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Nanocrystalline Alloys: Fatigue and Fracture ()=

= Improved fatigue resistance compared to
coarse grain counterparts

" Progressive microstructural changes with o a
cyclic loading, often below yield stress NS AT

N, *

Boyce and Padilla, Met Trans A, 11 (2011)

= Fatigue in nanocrystalline metals

= Grain boundary migration and grain
growth

= Crack initiation

= What are the underlying mechanisms
associated with these phenomena?

* Insitu TEM deformation techniques

provide the spatial resolution needed to
investigate these questions

* |deally coupled with bulk scale testing
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In situ Quantitative Mechanical Testing ) i,
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Hysitron PI195 In Situ Nanoindentation TEM Holder
= Sub nanometer displacement resolution
= Quantitative force information with pN resolution ® Concurrent real-time imaging

Nanoindentation Micro Tension Bars

* A variety of sample geometries
* Load functions examined at ISTEM:
1) Indentation
2) Tension
3) Fatigue
4) Creep (irradiation and thermal)
5) Compression
6) Future: Nanowear

Nanopillars Notched Bar




Precession Electron Diffraction (PED) Microscopy (i) &
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Advantages

* < 8 nm spatial resolution (LaB6)
< 2 nm spatial resolution (FEG)
Near kinematical electron diffraction
Symmetry ambiguities are resolved
Fast and automated acquisition

- . .

% NanoMEGAS

Advanced Tools for electron diffraction

Chris Own, PhD Dissertation, Northwestern University, 2004 Slide courtesy: K. J. Ganesh, K. Hattar



Tension Specimen Fabrication ) i,
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* Hysitron “Push-to-Pull” devices
o Microfabricated Si test frame

o Ptfilm (40nm) floated onto device, then FIB milled. Final FIB cut: minimize I-beam
imaging - minimize Ga
o Notched test 2 improved “chance” of observing crack initiation and propagation

= Nearly pure tension, uniform cross sectional area, stable load frame
= Sensitive to shape of edges, issues with magnetic materials
F F

applied= measured_Fspring




Notched NC Pt: In-situ Cyclic Loading/Fatigue (@)
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Loading direction I

Notch length = 950 nm, Gauge width = 3.3 um
Notch created by FIB “line”
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Methodology: Cyclic Loading in TEM Protocol () e
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« Motion blur - loading frequency exceeded the frame rate (15 frames/s 13 cycles
per frame)




Advantages of PED coupled In-situ Experimentsg) =

Loading directio?
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» Ability to couple grain orientation and grain boundary misorientation with crack
propagation
» Feasible to track relative grain rotation or variation in GB misorientation
under loading
PED orientation maps pre-, intermediate, and post- in-situ mechanical test
can assist in deconvoluting possible NC stress assisted grain growth
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Crack Initiation at Notch ) i
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120,000 total cycles 123,600 cycles 164,000 cycles

: " «— Crack 1

Crack 2
grows

« Crack initiation and initial propagation at notch tip

« Second crack initiates at ~ 90° to first crack, both 45° to notch tip
normal

 Intra-granular crack (crack #2) propagates until reaching initial grain
boundary and is subsequently arrested
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Crack Propagation, Closure, and Re-Direction OES
564,000 cycles (A) 644,000 cycles (B)
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Cyclic Loading: GB Misorientation Changes (i) &&=,

* Deformation and stress intensity of
cyclic loaded crack tip induced
modification (change in macroscopic
misorientation) of the coherent 23

e Decrease in 23 coherency from
nearly ideal twin misorientation to
greater than 4° deviation likely
associated:

* Grain rotation and dislocation-
GB impingement

GB-1 (Twin Misorientation | Deviation
Boundary 23) from Ideal 23
Prior to Cyclic 59.9°[11 1] 0.8°
Loading
w . Crack Impinges 56.9[7 7 6] 4.9°
23 Of Interest (“GB_1 u) GB at Grains 1-2

PED map at 124,000 total cycles 11



Cyclic loading: transgranular crack propagation ) =
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. Mean load: 135 uN; Amplitude load: 35 uN * da/dN = 1.7 x 10 m/cycle

- 200 Hz, 200s test (15 fps 1k x 1k camera) ° Non-linear crack extension rate
» Crack propagation path changes

direction 12




Fatigue crack propagation and arrest (M) &

(a) 800,000 prev. cycles (b) 802,000 cycles (c) 820,000 cycles

Multiple
directions of
crack front

(d) 840,000 cycles (e) 856,000 cycles (f) 880,000icycles

Rapid propagation — transgranular between N = 800K to ~ 854K

After 854K cycles, cyclic loading crack impinges grain boundary — no further
propagation

Transgranular crack propagation non-linear




Fatigue crack propagation and arrest ) i,
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« Rapid propagation — intragranular between N = 800K to ~ 854K
» After 854K cycles, cyclic loading crack impinges grain boundary — no further
propagation for addition ~106K cycles

« Transgranular crack propagation non-linear: “serpentine fashion” 14




Transgranular crack propagation: non-linear (i)
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(c) 820,000 cycles
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Ohr, Mat Sci & Eng72
(1985) 1-35

» Classic in-situ tensile straining work by Ohr and colleagues observe zig-zag crack
propagation - associated with emission of dislocations on alternating slip planes

* Non-uniform “fatigue” crack propagation observed here transgranular has similar alternating
crack propagation fronts — possible mechanisms still under review
» PED data provides opportunity to associate with crystal orientation (and subsequent slip plane

normals) 15
————




Unstable propagation and failure ) i,
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960,000 total cycles 960,000 cycles (+1 frame)
Rapid propagation - failure

New sawtooth region

previous cyclic

S—crack
propagation

Arrest at GB

Confirmed
location of

\
e Sawtooth type region “pops” Ou:iﬁga.
catastrophic crack propagation :

« