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The non-LTE code comparison workshops aim to help the HEDP,
community assess model reliability

• Non-LTE models are widely used in the HEDP community:
• To help interpret spectroscopic measurements & diagnose plasma conditions
• To inform radiation-hydrodynamic models that are used to design experiments
• To inform detailed analysis of exotic plasma states

• Non-LTE models are complicated and difficult:
• Use rates for tens of processes to couple many electronic states
• Z* and radiative loss rates: hundreds of averaged states
• Detailed spectra: hundreds of thousands of detailed states
• Dense & photoionized plasmas require extensive multiply excited & core-hole states;

density effects require additional theory; time-dependence is computationally intensive
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• Non-LTE workshops have been held every two years since 1996 to help understand
the necessary components of and appropriate confidence in these models
• Traditions of anonymized results & restricted participation foster open discussion

and help prevent convergence to popular models
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The 10th Non-LTE code comparison workshop was held

at the UCSD Faculty Club in December 2017

Thanks to local organizers Farhat Beg and Meghan Murphy
and to Michael MacDonald Guillaume Loisel and Ed Marle for ex•erimental talks
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36 participants from 6 countries and 11 institutions contributedes kiaria
Laboratories
a lona

results from >
Nawai
ACRE

ATOMIC

OPAZ

PrismSPEC

SCSF

MET

tions of 17 independent codes
- tzug. --1-1-"fillif"

Richard Abrantes UCLA USA X

R. Florido, J.M. Martin-Gonzalez,
ULPGC Spain X

M.A. Gigosos
M.A. Mendoza, J.G. Rubiano, R. Florido, J.M. Gil,

ULPGC Spain X X X x
R. Rodriguez, P. Martel, A. Benita, E. Minguez

Chris Fontes, James Colgan, Mark Zammit Los Alamos USA X X X X X

Michel Poirier CEA France X X

Evgeny Stambulchik Weizmann lnst Sci Israel X X X X X X

Howard Scott, Paul Grabowski, Hai Le Lawrence Livermore USA X X X X X X

Frank Gilleron, Robin Piron, Maxime Comet,
CEA France X X X

Jean-Christophe Pain

Gao Cheng, Zeng Jiaolong, Yuan Jianmin NUDT China X X X X X X

Nicholas Ouart Naval Research Lab USA X

Dipti, Yuri Ralchenko NIST USA X X X X

Christophe Blancard CEA France X X X X

Igor Golovkin Prism Comp. USA X X X X

Stephanie Hansen, Brian Kraus Sandia USA X X X X X

Stephanie Hansen Sandia USA X X X X X X

Yechiel Frank Lawrence Livermore USA X X X X

Ilya Vichev, Dmitri Kim, Anna Solomyannaya KIAM Russia X X X X

.
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Contributing codes span a wide range of detail, statistical

completeness, and "extras"

g-1/4 superconfiguratior models: 'N'103 states; gtot 109
Time-dependence
Variations in continuum lowering, nmax

•%,1/4 config-avg. models: •-,105 states; gtot 107
Reasonably accurate spectra & transport

•-,1/4 fine-structure models: r%'104 states; gtot r-d 103
metastable states
Accurate spectra
sophisticated line broadening

--,1/4 hybrid-structure models: r--105 states; gtot 109
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In this talk, the case results are coded to represent these variations in
statistical completeness (line thickness) and detail (line darkness)
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We explored cases relevant to plasma diagnostics, density
effects, and X-ray free-electron lasers

Ne

Ne-TD

Al

Al-TD

li

12 50, 100, 200, 500

3
Te(t) for 3 cases in
supplemental file*

8 10, 30, 100, 300

2
Te(t) for 2 cases in
supplemental file*

Si 12 [24] 30 [60, 100]

CI 9 400, 500, 600

1019, 1020, 1 021

Ne(t) = Z*(t)xN; with
N i=1018

2x1 023, 5x1 023

Ne(t) = Z*(t)xN; with
N i=6x1022

1019, 3x1019

1021, 1 022, 1 023

Trad (eV), diluti
factor

Erad: 800, 1050, 2000

Erad: 1580, 1650

Trad: 63 [diluted],
multi-Planckian

*Thanks to Hyun-Kung Chung for SCFLY temperature profiles!

