, 2018
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Multiple Trials Produces 3-way Tensor

#3004 rials over 5 Days
tartWest

e TurniSouth
o s
X Turn‘No‘r'th
** Turn South

282 neurons X 111 time bins X 300 trials
Williams et al., Neuron, 2018
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Example Tensor from Social Science

Source: Opsahl and Panzarasa, Clustering in weighted networks. Social Networks, 2009,

http://doi.org/10.1016/j.socnet.2009.02.002 and

" https://toreopsahl.com/datasets/#online social network
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Chat Network is a Matrix

10/29/2018

One Day of Interactions

35

Opsahl and Panzarasa, Social Networks, 2009
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Sandia
National
Laboratories

:U(Z,j) -

1 if ¢ sent message to j
0 otherwise




Time-Evolving Chat Network is a Tensor

10/29/2018
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3-way binary tensor
= Sender (200)
= Receiver (200)
= Day (195)
9,764 nonzeros
(very sparse, 0.1%)

1 if + messages j on day k

0 otherwise

Hong, Kolda, Duersch, arXiv, 2018
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Tensor Decomposition: A Mathematical Tool @ﬁgggﬁa,. (2
for Analysis of Tensor Data Laboratories \-

Includes visualization, Related Concepts

clustering, filling in .
missing entries, etc. for Matrices

Express the tensor as the
sum of meaningful parts,
which is the starting Data_
point for data analysis Analysis
activities *

 Singular value
decomposition (SVD)

* Principal component
analysis (PCA) — Tipping
& Bishop, 1999

« Independent component
analysis (ICA)

Mathematical  Nonnegative matrix
Tool factorization (NMF)

Mathematics play a role in....
e Defining the error metric
* Developing efficient algorithms

« Sparse matrix
factorization

* Matrix completion
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Break Tensor into Understandable Parts...

—
Data Tensor Model Tensor
mXmnXxp mXnxp mXmnXxp mXnxp mXmnxXp

Key: The parts have structure!
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Given three vectors:

acR". beR" ceRP

The outer product is

P—=—aoboc &RMX"XP

Dijk = ai bjcy
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CANDECOMP/PARAFAC (CP) Tensor
Factorization Uncovers the Rank-1 Parts

Data Low-Funk Mode!

Sandia N

National || o

Laboratories V= :
C1 Co a

Lo £ & | v

X~M=) azobsoc,=[A,B,C]
a=1 fc-wb‘d/‘ /
/%t/‘/'ae&’

Hitchcock, 1927; Carroll and Chang, 1970; Harshman, 1970
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In Chemistry, Tensor Decomposition Discovers @ﬁgggﬁa,. (e
MakE'up Of Samples Laboratories V-

Goal: Figure out what’s in
a given set of chemical
samples

o .
» .
a .
® ®
> » °

= Fluorescence
measurements of samples
containing 3 amino acids
= Tryptophan
= Tyrosine
= Phenylalanine

= 3-way Tensor
= Size:5x201x61

= 5samples

= 201 emissions
= 61 excitations

Bro, PhD Thesis, 1998.
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Each Component is One Row of Visualization

Sample Emission Excitation

emission

Bro, PhD Thesis, 1998.
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First Column is all the “a” Vectors

Sample Emission ' Excitation

U a,

emission
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Rank-3 Tensor Decomposition Shows Sample @ ot (W
of Each Amino Acid in Each Sample Laboratories 1=

fu%Sqm.qler_% Emig.sion | | | Excitation'
1 N
ﬂ I |
1R : Tryptophan
| i
L I
I
AL Tyrosine
3 Phenylalanine
150 200 O 20 40 60

Using multiple samples makes this problem easier
to solve than using a single sample!

Bro, PhD Thesis, 1998.
I
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How to Find a Low-Rank Model

(This involves some math!)
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Formulate CP Tensor Decomposition @ s,
as an Optimization Problem Laboratories V=

Data Low-Funk Model

Optimization Problem: min ||X — MH2 = Sj S: Sj(ngk - mz’jk)2

7 7 k

Kolda & Bader, SIREV, 2009
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Rewriting Things in Terms of Matrices!

