This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2018-12052C

Current Challenges in Labeled Random Finite
Set Based Distributed Multi-sensor Multi-object
Tracking

Augustus Buonviri, Matthew York, Keith LeGrand, and James Meub
Sandia National Laboratories
1515 Eubank Blvd. SE
Albuquerque, New Mexico 87123
apbuonv@sandia.gov, myork@sandia.gov, kalegra@sandia.gov, and jhmeub@sandia.gov

Abstract— In recent years, increasing interest in
distributed sensing networks has led to a demand
for robust multi-sensor multi-object tracking (MOT)
methods that can take advantage of large quantities
of gathered data. However, distributed sensing has
unique challenges stemming from limited computa-
tional resources, limited bandwidth, and complex
network topology that must be considered within a
given tracking method. Several recently developed
methods that are based upon the random finite set
(RFS) have shown promise as statistically rigorous
approaches to the distributed MOT problem. Among
the most desirable qualities of RFS-based approaches
is that they are derived from a common mathematical
framework, finite set statistics, which provides a basis
for principled fusion of full multi-object probability
distributions. Yet, distributed labeled RFS track-
ing is a still-maturing field of research, and many
practical considerations must be addressed before
large-scale, real-time systems can be implemented.
For example, methods that use label-based fusion
require perfect label consistency of objects across
sensors, which is impossible to guarantee in scal-
able distributed systems. This paper discusses the
significant challenges that distributed tracking using
labeled RFS methods brings. An overview of labeled
RFS filtering is presented, the distributed MOT
problem is characterized, and recent approaches to
distributed labeled RF'S filtering are examined. The
problems that currently prevent implementation of
distributed labeled RF'S trackers in scalable real-time
systems are identified and demonstrated within the
scope of several exemplar scenarios.
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1. Introduction

Multi-sensor multi-object tracking (MOT) is the prob-
lem of tracking an unknown, time-varying number of
partially observable objects using the noise corrupted
measurements produced by multiple sensors. Much of
the recent research on this topic has been dedicated to
the application of Mahler’s finite set statistics (FISST)
and random finite set (RFS) theory to the multi-sensor
MOT problem [1], [2], [3], [4], [5]. The RFS, which is
both random in value and in cardinality, can naturally
model multi-object states and multi-object observations.
Leveraging the RFS and the associated FISST multi-
object calculus, the complexities of MOT are reduced
to mathematically-principled operations on multi-object
density functions, which share many of the properties of
single-object density functions, such as non-negativity
and integration to unity.

In general, approaches to multi-sensor MOT fall into
two categories: centralized and distributed. The advan-
tages and disadvantages of centralized and distributed
architectures are well-documented [6], [7], [8], [9]. The
key advantage of centralized architectures is that they
can achieve optimal performance in estimation accuracy
by using observations from all sensors. One such ex-
ample is the multi-sensor d-generalized labeled multi-
Bernoulli (§-GLMB) filter, which processes all sensor
data collectively in a multi-sensor multi-object Bayes
update [4], [10]. On the other hand, a key disadvantage
of centralized architectures is their poor computational
scalability, specifically in regard to the multi-sensor
measurement-to-track data association problem, which
is NP-hard [10].

By contrast, distributed architectures are inherently sub-
optimal in estimation accuracy but offer better system
scalability by distributing tracking tasks to local sensors,
the outputs of which are later combined through multi-
sensor fusion techniques. The application of labeled RFS
theory in this domain is extremely promising, in part
because principled fusion techniques such as covariance
intersection can be generalized to multi-object distribu-
tions [11]. However, a number of key challenges still need
to be addressed before large-scale distributed labeled
RFS systems can be implemented. For example, sensing
networks in which sensors observe different regions in-
troduce diversity in multi-object density supports, which
has yet to be effectively dealt with by distributed labeled
RFS fusion strategies.

This paper provides an investigation of these issues with
the intent of summarizing the requirements that any



distributed labeled RFS tracking algorithm will need
to satisfy to enable practical implementation in modern
sensing networks. This paper is organized as follows:
Section 2 gives a brief background of labeled RFS fil-
tering, Section 3 provides an overview of the distributed
multi-sensor MOT problem, Section 4 outlines current
distributed labeled RFS fusion strategies, Section 5
explores the challenges of distributed labeled RF'S fusion,
and Section 6 summarizes key takeaways.

2. Overview of Labeled RFS Filtering

The standard notation conventions of labeled RFS fil-
tering literature are adopted for this work. Single-
object and multi-object states are represented by low-
ercase (z,x) and uppercase letters (X, X), respectively.
Labeled states and functions are distinguished from
their unlabeled counterparts by bold (x, X, ) symbols.
Spaces are represented in blackboard bold (X,Z), and
th(e ();lass of all finite subsets of a space X is denoted
F(X).

The multi-object exponential is defined as fX £
[I.ex f(x), where f? £ 0. The set-generalized Kro-
necker delta is defined as

1

54(B) = {0: if A=DB

otherwise -

A labeled state x = (z, ) on XxL consists of a kinematic
state * € X and label ¢ € L. The label portion
of a labeled state can be recovered by the projection

L(x) : X x L — L, where £(x) = L(z,£) = .