Plasma
radius (cm)
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Spectral
ranges

800-1400 eV,
6E=0.3 eV

800-1400 eV,
6E=0.3 eV

1400-2400 eV,
6E=0.5 eV

1700-2500 eV,
0.1, 0.3, 1.2

6E=0.25 eV

2600-3800 eV,
6E=0.15 eV



Neon steady-state cases: explore K-shell plasma diagnostics

Motivation: 

The satellites to neon Lya have
been measured with high
spectral resolution from gas puff
implosions. Changes in the
shape of the satellite features
driven by collisional redistribution
among 2/ 2/' states are used to
diagnose densityl, informing
analysis of ion kinetic energy2-3

In
te

ns
it

y 
(a

ir
b.

u_
 

6 -

-

4

r

2s2p

2p2

(a)

(b)

0 
: 74. iftwil --r—

tiL
at 

.

12.28 12.30 12.32 12.34 12.36 12.38 12.40

Wavelength (A)

1. J. Seeley, Phys. Rev. Lett. 42, 1606 (1972)
2. E. Kroupp et al., Phys. Rev. Lett 98, 115001 (2007)
3. E. Kroupp et al., Phys. Rev. E 97, 103202 (2018)
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Ne: Average ion charge (Z*) agrees to within fu0.5
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There is a slight trend for more detailed models (darker lines) to be more ionized



Ne: Radiative power losses agree to within 2-3x
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Ne: Temperature diagnostics from Z*/Z*+1 line ratios
10

Necn Liu, sat. / Elea

At= 1C0 e/cn-P

.........,
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10 7
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While there would be enormous uncertainty in diagnosed Te if all models were equally
trusted, uncertainties are '%'20% among a cluster (sans outliers) of detailed models
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Ne: density diagnostic from collisional redistribution
among He-like 2/ 2/' states
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Dotted line from [1]

—

There is fair agreement among models that treat level kinetics (not just spectra) in detail,
with implied uncertainties in diagnosed densities of (2 — 3)x above 1020 e/cm3

1. E. Kroupp et al., Phys. Rev. E 97, 103202 (2018)



CI steady-state cases: dense plasma diagnostics

Motivation: 

High-resolution OHREX
measurements of CI Hef3 and
its satellites from chlorinated
plastic targets irradiated by
both long- and short-pulse
beams on ORION:
density diagnostics from both
HO widths and satellite lines
sensitive to collisional
redistribution among 1s2/3/'
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CI: Many codes with extraordinary agreement in Z* and RPL

*r,
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CI: Best fits to measured spectrum
Find Te, ne, [and opacity] by simultaneously fitting Li-like satellite and He-like resonance
[and intercombination] line intensities & widths — only one model had detailed Stark profiles
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Neon time-dependent cases: explore XFEL photoionization

Motivation: 

lons collected from neon gas
targets irradiated with XFEL
beams at various energies1
showed either smooth ion yield
distributions (E < 870 eV)
consistent with sequential L-shell
ionization or characteristic deficits
in odd-numbered charge states
(E > 870 eV) consistent with
chains of photoionization followed
by Auger decay (NO+ Ne+2)+)

Neon K-edge: vNed,
870.2 eV

Ne
1,050 eV

 NeSt
Nelat

iirne

1. L. Young et al., Nature. 466, 56 (2010)
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Ne-TD: Z* & CSD
There was significant
disagreement in Z*
(%,2 charge states) for all
cases and times

However, all models predicted
smooth CSDs for the 800 eV
XFEL beam (sequential L-shell
ionization) and characteristic
deficits in odd charge states for
the 2000 eV beam (K-shell
ionization followed by Auger
ionization), qualitatively
reproducing the results of [1].
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Ne-TD: Intriguingly, all models predict bright time-integrated
fluorescence emission for the 800 eV beam energy

XFEL energy = 800 eV XFEL energy = 2000 eV
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Ka intensities in the 800 eV case are orders of magnitude higher than thermal. With a neutral
K-edge energy of 870 eV, no ls electron can be directly photoionized or photoexcited by an
800 eV photon. The fluorescence intensities here roughly correspond to each model's rate of
dielectronic recombination through (1)2(n...N)X + e- ( 1 ) ( n . . . N)X + 2 channels.



Al cases: explore continuum lowering in dense plasmas

Motivation: 

Fluorescence emission spectra
measured from Al foils irradiated
with a range of XFEL energies1
showed more emission from
high charge states than
expected under Stewart-Pyatt
continuum lowering (CL) theory,
and were fit well with SCFLY2
using a modification of an older
CL theory from Ecker & Kröll.