Unfolding tensor into a matrix reorganizes the entries

Sandia [t
National ||
Laboratories Y—

(really wide matrix)

X > X ()

¥ NZ ‘A NZ
] )
N\ J

X (1) =m X np matrix, (i,j, k) — (i,j + (n — 1)k)
X(2) =n X mp matrix, (i,j, k) — (,i + (m — 1)k)

X(3y =p X mn matrix, (i, j, k) — (k,i + (m — 1))

Unfolded model can be written as matrix multiply

] (CoB)T

C O Bis the “Khatri-Rao” product, a matrix of size
np X r whereentry (j + (n — 1)k, 1) is bj.Cy,

M) =A(COB)!
M) = B(CO A)'

Kolda & Bader, SIREV, 2009
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Computing the Gradient of the Optimization @ e, (R
Problem using Unfoldings Laboratories V-

min F'(A,B, C) = £||X — M]|? subject to M = [A,B, C]

The worst
Rewrite in terms of the mode-1 unfolding...

is over!

F(A,B,C) = ;[ Xu) — Myl with M) =A(CoB)T

Calculate the derivative using the chain rule... (‘8F
. 74 = X@(COB) - A(CTC+B'B)
6—F—(X ~— M )3(X<1>—M(1>) . |
OA (1) (1) A | oF
(X_ M )(C 0 B) H =m entwise Produc . aB — X—(Q) (C ® A) (CTC * ATA)
— S]] T E(L) . 1
~Zn(Com MeC B | S =X(BOA)-C(B'B+ATA) |
mXxXnp npXxXr mXr \ ................. /.

Acar, Dunlavy, Kolda, J. Chem., 2011
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Two Options for Optimization: @ -
Alternating or Direct Laboratories

min F'(A,B, C) = £||X — M]|? subject to M = [A,B, C]

Advantages:
Convex subproblems

I oF _ X(z)(C ® A) - B(CTC 3 ATA) [ Repeat until convergence...
A+ X (CoOB)(CTC+B™B) !

OF _ X, (B®A) - C(BTBxATA) | m(COB) )
' B+ X5 (Co®A)(CTCxATA)™!
C+ X3H(BoA)(B™BxATA)™!

Bl Option 2: Direct Optimization

{..—..—..—..—..—..—’ e Guaranteed
. - . : decrease at each
_ g—i _ X(l)(C o B) B A(CTC . BTB) | Option 1: Alternating Least Squares cten

Advantages: ) '
Can use any optimization method! Repeat until convergence...
Easy to handle missing data
OF OF OF
[A7 B7 C] — [Aa B7 C] o a[aAa OB’ 30]

Acar, Dunlavy, Kolda, J. Chem., 2011
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Tensor Decompesition for
Unsupervised Learning
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In Neuroscience, Tensor Decomposition @ F;qgﬁa,_ \
Uncovers Patterns in Neuron Activity Phoratois

#3004 rials over 5 Days
tartWest

e TurniSouth
o s
X Turn‘No‘r'th
** Turn South

282 neurons X 111 time bins X 300 trials
Williams et al., Neuron, 2018

10/29/2018 Kolda - RED Lecture @ NCSU



Sandia

National
Example Neuron Activity Laboratories

Neuron 62

Neuron 26

|

Neuron 82

0.5 | 057 057

P p 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Thin lines

show 300
individual
trials

Thick line is
average

Neuron 249
. ’K J

0.5

20 40 60 80 100
Hong, Kolda, Duersch, arXiv, 2018

0
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Neuron Factor Vector Visualized as Bar Chart aboratories

Neuron Modes Plotted as a Bar Chart
(Red Lines Correspond to Examples in Previous Slide)

@ /Cl /c2 /cr
== b, “—=bs s b

~ oot "