RFSs and Labeled RF'Ss

RF'Ss are sets whose cardinalities and values are random.
Formally, a RFS X defined on a space X is a set-valued
random variable with realizations in F(X). A labeled
RFS X defined on X x L, where X is the single-object
state space and L. is the discrete label space, is a RFS
whose states are appended with labels, such that it has
realizations in F(X x LL). The projection £(-) is defined
for labeled RFSs as £(X) £ {£(x) : * € X}, and the
cardinality of any RFS X is denoted as | X|.

The Bayes Multi-object Filter

The Bayes multi-object filter involves recursively refining
information about an evolving set of partially observable
hidden states, which are collectively referred to as a
multi-object state. This process may be logically sep-
arated into two parts: prediction and update.

In prediction, a posterior m on the multi-object state X
is propagated forward to produce a prior 7 on the state
X, where the subscript “4” denotes the next time of
the filtering recursion. This is accomplished through use
of the multi-object Chapman-Kolmogorov equation

7 () = [ FOGIXR(0X, M

where f(X;|X) is the standard multi-object Markov
transition density [8], which accounts for thinning,
Markov shift, and superposition. Note that Equation (1)
involves the use of the set integral [8], which is defined

as
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In the measurement update, the prior density is refined
using the superposition of object measurements and clut-
ter Z to produce the posterior 7. This is accomplished
through application of Bayes’ rule,

i (Xy) = - IZ X )T (X)
T (24X )m (X4 )0X

where g(Z,|X ) is the standard multi-object likelihood
function [12].

Labeled RES Densities

Three common families of labeled RFS distributions are
considered in this work, namely, the §-GLMB, marginal-
ized §-generalized labeled multi-Bernoulli (Md-GLMB),
and labeled multi-Bernoulli (LMB). The most gener-
alized of these distributions, the §-GLMB, is a special
case of the generalized labeled multi-Bernoulli (GLMB)
labeled RFS family and is characterized by its density
function

T(X)=AX) )

(1,6 )eF(L)xE

W95,(£(x)) [p9]

where = is the space of all track-to-measurement associa-
tion histories &, I € F(LL) is a set of object labels, w(!-€)
is the normalized non-negative weight of a pair (I,¢),
p®©(x,¢) is the single-object density of the object with
label ¢, and A(X) is the distinct label indicator defined
as A(X) = dx|(|£(X)[). The label set / association
history pair (I,&) is called a hypothesis, and the associ-

ated weight w/¢) can be interpreted as the probability
of that hypothesis. The §-GLMB has special significance
among the RFSs considered in this work, as it enables
tractable, Bayes-optimal multi-object filtering by virtue
of being conjugate prior with respect to the standard
multi-object likelihood function and closed under the
multi-object Chapman-Kolmogorov equation [12].

The Mo-GLMB density is also a special case of the
GLMB. M6-GLMBs densities may be formed by
marginalizing §-GLMBs densities along distinct label
sets. The MJ-GLMB density function is given as
b'q
w(X) = AX) 3 W) [p0] "
TeF(L)

where w(!) is the normalized non-negative weight of a
label set I and p)(x,¢) is the single-object density of
the target with label ¢. Here, a hypothesis is equivalent
to a unique label set I.

Whereas GLMB densities may be thought of as
“hypothesis-oriented,” LMB, densities are parameterized
by inidivual object identities, and thus can be thought
of as being “track-oriented.” The LMB density takes the
form

w(X) = AX) [1 - oF7E0 (€00 [0] T (2)



where () and p(© (x) are the probability of existence and
density function of an object with label ¢, respectively.
Although MJ-GLMB and LMB filters are not Bayes-
optimal, these approximate forms require less compu-
tational resources and, in many cases, offer estimation
performance comparable to the full GLMB filter. For
a more detailed exposition of the §-GLMB, MJ-GLMB,
and LMB filters, the reader is referred to [12], [13], and
[14], respectively.

Birth Models

Of special relevance to distributed labeled RF'S filtering
is the issue of object birth. In the standard multi-object
Bayes filter, object birth is modeled as part of the multi-
object transition density function. The density of birth
objects can be written in GLMB form as

f5(X) = AX)wp(L(X)) [ps]™

where wp(L) is the probability of the birth label set
L and pp(x, ) is the single-object density of the birth
object with label £. A common assumption made in
recent RFS literature is that target birth follows a
LMB distribution of the form of Equation (2), which
is a special case of the GLMB distribution. The LMB
distribution is parameterized by individual object prob-
abilities of existence and single-object density functions.
While this target-wise parameterization fits neatly into
data-association problems due to its object-wise cost
decomposition, it can prove cumbersome when trying
to formulate an object birth model with little prior
information. Alternatively, a measurement-driven birth
model can be used, which initializes new objects from
measurement data and requires less prior information
[15], [14], [16], [17]. In principle, these methods reduce
the computational and memory demands of modeling
birth in complex scenarios and thus improve filter scal-
ability.

Label Convention

Multiple valid conventions are available for track label-
ing. The simplest method is to treat track labels as
integers: e.g. Ly = {1,2,3} and By = {4,5,6}. Using
this convention, special care must be taken to ensure
that persistent object labels and birth object labels are
distinct at every time step; i.e. Ly NB, = (). Satisfying
this condition is made easier by instead treating a label
as a tuple £ = (k,4), where the first tuple element k is
time of object birth and the second element 7 is an integer
used to distinguish objects born at the same time.