K-edge:1560 eV
Ka: 1487 eV
Kr3: 1557 eV

••

7-,-, 10.0.0

XFEL 1650 eVi
41'

XFEL 1580 eV

100

0 I
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1. O. Ciricosta et al., Phys. Rev. Lett. 109, 065002 (2012) 1480
2. H.-K. Chung, M. Chen, and R.W. Lee, HEDP 3, 57 (2007)

Exprimenial data
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Al: Steady-state ionization predictions are clearly dependent
on the treatment of continuum lowering

- Al Li M 1 ri Li ill
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Continuum lowering effects can be implemented by reducing ionization
potentials (SP, IS, or EK), destroying pressure-perturbed states, or both
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Al-TD: Time-dependent ionization is also clearly dependent on
continuum lowering

i 0.0
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Dotted lines are SCFLY
with d.cker-Krö and
Stewart- Pyatt
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time (s) time ;5)

Models using EK CL are most ionized, followed by models using SP/IS and models
using IS without state destruction. Models without CL predict the lowest Z*
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Many models that use SP/Is exhibit intensities similar to SCFLY with EK — though none
have yet demonstrated similar fits to data including detailed beam profiles and foil opacity.



Si cases: explore external & internal radiation fields

Motivation: 

Simultaneous measurements of highly resolved
and reproducible absorption and emission spectra
from well-characterized photoionized plasmas
indicate lower ionization than predicted by
ATOMIC and XSTAR:
ne = 8.5x1019 e/cm3 (expansion and Z*)
Te = 33 +/- 7 eV (ratios of absorption from Li-like
states that should follow Boltzmann statistics:
absorption Xifii with Xi = gie-Eirre)
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Si: with significant external radiation, all models predict higher
ionization than observed in the experiment

Te = 30 eV

- Tr= 0.1 [63 eV]
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ne = 1i1019 e/crn

ne = 3i1019e/cm3

12

Increasing the external radiation field (single or multi-Planckian with similar total energies)
increases Z* by '%d2 in all models, and all models show decreasing ionization with
increasing densities as collisional recombination increases relative to photoionization.



Si: Emission spectra from all models reliably reflect the
underlying charge state distribution
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Emission spectra (artificially broadened) also have fair agreement in absolute
intensities, with the multi-Planckian enhancing intensity by r%/106 over Tr = 63 eV.
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Si: Many models have Li-like 1s221 populations higher than LTE
potentially supporting lower temperatures

We invited additional Te, rad. field,
and opacity data in the post-
workshop call for resubmissions

Among three codes, there were
significant differences (line shape,
energies, and intensities) in the Li-
like absorption lines that were used
for the experimental thermometer

All contributing codes had higher-
than-Boltzmann excited state
populations, especially at the lower
density, which could lead to
overestimated temperatures

Siiicon: ne = 3x1CP e./cm3; Tr = 1.0 (63 eV]
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Conclusion: the non-LTE code comparison workshops aim to
help the HEDP community assess model reliability
• Helps set confidence in simulations, diagnostics, and conclusions drawn from data
• We've come a long way from 1996 — dense plasmas are the new frontier
• We welcome new contributors and ideas for next year's cases
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CI: density-diagnostics are sensitive to charge state distibutionffi liabla ries
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CI: Accurately fitting Heb requires actual line shape theory
rather than common (and rough) approximations
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The HO line shape depends on opacity, collisional broadening, and Stark mixing with
the dipole-forbidden 1s2 ('S) — 1s3s (1S) transition few models included all effects!
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But continuum lowering does not uniquely constrain spectra

XFEL energy = 1580 eV
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XFEL energy = 165G eV
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The intensity distributions of the predicted spectra span an enormous range, with
ambiguous dependence on the CL theory implemented and other model variations



The fluorescence emission depends on model structure as well
as the treatment of continuum lowering
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While some models that use SP/Is predict intensity distributions similar to SCFLY/EK, it is
not clear that any would fit the experimental data as well with opacity/beam profiles included.



Al: Steady-state charge state distributions are clearly
dependent on continuum lowering treatment
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Continuum lowering effects can be implemented by reducing ionization
potentials, destroying pressure-perturbed states, or both
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