Q

neuron
=

la
time 2 g ar

Hong, Kolda, Duersch, arXiv, 2018
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Time Factor Vector Visualized as Line

.bl

¢\ Time (within trial) Plotted as a Line
(Dashed Line is Zero)

& /? Ci1 /Cz /Cr
I:\:I b, ‘—==Dbs

+ +oot T "

Q

neuron
=

Ja Ja
time = A

Hong, Kolda, Duersch, arXiv, 2018
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Trial Factor Vector Visualized as @ de,
Color-Coded Scatter Plot Laboratories 1~

Rule 'T‘ Trial Plotted as Scatter Graph Rule
Change Right turn = Green Change
Left turn = Orange
Filled = Reward
C]_ C
& / / i / Cr
== b, ‘== by e b
= . & M T
5 -+ = +
é X
Jaj Ja
time . § Ar

Hong, Kolda, Duersch, arXiv, 2018
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Visualization of CP Tensor Decomposition @ A
Shows the Factors (Vectors) Laboratories V-

euron (scaie ime ria reen/orange = iurn rig t/Left, Reward = Fille

| . | | A\ Di| Ciy ' ' '

Q
_|_
T
+

3

neuron
=
Q
[y
Qo
\v}

Hong, Kolda, Duersch, arXiv, 2018
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Visualization of CP Tensor Decomposition @ e,
Shows the Factors (Vectors) Laboratores =

euron (scaie ime ria reen/orange = iurn rig t/Left, Reward = Fille

wmrv g :‘W
1 WMMMMMMM a X
. . 1 e \/ Dif| Ciy . l .
T T T b T : U.:' T ~ T
2 L ||| L. l‘dj NI 1 L 4 II|||,, w Y b & [e ,,,' 0 S0 sl - E‘.""“
T e I LN ARSI T vl‘l' T Trm
T T T T T ) .I T T T T
3 S Al S JILrLI.l . | l ||I| [L /—y B o O ‘ i
LA o I L R AL T""mll 1" | | llf" 'l| T - /
I I ] I W L;-fszwM' w
4 :
T T T I . . T 1
Mﬂmmﬂ || LJ.L |j,|L,.,| ﬂ"L“J sliloaly Cl C . N”M
5 \ . ) \gi‘b\ / 2 /CT ! ! 1 1
T T T T T ~". . ‘ .. l ‘
6 MMMMMWMMMJ S ’ b1 M b2 p— br
| . < =~ -+ + .4+ r~.“’.
y A P T ”,. Lt S o ot g
'l“'r[]ITIII']]'I’ ' & I
1 Ja  — :
time 2 d ar }m’ '
8
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Rank-8 Decomposition of Mouse Data ) .

euron (scaie ime ria reen/orange = iurn rig t/Left, Reward = Fille

T J ' ' l w«c\iwwl l W
1 /‘_‘ o ¢
e e | | | A4

S h-mw wm.‘vm-* e aww

P& o

2 L] L L .‘JJ Lol L k

e UL L
1]'”1 w] L/ B ) M Ir” ‘r]'l'i[‘ '] ]""rvl i § ||1|| .l.l llv,-- R '_IIT!

: : : . . N
4 W.UMMJ_MMM — e s S '
6 mwlmmwmm .,,Ii fulld
7 Ll |u| IIII JII | | IL'.I [T, RO VI PPN Fee au.' e
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CP Tensor Decomposition “Sees” Reward

euron (scaie ime ria reen/orange = iurn rig t/Left, Reward = Fille
wﬂf\h@f R e W
1 MMMMM@MM&MMM —\//— e
l | I.-m *OWV.*; -~
2 [l Ll I|l[ |||I| LA . £ T X V’U‘M
(IR DL A B ™ ™ ‘I‘I' L D Dt R
T T T T T i o . o == T .» .I : T T
3 ‘Lr “"H[L'TLL'T L LA | JT‘l r . szepseses v: I CHti et ;

_. .W

—\‘ .’",-‘—H

Y ?};)::.)&2.--------{:)

Rewa rd!