3. The Distributed Multi-sensor MOT
Problem

Distributed multi-sensor MOT is a generalization of
MOT to cases where two or more entities, known as fu-
ston centers, each maintain track data about the current
multi-object state. These data are referred to as local
with respect to the owning fusion center. Fusion centers
communicate data to one another and use fusion to
combine local data with those received from from other
centers. Through the communications links between
them, multiple fusion centers form a sensing network
and each center constitutes a node in that network. In
principle, by fusing information from multiple sources
nodes of a sensing network produce track data that have

lower estimation error than the track data that could be
produced from the information of any individual source.

Within a network, the organization of communications
links between nodes is referred to as a topology. Network
topologies can vary widely depending on the application,
but the topologies considered in this work are fully
distributed and dynamic. A network is fully distributed
when its topology lacks organization; i.e. any node may
communicate with one or more other nodes and these
communications links may be unidirectional or bidirec-
tional, as illustrated in Figure 1. A network is dynamic
when its topology may change over time, where such
changes may be due to node failures, node dynamics,
and commanded changes. Fully distributed and dynamic
sensing networks are generally robust against failures of
individual nodes and enable each node to potentially
have access to all information collected by the network.
The former quality implies fault tolerance of the system,
while the latter enables each node to perform more
informed decision making based on the multi-object
state of interest. Fully distributed and dynamic sensing
networks, which will herein be referred to as distributed
for compactness, are thus well suited for a variety of
applications including space situational awareness [18],
19}, wide-area surveillance [20], and traffic monitoring
21
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Figure 1. Example of a fully distributed network
topology.

It should not be understated the advantage that labeled
RFS filtering brings to the distributed MOT problem.
The ability to fully represent a multi-object state as a
multi-object probability density imparts on labeled RFS
filters a quality unique among MOT methods: the filter-
ing product can be fused in a mathematically principled
way. Traditional track-to-track fusion techniques can
be readily applied to labeled RFS estimates. However,
unlike traditional methods, labeled RFS theory enables a
more principled fusion strategy through the combination
of multi-object densities, which promises greater perfor-
mance.



4. Current Methods for Distributed
Labeled RFS Tracking

Optimal Bayesian fusion of multi-object posterior densi-
ties is known to be of the form

S
H w)(X|Z2))

s
T <X| U Z(S)> x S:lfy
=t w <X| N Z<S>>
s=1

where S is the total number of sensors, Z(*) is the

measurement RFS generated by a sensor s, and 7(*)
is the posterior density maintained by sensor s. How-

ever, the mutual information 7(X|N>_, Z) of the
posteriors grows infinitely over time if successive fusion
is performed and thus becomes intractable to track,
share, and utilize. When the mutual information is
not accounted for, fusion methods can be susceptible
to the error known as double counting in which fusion
will produce estimates that are overly confident due to
correlations in the fused posteriors. As such, robustness
to double counting is a well-known prerequisite for any
functional distributed fusion strategy [7], [22], [23].

One of the key advancements in the development of
RFS fusion strategies was made in 2015 with the proof
that a specific fusion method for multi-object densities
is inherently immune to double counting [24]. Unfortu-
nately, there is wide disagreement in the literature about
what to call this form of fusion. In various places, it
is referred to as Kullback-Leibler averaging (KLA) [24],
[25], generalized covariance intersection (GCI) [11], [26],
Chernoff fusion [27], [28], exponential mixture density
(EMD) fusion [5], [29], logarithmic opinion pooling [30],
and geometric mean density (GMD) fusion [31]. To avoid
confusion, this work uses the term GMD fusion, as it is
highly general, does not suggest specific underlying prin-
ciples, emphasizes its relation to the simpler and more
familiar concept of geometric averaging, and highlights
its parallel to the method of arithmetic mean density
(AMD) fusion. Regardless of name, GMD is among the
earliest principled distributed fusion strategies applied
to labeled RFSs, and it has the weighted form

s)

S 46
7(X) U (ﬂ<5>(X)) ,

where the w(®) are normalized, non-negative weights and
conditioning of the posterior densities on measurement
information is implied. Closed form weighted GMD
fusion rules have been developed for both LMB and
M4-GLMB densities [25]. These rules perform fusion by
fusing density components with matching labels in the
LMB case and components with matching label sets in
the MJ-GLMB case. As such, the rules assume perfect
label consistency (that the same labels correspond to the
same objects) across posteriors. It will be explained in
Section 5 that it is difficult to satisfy this assumption in
practice, and it has been shown in [11] that failure to
ensure label consistency results in a breakdown of direct
GMD fusion.

As stated, the counterpart of GMD fusion is AMD

fusion, which has the weighted form

Just as GMD fusion is an extension of the concept of geo-
metric averaging to probability densities, AMD fusion is
an extension of the concept of arithmetic averaging. As
may be inferred from Equation 3, direct AMD fusion
tends to be computationally cheaper and facilitates
easier implementation when compared to GMD fusion.
AMD fusion has been shown to be more robust to missed
detections and low signal-to-noise ratios in unlabeled
RFS distributed filtering [32].