7l L gl |.| | 1 | \ . : - »

ok ik |nu....|L.
Bl < I I'IT ]II'T] |'| L "'l]] S M I']] o b
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CP Tensor Decomposition “Sees” Turn @ Natonal
Direction e

euron (scaie ime ria reen/orange = iurn rig t/iLe , Reward = rilie
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CP Tensor Decomposition “Sees” Turn () dto_
Direction and if Reward Received e

euron (scaie ime ria reen/orange = iurn rig t/Le , Reward = rilie
mezmm
1 uwmm@mmmmm@m BN -
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Re-examining the Fiiting Function
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Generalizing CP Loss Function (GCP)

g & Va

] —] [ | — —//
= + + ot

Q
|

Usual CP loss function: F(A’ B, C) = Z (mijk _ mz’jk)2 with M(l) — A(C ® B)T
ijk

Generalized CP (GCP) loss function: F(A, B, C) = Z f(:l:ijk, m,,;jk)
ijk

Motivation: To handle non-Gaussian data, such as discrete or nonnegative.

Hong, Kolda, Duersch, arXiv, 2018
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Goal: Maximize the likelihood of a model that parameterizes a distribution

Statistical Framework for Loss Function

Data tensor entry Natural parameter Model entry

N |

.CEz'jk ~ p(Xijk ‘ 02]]6) Where E(Owk) — mijk

|

Link function

Probability density or . _
mass function (PDF/PMF) (usually the identity)

Hong, Kolda, Duersch, arXiv, 2018
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Goal: Maximize the likelihood of a model that parameterizes a distribution

Statistical Framework for Loss Function

il?ijk ~ p(xijk ’ szk) Where €(9wk) — mijk

Because the entries of the data tensor (X) are conditionally independent, the
maximum likelihood estimate of model (M) is the solution to

mj\%x L M f)C l—gp Lijk | szk) with g(e’mk) = Mijk
ij

We instead work with the negative log-likelihood (and eliminate 8):

min F'(M; X) Zf (ijk, Mijr) where f(Zijk, Mijk) = —1ng($ijk|€_1(mijk))
17k

Hong, Kolda, Duersch, arXiv, 2018
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Generalized CP
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Generalized CP Optimization Problem @ggggﬁal_ (D
Requires User-Defined Loss Function Laboratories 5

Data Low-Funk Model

Cq C2

Lo L m L b

X e M = T Tt

vV

Jap Jag la,

X~M=) ajob,oc,=[AB,C]
a=1 f(x,m) provided by user

/
Optimization Problem: min ||X — 3\/[||2 = S: S: S: f(Zijk, mijx)

7 ] k

Hong, Kolda, Duersch, arXiv, 2018
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@ Sandia [l
National s 2o A
Laboratories V= :

Statistically-Motivated Cholces ffor
the Loss Function



@ Sanda /s
National =
Laboratories V—

Usually Assume Low-Rank plus White Noise

Standard assumption: Data has low-rank structure but contaminated

Distribution of White Noise by uncorrelated white noise with constant standard deviation o
witho =1
0.4

—u=0 Lijk = Myijk + €ijk with Cijk ™ N(Oa 0)

0.3r

0.1

e 0 5 Tijk ™~ N(Mz'jk,ff) with Hijk = Mgk

PDF for Normal Distribution

Link Function

e—(x—m)?/20° and =

o constant

Hong, Kolda, Duersch, arXiv, 2018
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Standard CP Corresponds to Gaussian @ ol (0
Distribution Assumption abornnes TR

PDF for Normal Distribution Link Function 70 | — . 20
— ()2 2 2 d m = —x=0.0
| em@mw?/20 an 7 enll X290y
p(SE | 22 0) _
) o constant
50 3
A4 -
Negative log-likelihood: —log p(z|p, o) = <x u) +3 log(27r0 ) c 0
>
=30+
Eliminate natural parameter flz,m) = (CC m) + Llog(2m0?) 20 |
via link function:
101
.. _ 2
Eliminate constants: f(ZL', m) — (ZB — m) 0 N K-
-4 -2 0 2 4 6
Hong, Kolda, Duersch, arXiv, 2018 Model Value (m)
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Consider Bernoulli for Binary Data @ =,
(Version 1: Odds Link) laboratoies \.o