In order to relax the label consistency requirement of
GMD fusion of labeled RFS densities, it is possible to
perform fusion on the corresponding unlabeled densities.
The method of [11] makes use of multi-Bernoulli (MB)
RFSs, which are the unlabeled equivalent of LMBs [14],
for this purpose. In short, this method involves ap-
proximating J-GLMB distributions as MB distributions,
fusing the MB distributions, and then reconstructing
a 0-GLMB distribution, where the approximation and
reconstruction preserve first-order moments. During the
approximation, the relation of labels to their states is
computed and represented in a probabilistic manner. It
is then used to re-associate labels with the unlabeled
density’s components after fusion. As a result, this
method requires that there be no ambiguity about which
Bernoulli component of the unlabeled MB distribution
a label is associated with, i.e. tracks must be well
separated.

As demonstrated in [33], it is possible to fuse track-to-
measurement data association information, as opposed
to posterior densities. This method relies on the sharing
of cross-entropy information associated with measure-
ments at different nodes. It is the only existing fusion
method known to the authors to enable distributed
0-GLMB filtering where the only approximation made
is the truncation of the filtering density. This method
makes a similar assumption to the discussed GMD fusion
rules [25] in that it assumes the §-GLMB priors at each
node share identical hypotheses and labels.

The labeled RFS fusion methods discussed within this
section each operate within a consensus framework [11],
[25], [33]. Fundamentally, networks operating under
the principle of consensus reach a global agreement
on the output of some process by having each node
iteratively share and fuse its local output in such a way
that the fusion product is increasingly similar across
all properly functioning nodes. This is illustrated in
Figure 2, where four networked nodes iteratively share
and average a set of local values. In this example, the
obvious solution to the averaging problem is five, and
it is clear that all local values in the network converge
to this value as the number of iterations grows. In
consensus networks, new and updated information is
propagated through the network by the iterative sharing
and fusion of information between network neighbors.
Because nodes process data locally, the computational
workload of the global problem is distributed across the
network.
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Figure 2. Example consensus network consisting of
four nodes iteratively sharing and averaging local
values. As the number of iterations approaches infinity,
all local values converge to the true average of the
original local values.

5. Current Challenges in Distributed
Labeled RFS Tracking

Major strides have been made in the last several years
in the development of distributed labeled RFS filtering
techniques. However, several challenges must still be
resolved before distributed labeled RFS tracking can be
implemented in large, practical sensing networks track-
ing large numbers of objects. This section characterizes
and explores these challenges.

Double Counting

It is possible and likely that communications loops may
form in distributed networks, due to their unstructured
and dynamic nature. Such a loop exists when data
can be communicated from a source node to a recipient
node along multiple paths. This gives rise to the well
documented problem of double counting [7], [22], [23],
which is illustrated in Figure 3. Double counting occurs
when data arriving at a recipient from multiple paths or
multiple times along the same path are fused multiple
times as if they were new data. The result is that the
fused data become biased and corrupted. Robustness
against double counting is thus necessary in distributed
networks, and modern fusion strategies are immune to
double counting [11], [23], [24], [25].

99 B C A B C A B C
A B C

s1 A A B C A B C
A B C

Time ’

Figure 3. The double counting phenomenon in a
two-sensor network. S1 and S2 denote Sensor One and
Sensor Two, respectively. The letters represent distinct
track data. Data is shared and combined by the sensors
at each time step, and both sensors develop duplicates

of the original track data as a result.

Label Consistency and Object Birth Models

One of the strongest assumptions of current direct GMD
fusion methods is that all sensors share an identical ob-
ject label space [25]. The most straightforward, although
impractical, approach to guarantee an identical label
space is to enforce a single, global, predefined object
birth model across all sensors. In theory, the use of an
identical birth model across all sensors ensures that the

same potential birth labels are added to each sensor’s
local distribution at each time step. Unfortunately, the
use of a global birth density across all sensor nodes is
practical only for the simplest systems due to issues
related to network size/geographic scalability, label-to-
data assignment consistency, and systems interoperabil-
ity.

Increases in geographic coverage generally result in in-
creased birth object distribution complexity, as shown in
Figure 4a. The birth distribution can remain unchanged
as coverage increases, as in Figure 4b, but this restricts
the formation of new tracks to a specific region of the
state space and is not well-suited for many tracking
applications. Increased birth distribution complexity
is typically not a concern for centralized filtering, but
becomes problematic for distributed systems that require
all sensors to propagate and maintain the distribution.
Clearly it is a waste of resources to propagate and main-
tain birth distribution components that lack statistical
relevance to a sensor’s field of view (FoV) or field of
regard (FoR). A more sensible and scalable approach
is for individual sensors to only model object birth in
their local sensing region. However, label inconsistencies
inevitably develop when different birth models are used
across a network. Moreover, the supports of the multi-
object densities of different sensors are inherently dissim-
ilar when the regions in which those sensors model birth
are dissimilar. Distribution support diversity introduces
complications beyond label consistency, and is discussed
later in this section.

(b)

Figure 4. Illustration of a birth distribution either
increasing in complexity (a) or remaining unchanged
(b) as geographic coverage increases.

For systems where geographic coverage is not a concern,
object birth can still present issues if the birth distri-
bution is highly complex within nodes’ local sensing
regions. Scalability in such scenarios is achieved in
centralized systems through use of measurement-driven
birth models [15], [14], [16], [17]. This is because the
scalability of such models is generally limited by the
number of object births and clutter returns each frame,
not birth density complexity. However, these methods
inevitably lead to label inconsistencies between nodes
due to their adaptivity to local data.