: Bernoulli random variable
é x € {0,1}

PDF for Bernoulli Distribution

Link Function

— T(1 _ (1)
p = probability of a 1 p(z|p) =p*(1-p) and  § o =
. re{0,1}
plz|p)=p"(1-p)"™™, z€{0,1}
689 lp) = p/ (1—p) Negative log-likelihood:
; . ,
— log p(x =log —— — xlog ——
gp(z|p) S BT,
v 20% Eliminate natural parameter
1 50% via link function:
4 80%
10 909 f(x,m) =log(l+m)—xzlogm for m >0

Hong, Kolda, Duersch, arXiv, 2018
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Consider Bernoulli for Binary Data @ o]
(Version 1: Odds Link) ahorres =R

~ Bernoulli random variable
¢ x € {0,1}

PDF for Bernoulli Distribution

Link Function

— T(1 _ (1—x)
p = probability of a 1 p(z|p)=p"(1=p) and m =
) re{0,1}
p(z|p) =p"(1—-p)"'™™, ze{0,1}
) : :
—x=0.0 Negative log-likelihood:
4 —x =1.0|]
1
5 _ —logp(:z:\,o)zlog——a:logL
’ét 1—p 1—0p
X
=27 I Eliminate natural parameter
via link function:
1 L
0 . , f(x,m) =log(l+m)—xzlogm for m >0
0 2 4 6
Model Value (m) Hong, Kolda, Duersch, arXiv, 2018
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Consider Bernoulli for Binary Data @ i, (SN
(Version 2: LogitLink) sborstores 5

: Bernoulli random variable
é x € {0,1}

PDF for Bernoulli Distribution

Link Function

— T(1 _ (1)
p = probability of a 1 al Al =S ) and | m = log (15,))
: re{0,1}
p(z|p) =p"(1—-p)"'™™, ze{0,1}
X, \
XY \Obs, l(p) = 10%(,0/ (1- P)) Negative log-likelihood:
S m) =em /(1 +e™) 1 "
—logp(z|p) =log -— —zlog -—
Log-Odds(m) | Probability (p) g g
-1.39 20% Eliminate natural parameter
0 50% via link function:
1.39 80%

flx,m) =log(l+e™)—am for meR

2.30 90%

Hong, Kolda, Duersch, arXiv, 2018
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Consider Bernoulli for Binary Data @ e (1
(Version 2: LogitLink) ahoratones

~ Bernoulli random variable
¢ x € {0,1}

PDF for Bernoulli Distribution

Link Function

_ x(1 _ A\ (1—2)
p = probability of a 1 p(z|p) =p*(1 = p) and | = log 2
re{0,1}
p(z|p) =p°(1-p)= 2e{0,1}
5 . . .
4 :i : (1)8 Negative log-likelihood:
1
—logp(x | p) = log —— — xlog ——

Eliminate natural parameter
via link function:

flx,m) =log(l+e™)—am for meR

4 -2 0 2 4

Model Value Sm ! Hong, Kolda, Duersch, arXiv, 2018
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Poisson Distribution for Count Data @ mte, |
(VerSion 1: ldentity Link) Laboratories V—

50
PDF for Poisson Distribution Link Function X = ?.8
X=1.
40 t+ -x = 2.0/
p)\ = 6—>\)\w /Z" and m=A x=5.0
30

reN

f(x,m)=m —axlogm for z & N,m>0

-10

0 2 4 6
Chi & Kolda (2012); Hansen, Plantenga, Kolda (2015); Hong, Kolda, Duersch, arXiv, 2018 Model Value (m)