Even when using a unified birth model with consistent
labels, there is no guarantee that labels will be assigned
to objects in a consistent fashion. At a local level,
many options exist for assigning available birth object
labels to local measurement data. To illustrate this,
consider the scenario depicted in Figure 5, in which each
node measures two potential birth objects in the Rio
Grande river. The birth object density is assumed to



Figure 5. Example scenario using two sensors to
track debris in the Rio Grande river. Sensor 1’s FoV
and detections are represented by the blue shaded
region and blue stars, respectively. Sensor 2’s FoV and
detections are represented by the red shaded region and
red stars, respectively. The single-object density
pp(z,¢) is depicted by the contour lines and is assumed
identical for all birth object labels

By = {(k71)7 (k72)a (k:S)}~

be LMB with a label space By = {(k,1), (k,2), (k,3)}

and (i piY) = () = (5P 05Y).
Assuming no clutter and no prior objects, any given
measurement is equally probable to have originated from
each birth object label (k,1), (k,2), and (k,3). In
order to guarantee that densities with consistent labeling
are defined, a total of thirteen label-to-measurement
assignment possibilities must be considered by each sen-
sor. This number grows significantly when more object
births must be considered and/or more measurements
are received. In fact, for the case of no prior objects and
no clutter, the number of unique assignments is given by

Npossible =1+

[B|—1
B Z]! N

2 MI(B = M)\(|Z] - |B| + M)!
M=max(|B|—|2],0) (IB| MN|Z| - |B| + M)

Equation (4) clearly demonstrates the lack of scalability
of this approach. For instance, for |Z| = |B| = 7, there
are 130,922 birth label assignment possibilities that
must be considered to guarantee labeling consistency
with other sensors, and this is further complicated when
clutter and persistent objects exist.

The global birth density requirement needed to sat-
isfy label space consistency is specifically challenging
for ad-hoc sensor networks. The ability for sensing
systems to dynamically form, task, and fuse disjoint
sensor data is critical for responding to new mission
priorities, exercising alternate sensing phenomenologies
against new object types, and incrementally increasing
the sensor network performance. Systems engineering
focus has been on open systems architectures, which
define the physical and data interfaces between sensing
nodes within an arbitrary network. A single global birth
model may not be defined for all mission phases of a
given group of sensing systems. Fusion algorithms that
are agnostic to the filtering recursions should be used to

enable interoperability and label consensus across these
ad-hoc RFS-based sensing networks.

Distribution Support Diversity

For practical reasons, single-sensor tracking systems do
not typically maintain track solutions outside their FoV
or FoR. In a computationally-limited system, it is
a natural decision to prioritize maintenance of object
tracks that can be sensed and limit others through
measurement-driven birth models and track termination
of objects leaving a sensor’s FoR. Employed across a dis-
tributed network of sensors with different and potentially
time-varying FoRs, this practice presents challenges to
RFS fusion, as the multi-object density supports will
inevitably vary across sensors. Simply put, Sensor A’s
solution’s may imply zero probability of object existence
in Sensor B’s FoR simply because Sensor A has never
accessed that area. This diversity in density support is
problematic for both GMD and AMD fusion methods,
as illustrated in Figure 6.

As shown in Figure 6b, GMD fusion results in a density
where all tracks that fall outside the shared support
region are dropped. AMD fusion, on the other hand,
preserves these tracks, yet penalizes them in the same
manner it would for missed detections, as shown in
Figure 6c.

(b) (c)

Figure 6. Illustration of fusion using two
distributions (a) with different supports. Using GMD
fusion (b), object tracks not common to both sensors

are discarded. Using AMD fusion (c¢), object tracks not
common to both sensors are significantly
down-weighted.



Detection and Clutter Variation

Due to stochastic variations in detection and clutter, a
track associated with a given object may be produced
before or after the object appears, as demonstrated

in Figure 7. If an object is misdetected on its first
ArO O X-- X Detect
@ (t3,1)
8
2BF O X—X%-- O No Detect
5 (t2,1)
Cr O—X——X-- O Clutter
(t1,1)

Vv

Time

Figure 7. Illustration of detection and clutter
variation causing different labels to be developed by
different sensors for the same object. The object
appears at time to. Sensor A first detects the object
after its appearance due to missed detection, Sensor B
detects the object at its time of appearance, and Sensor
C has a clutter detection near the object’s birth
location immediately prior to its appearance.

appearance, its corresponding track initialization will be
delayed and its label will reflect a later time of birth.
If a clutter measurement is received prior to a true
object appearance that statistically agrees to the object’s
trajectory, a track may be initialized with a label that
reflects an earlier time of birth. In Figure 7, a single
object is tracked with three distinct labels by different
sensors as a result of differing times of first detection
and clutter. In distributed systems, these variations
between nodes result in tracks nominally associated
with the same object having different labels [11]. This
phenomenon exacerbates the issue of support diversity
and can result in significant cardinality errors when
GMD or AMD fusion methods are used directly.

In GLMB filtering, the number of possible data as-
sociation histories grows exponentially in time. To
maintain computational tractability, the GLMB density
is truncated at each time step by dropping the lowest-
weight hypotheses and renormalizing. This technique
creates additional challenges in multi-sensor fusion due
to variations in object detections between sensors. Sen-
sors that detect different sets of birth objects are likely to
discard hypotheses on undetected birth objects and keep
hypotheses containing only those birth objects that were
detected. As a result, those sensors end up maintaining
hypotheses whose label sets differ only by birth track
labels. Similar to the issue of support diversity, under
these conditions neither direct GMD nor AMD fusion
can produce a hypothesis containing all detected birth
tracks, as these methods only combine hypotheses with
matching label sets.

Bandwidth Constraints

Two of the key considerations in the design of multi-
sensor architectures are whether to share track data or
measurement data, and how often to share these data.
Track data representations are naturally compressive: a
density function can capture the information content of
thousands of observations in a compact form. However,
some number of measurements must be processed before

the track data size becomes smaller than the composite
size of those measurement data [34]. Due the complex
relationship between multi-object density data size and
object cardinality, state dimension, clutter intensity,
detection probability, etc., an exhaustive study of this
question is beyond the scope of this paper. Instead, a
few numerical examples are presented under simplifying
assumptions in order to demonstrate general trends.

The driving consideration is the amount of data
needed to communicate multi-object densities versus
that needed to communicate measurements. It would be
difficult to fairly compare these quantities for hypothesis-
oriented labeled RF'S distributions, because of variability
in the number of hypotheses kept and the variable
object cardinalities within those hypotheses. For ease of
exposition, only LMB densities are considered because
of their simplified data structure. Furthermore, it is
assumed that single-object densities are represented by
Gaussian mixtures (GMs). Each component in an LMB
density consists of a probability of existence, a label,
and a GM with weights, means, and covariance matrices.
Assuming single-precision floating point representations
of these data, the size in bytes of a LMB distribution on
the labels L is

2
NEMB) — 4[| <3 + nam (1 + 75 + %TW» , (5)

where ngyv is the number of GM components, n, is
the dimension of the single-object state vector, and the
three accounts for two-component labels and probabil-
ities of existence. The measurement information, as-
suming a linear measurement model, zero-bias Gaussian
white noise, and state-independent clutter and detection,
would consist of the set of measurement vectors, the
measurement noise covariances, and clutter and missed-
detection probabilities. Again assuming single-precision
floating point representations, the size in bytes of the
measurement information for a set of measurements Z is

N2 = 4(2 4 n, +n,|Z)), (6)

where n, is the dimension of the single-object measure-
ment vector and the two accounts for the probabilities
of clutter and missed detection.

A comparison of Equation (5) and Equation (6) for
a variable number of objects is presented in Figure 8.
The parameters of the comparison are that single-object
densities are comprised of five Gaussian components, the
single-object state vector dimension is six, and the single-
object measurement vector dimension is three. The
assumptions made are that the number of Bernoulli com-
ponents of the LMB matches the number of objects, i.e.
|L| = |X|, and there is no clutter or missed detections.
From Figure 8, it is clear that sharing measurement
data is more efficient than sharing full posterior LMB
distributions, and this would be considerably worse for
hypothesis-oriented labeled RFS distributions or more
complex single-object distributions.

For determination of the frequency at which posterior
distribution sharing and fusion should be performed,
it is useful to consider how many measurements must
accumulate before distribution communication is more
efficient. Using the scenario and assumptions of Figure
8, it is clear that the size of the LMB distribution would
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Figure 8. Plot of data packet size for variable object
cardinality. Values do not consider message headers.
The parameters are ngy = 5, N, = 6, and n, = 3. The
assumptions are |L| = | X| and no clutter or missed
detections.

not change as more measurements are collected. The
distribution’s data size would also not change following
fusion, assuming that GM component pruning and merg-
ing is performed. In contrast, the cumulative size of
the measurement data set grows as new measurements
are collected and as new measurement data sets are
received from other sensors. To capture these effects,
Equation (6) is redefined, assuming constant measure-
ment noise covariance and constant, state-independent
probabilities of clutter and missed detection, as

zwm@:4§:2+nf%§:(1+mwﬁo :

seES keT(s)
(7

where S is the set of indices s of sensors that have
contributed to the measurement data set, T(%) is the set
of time indices k of the measurement sets of sensor s,

and Z ,gs) is the set of measurements at time k of sensor
s. Note that the one in the second summand accounts

for the time corresponding to a measurement set Z ,is).

Figure 9 compares the amount of data accumulated over
successive observations of a constant number of objects
for density and measurement fusion. All other parame-
ters and assumptions of this comparison are the same as
those of the comparison in Figure 8. Figure 9 suggests
that measurement communication and fusion will almost
always be more efficient than density communication and
fusion for a single sensor or single fusion iteration. If
observations were taken at a frequency of 1Hz a system
would have to wait about 45s to accumulate enough
measurement data for posterior density communication
to be more efficient. Such a low frequency of density
fusion would undermine the benefits of distributed track-
ing in most practical systems. In general, the severe
extent to which measurement communication is more
efficient than density communication calls into question
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Figure 9. Plot of data packet size accumulated over
time. Values do not consider message headers. The
solid line is for |X| = 20, the dashed line is for
|X] =100, and the dot-dash line is for |X| = 250. The
parameters are ngy = 5, np = 6, |S| =1, and n, = 3.
The assumptions are |L| = | X|, constant object
cardinality, and no clutter or missed detections.

the utility of density fusion in bandwidth restricted
systems.