00t e e e e P e A —
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Poisson Distribution for Count Data @ﬁ%ﬁﬁ‘ﬁm_ 2
(Version 2: Log Link) Laboraaories V-

25

x=0.0
x=1.0

PDF for Poisson Distribution Link Function

PA = e~ M\ /33' and m = log()\)

r e N

f(l’am)zem—:cm for reNmeR

Hong, Kolda, Duersch, arXiv, 2018 Model Value (m)
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Gamma Distribution for Positive Data

50 - .
PDF for Gamma Distribution Link Function i : 8.2
40 '1}“ ——=x=0.8]-
p(x|k,9):< m=10/Fk x=15
k constant 30 !
e
10|
f(x,m) =log(m)+x/m for x>0,m >0 \

0 0.5 1 1.5 2
Model Value (m)
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Summary of Loss Functions

Distribution | Link function Loss function Constraints
N(p,0) m = (x—m)? z,m € R
Gamma(k,o) | m = ko x/(m+e€) +log(m+e) | ©>0,m >0
Poisson(\) m =\ m — x log(m-e) reNm>0
m = log A e —xm reN, melR
Bernoulli(p) | m=p/(1—p) log(m+1)—zlog(m-+e) | z€{0,1},m >0
m =log(p/ (1 —p)) | log(14+€™) — xm re{0,1}, meR

Exponential family: Normal, Gamma with k constant, Poisson with log link, Bernoulli with logit link

Matrix case w/ exponential distributions: Collins, Dasgupta, Schapire, NIPS’02

Hong, Kolda, Duersch, arXiv, 2018
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Other Choices for the Loss
Funciion
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Other Loss Functions

Huber Loss Beta Divergence
, . %mﬁ—ﬁxmﬂ_l if e R\{0,1}
f(:]j, m; A) = (:l? N m) if |£B B m| <A flz,m;B) = ¢ m—axlogm it =1 (Poisson)
2A|x — m| — A% otherwise = +logm if =0 (Gamma)
5 ‘ 8

Huber Loss with A = 0.25 |~ X

Beta Divergence Loss with § = 0.5

O I
6 0 1 2 3 4

Hong, Kolda, Duersch, arXiv, 2018
I
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Fitting the CP Tensor Decomposition: @ Natowal
Direct Optimization Derivation borones

mXmnxXp
C1 C2 Cr
‘ /b Z by £ b, Direct Optimization

= + 4+ :
x M N H H Repeat until convergence...
ajl a a

[A,B,C] « [A,B,C] — o[, 8 L]

Goal is to minimize: F'(A,B,C) = ||X — M”Q

==

OF

A (X1 —Mu))(CoB)
2| oF
%;" 7B (X2 = M2)(COA)
© oOF

3G = (X3 —M3))(BoOA)

Hong, Kolda, Duersch, arXiv, 2018

00t e e e e P e A —
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Fitting the GCP Tensor Decomposition: @ Notowsl |
Direct Optimization Derivation borones

mXmnxXp
C1 C2 Cr
Z o / b, &£ b, Direct Optimization
[m— ] m— ] C——

et .
H Repeat until convergence...
ao ar

[A,B,C] « [A,B,C] — o[, 8 L]

Goal is to minimize: F'(A, B, C) Zf T, m)

N
OF f"is the derivative of f wrt m, evaluated elementwise

A = f'(X@1), M1))(C © B)
2| oF
%;- 3B = f'(X(2),M2))(C® A)
© oF

3C = (X, M3)(Bo A)

Hong, Kolda, Duersch, arXiv, 2018

—
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Examples of GGP
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Social Network — Binary Dataset

= UClIrvine Chat Network . . =~ = o
B e e B "
= 3-way binary tensor y %.'“iii.i fﬁ p g0
= Sender (200) . 's'ii-? Lol 1° £ 200
= Receiver (200) o l: h £ 100
= Day (195) ol
0 20 40 60 80 100 120 140 160 180 200
= 9,764 nonzeros (very sparse) day
20
= Use GCP to compute rank-7 £
decomposition &

0 5 10 15 20 25 30 35
number of interaction days

Hong, Kolda, Duersch, arXiv, 2018

00t e e e e P e A —
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Standard CP on , sda (W
. f(z,m) = (x —m) ational 1\
Social Network @“’m

Sender Receiver

d ll_l,“,L.u Rladbssgsoolocilin Jubootli doakoaddidoo PP o] l.L.l el ot tdalilalcx ". [ TP T
1 1 1 1 1 1

2

ihl-i..alu..J_..JJIL_l ..J dea i aqsage oL Naal L . I L J.l.._lll P IL 8 all g Laoa o hleo oba  Tenas boaiatialion
Il 1 1 1 1 1 1

3
Jlll I‘ lJ'. ' g | l 1 J . l111LJ.; Ll - (e ’ ul '.|| Lalus l.' 2

1l 5 ol

5~‘ o . ‘.llll .

Sl v . |

. 1,\“Il . 1 ST P R . | RLL| TV F T

0 50 100 150 2000 50 100 150 200 0 50 100 150

Hong, Kolda, Duersch, arXiv, 2018
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Bernoulli Odds on
Social Network

Sender

f(z,m)

Receiver

— log(1 +m) — xzlogm

™

Sandia
National [
Laboratories V—

Day

I ..Jl.m.Jm[u WNTRICINY

J..“ Ii.Lll]Jl P P TP |
T T T

LM_JI j' Hlﬂlllll — ] nll Loaal ,,1'

L__‘_Lu__u_.i.u“ N TR
J

.LI lL..l,l.ll l.ll 1I..1]LIL W

LU L.__._.JJJ_JLL” lL

b Lok I

J| l__l.l._..lj.Lu.Lll il AIII Y I I

0 100 150

10/29/2018

2000

|
I

al k L _; lllj

.ll‘_..l I_ll Li Ly oo
50

100 150

Hong, Kolda, Duersch, arXiv, 2018
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Bernoulli Log-odds on - Sanda
f(xz,m) =log(l+€e™) —am Naat:aonalries \
Social Network @ raboratories =

Sender Receiver Day

2000 2000 100 150

Hong, Kolda, Duersch, arXiv, 2018
é
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Trial Conditions Change Twice, so Mouse
Must Adapt Strategy to Receive Reward

trial 1 trial k trial K
U) II .l: III ] ll llI Ill ] I' IIII III ]
c n
9 P | I | | I | " n
3 ] m ] . | mn 1 ] [ ] [ B B
()
Cl m ol 1 m o 1 1 | I B ]
| I B | | I B | | B |
ASNNA,
21 N
e ‘\MN\
i
c “ANANAS J”
—_—N\\ANAS by '0\6
. N
time

» Simplified version of dataset from Neuron paper
e 300 Trials over 5 Days
e Conditions Swap Twice

¢ Turn right

s Turn left

+** Turn right

Williams et al., Neuron 2018; Hong, Kolda, Duersch, 2018
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Standard CP Solution  /=m=@-m @lahoratones

euron (scale ime ria reen range- urn 19 tLe ewar
Wm; W W
1 MMLWML«MMMMM —\// -
T T T T b .S. T ~ T 1 1]
2 L. IIJI..I [T I I | t LLII|||., i \ PN ¥ ) a8 ‘:"‘s'.f b %, A N
LA AU R e I L AL N T ‘I‘l' ey

T T T T T T n T T T T 1
3 |l g | /_\ 'sziﬁfr;r X i J Rewa I’d!
L I A T‘|I“"'T‘“\"P‘Tr""“"1"‘|'ﬁ"“L[‘f“l“J‘I"IIT'F""J‘u’“H[’“]LLT'F e

. | | I| | | | | P M.mnm I

N—
5 Hidie ittt bt ol il b ek /\ tm——— ] Turn left
: : i : / W@mj;@i“' i i W
6 mwlmmmmmwm /\— I a———— Turn right