The effects of the assumptions of this comparison must
be considered before definitive conclusions can be drawn.
On the side of density communication and fusion, the
size the density is a highly conservative approximation
in this scenario. Typically, the number of Bernoulli
components of a LMB density exceeds the number of
objects actually present due to clutter and object birth,
and a larger, more realistic component count would
increase the density’s size considerably. If hypothesis-
oriented labeled RF'S densities were used in place of LMB
densities, the data size of each density component would
be significantly greater. Similarly, more complex single-
object densities would produce larger data sizes.

On the other hand, the measurement set data size is also
a conservative estimate. The use of complex measure-
ment models or time-dependent error covariances would
increase measurement set data size, as model parameters
and/or a set of error covariances would need to be
communicated. More significantly, state-dependent clut-
ter or missed detection probabilities would require the
communication of full probability hypothesis densitys
(PHDs) or, if there is time dependence in addition
to state dependence, sets of PHDs. The addition of
these densities to the communicated measurement data
set would drastically increase the set’s size. Lastly,
communication of single-sensor data sets would only
propagate information between network neighbors. To
fully exploit the advantages of distributed sensing, sys-
tems performing measurement fusion would have to
aggregate and communicate sets of measurements from
many sensors, which essentially scales the size of the
collective measurement data set according to the number
of contributing sensors.



It is beyond the scope of this work to explore every
intricacy of the relationship between measurement and
density communication efficiency in full, but its impor-
tance to future research in both labeled and unlabeled
distributed RFS filtering is paramount. The choice of
fusing measurements or fusing posterior densities and
the frequencies at which each should be done would be
among the central informing decisions in the design of
any real-world system. Considering this importance,
more in depth study of this relationship is required.

Track Management

Given finite local resources, any node in a distributed
sensing system has a finite number of tracks it can man-
age simultaneously in real time, where track manage-
ment refers to the propagation and maintenance of track
data. Considering that each node has some state space
region it is interested in, e.g. its FoR, it is reasonable
for a node whose maintenance limits are stressed by
the number of tracks to prioritize maintenance of tracks
that are in its region of interest and drop tracks that
are not. Alternatively, local track maintenance limits
may be improved through the use of approximations
that reduce the burdens of track management, e.g. GM
component merging and pruning. However, the extent
of such improvements is limited, as extensive approx-
imation will invariably degrade tracking performance
below acceptable levels. In distributed systems, sensors
will be forced to drop tracks to suit local resources as
global object cardinality grows. As a result of dropped
tracks, label consistency is violated and support diversity
develops, which prohibits use of direct AMD and GMD
fusion as discussed.

This concern is illustrated in Figure 10, where two satel-
lites observe objects on the ground. Consider the case
where both satellites are tasked with tracking objects
they pass over, but neither has the resources necessary
to manage all tracks generated by the satellite pair. The
satellites would need to make intelligent decisions on
which tracks to manage. One approach might be to drop
or reject for fusion tracks that could not be observed by
a satellite in a reasonable time frame, such as the next
orbit, because the satellite would be unable to provide
useful new information on the track. The particular
configuration of the satellites in Figure 10 demonstrates
this point, as the equator orbiting satellite would be
unable to observe objects at the poles, and it would
thus be unreasonable and unhelpful for that satellite to
maintain tracks of those objects.

Sensor Trust

It is standard practice in existing distributed sensing sys-
tems to weight local track data during fusion according
to the relative accuracy of the systems and processes
that produced them. Commonly, this is referred to as
trust-based weighting [23]. A key difference between
trust-based weighting in distributed labeled RFS sys-
tems and traditional systems stems from the lack of
mathematically rigorous representations of uncertainty
in the multi-object sense, e.g. data association and
existence uncertainty, in the track data of traditional
systems. Trust-weights in traditional track-to-track fu-
sion systems are often assigned to account for this lack of
principled uncertainty data. For example, such systems
may down-weight the data produced by a sensor tracking
a large number of objects or which has a high clutter rate,

Figure 10. Illustration of track management
concerns. Two satellites observe ground objects,
represented by x’s, and perform fusion when access is
available. Objects share the color of the satellite that
may observe them in its next orbit. Objects observable
by both satellites in the next orbit are colored green.

because these conditions cause greater data association
uncertainty. In contrast, labeled RFS densities directly
and accurately capture multi-object uncertainties. It
would therefore be erroneous to consider multi-object
uncertainties during weight assignment in distributed
labeled RFS tracking systems. Issues such as this high-
light the importance of establishing the use-cases and
potential hazards of trust-based weighting in distributed
labeled RFS systems.

The most readily identifiable use-case of trust-based
weighting in labeled RFS systems is that of networks
comprised of heterogeneous nodes. Resource differences
across such nodes can cause modeling and filtering fi-
delity to vary significantly, and this variation may change
dynamically over time. Consider a sensor performing
labeled RFS tracking with a multiple-motion model.
Such a system requires more computational resources
to accommodate the additional uncertainty of object
motion mode. In moments of increased object numbers,
a resource-limited sensor might reduce the motion-model
fidelity of the tracker in order to accommodate the higher
number of objects. Such variations in fidelity cannot be
captured in the uncertainty of local filtering densities.
As a result, the globally convergent tracking solution can
become biased and corrupted. By down-weighting those
densities produced by heavier approximation, these ef-
fects can be reduced or effectively eliminated.