7 ledldsn ol L i | ! AJIL\A : - Y * - ”

L 5 aill oaslatlll I .l ik II L J_J |i ”_.l L P =
bl [T Ir’T EAMRESA T I A LML U L0 | e

8 M@WMMMMH Z " e Turn

0 50 100 150 200 250 0 50 100 O 50 100 150 200 250 300
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1 %(x—m)2 if |x —m| <9
° f(xam;(SZZ): 1 .
GCP with Huber Loss e 110 s )

euron (scaie ime ria reen/Orange = lurn Rig t/Left, Reward = Fille

s bl il all
i MMWMI

r"".."""“*' O mgrean PPN, Ferr ity Turn right

m . .JV.\W -"-‘“""-‘-V"ﬂ Reward!

. lil'!él “

—
A
J\
/‘ ;
i I |||| et il Nwemwwww
—
]
A

E: N L TR i «bc? I.J "o

®
oo . © e
D)
' :
T T

. {‘o :‘.‘

oy’ - ® C& S 000.:.. ..' 3
| RO e dig e AN

No reward!

Turn left

0 50 100 150 200 250 0 50 100 0 50 100 150 200 250 300
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India Rainfall Data @tahorawnes

= Kaggle/India Open Data Sets
= 115 years of data (1901-2015)
= 36 regions

= 12 months

= <1% missing data

Monthly Rainfalls
10000 T T

9000

8000

7000 |

6000 [

5000

Count

4000

3000

2000

moox | Image source: Kumar, Jain & Singh. (2010). Analysis of long-term rainfall
" 0 — yem 2000 2500 trends in India. Hydrological Sciences Journal-journal Des Sciences
Raintal Hydrologiques 55. 484-496. 10.1080/02626667.2010.481373.
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Location 15

Rain Patterns at Sample Locations

Location 1

Location 8

1000 1000 600

400 |

500 | 500 | R\

200 I

JFMAMJ JASOND JFMAMJ JASOND JFMAMJ JASOND

Location 22 Location 36

0

Location 29

1000 1000 1000

500 | . 500 500 |

2 N =
> S

MA

;;,\‘ 0 == - 4 V

D JFMAMJ JASOND

OND

0 >

JFMAMJ JAS J
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Rainfall with Standard CP /(=m) =(-m) @“""’“’“’“’s

Region Year Month

| vW\\WWMV’V\ | | | |

aun Am. . : : i i _—_.-..-._lI.-.-—————-
0 T T T T T T T T T T T T T T T T T T
T T T T T T T T T T T T T T T T T T T
T T T T T T T T T T T T T T T T T T T T

| PET 1 o W urvwvnven S T | |

0 10 20 30 1900 1920 1940 1960 1980 2000 JFMAMJ JASOND
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GCP with Gamma Loss

Region

Year

Sandia
@ National ||
f(z,m) =logm+ x/m Laboratories V=

Month

T T T N T
. i i i i
T T T T T

10/29/2018
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Brief Message ffrom the Society for
Industrial and Applied Mathematics

(SLAM)
(and me)
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Mathematics
~of Data Science
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Where Data
Meets Science
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Conclusions

= CP Tensor Decomposition
= Powerful tool for data analysis
= Higher-order analogue of PCA, SVD, NMF, etc.
= Fit the model using numerical optimization

= GCP Tensor Decomposition
= Extends CP by allowing a different fit function
= Motivated by need to fit binary, count, nonnegative data

= Framework allows any continuously differentiable choice of
function and invertible link function

= Ongoing work with stochastic gradient descent (SGD) to extend
to large-scale and sparse tensors

= Applications of CP/GCP Tensor Decomposition

: SNeu.r(|)SSCl.ence " Text Analysis
ocial science ® Signal Processing
= Chemistry ®  And many more!
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Thanks for your
attention! Email me at
tgkolda@sandia.gov
with questions!

Tensor Toolbox

Tensor Toolbox
for MATLAB

www.tensortoolbox.org