An issue involving trust-based weighting that has, to the
authors’ knowledge, not been discussed in the context of
distributed labeled RFS fusion is that of bottlenecking.
This term is used to describe the phenomena in which
severely down-weighting a node’s density with respect
to those of its neighbors can slow or effectively stop
the flow of information through a network. Consider
a bandwidth restricted system that heavily truncates
its filtering density to maintain real-time operation of



a consensus-based sensing network. Assuming weights
are kept constant during fusion, if this system’s density
is too heavily down-weighted, the densities of neigh-
boring nodes with higher weights will overshadow the
low-weight density during fusion. As a result of this
overshadowing, little or essentially no information will be
fused from the low-weight node into the densities of its
neighbors. This phenomenon is illustrated in Figure 11
by the proxy example of a distributed network that
iteratively takes the weighted average of nodes’ local
values. As in Figure 11, if a low-weight node provides
the only link between two sections of a network graph,
those sections effectively cannot communicate.

=2 xr = 2.215 x =5.179
w = 0.499 w = 0.499 w = 0.499
A A A
4 Y L 2
x =50 x = 5.179 z =5.179
w = 0.002 w = 0.002 w = 0.002
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r=28 x = 8.143 xz =5.179
w = 0.499 w = 0.499 w = 0.499
0 3 00
Iterations ’

Figure 11. Illustration of the bottlenecking effect in a
weighted averaging network. A node’s value is denoted
x and that value’s weight in each averaging is denoted
w. The central (bottleneck) node almost immediately
averages to the convergent solution, but the outer
nodes do not reach 95% accuracy until over 600
iterations have passed.

The development of bottlenecks in a network may be un-
avoidable due to environmental constraints and platform
dynamics. However, it may be possible to mitigate their
effects. Just as nodes neighboring a bottleneck over-
shadow the bottleneck’s density with their own during
fusion, the bottleneck has its local density overshadowed
by those of its neighbors after some number of fusion
iterations. Therefore, trust in the bottleneck’s density
can be increased with each fusion, as its original low-
trust information has a diminishingly small presence
relative to the high-trust information of its neighbors.
As the weight increases, the neighboring nodes will in-
creasingly incorporate information from the bottleneck.
Thus, information from either side of the bottleneck
can efficiently disseminate to the entire network, while
information originating from the bottleneck maintains
a reduced presence. Figure 12 illustrates this approach
applied to the proxy example of Figure 11.

Any number of use-cases may exist for trust-based
weighting in distributed labeled RFS systems, and this
work makes no attempt to exhaustively enumerate them.
In identifying use cases, it is necessary to consider the
behavior and needs of a particular system to determine
the most effective weighting strategy, while keeping in
mind the unique attributes of multi-object densities
as compared to traditional track data representations.
Similarly, the pitfalls of trust-based weighting in these
systems are likely many and mostly unknown. The
response of a system’s behavior to a particular weighting
strategy must be analyzed to determine if the strategy
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Figure 12. Tllustration of reduction of the
bottlenecking effect in a weighted averaging network. A
node’s value is denoted x and that value’s weight in
each averaging is denoted w. Weights are averaged
with neighboring weights and re-normalized after each
iteration. All nodes reach 95% accuracy by the 4th
iteration. The convergent solution is altered by weight
averaging, but this error can be reduced by delaying
when that averaging is started.

produces the intended results while maintaining satisfac-
tory overall system performance.

6. Summary

The principled foundations upon which labeled random
finite set (RFS) tracking is built allows for its application
to highly complex problems that other multi-object
tracking (MOT) approaches struggle or fail to address.
Among these is the problem of large scale distributed
MOT of large numbers of objects. Successful applica-
tion of labeled RFS tracking to this problem requires
principled multi-sensor fusion techniques, which can be
accomplished within the RFS framework through either
measurement fusion or multi-object posterior density
fusion. These methods are particularly appealing as
their results can be proven to lower estimation error
when compared to single-sensor solutions. However,
many practical considerations need to be addressed for
these techniques to be useful in real world systems.

In this work, several of the unique challenges that the
distributed MOT problem presents were explored within
the context of labeled RFS methods. The label consis-
tency assumption of the popular geometric mean density
(GMD) fusion strategy proves to be very problematic
due to issues related to object birth models, distribu-
tion support diversity, geographic scalability, systems
interoperability, and stochastic variations in clutter and
detections. It was demonstrated that it is infeasible to
ensure consistent labeling of new objects in distributed
systems of practical scale. Thus, GMD fusion cannot
be directly applied in many cases and alternatives or
adaptations need to be used. The development of
tracking methods that are robust to label inconsistencies
is an important area for future distributed labeled RFS
tracking research.

Additionally, several other aspects of distributed labeled
RFS tracking have been examined. Concerns such as
bandwidth constraints, track management, and sensor
trust were discussed and characterized. It was shown



that the utility of posterior density fusion is disputable
from the bandwidth perspective, as communication of
raw measurements will almost always be more efficient
than communication of posterior densities. How these
efficiencies evolve over time and with propagation of
data through a network is highly complex and becomes
increasingly difficult to analyze as simplifying assump-
tions are relaxed. Further study of this problem is
necessary to show that posterior density fusion is a
practical option for bandwidth-limited systems and, in
particular, experimental implementations are needed to
draw definitive conclusions.
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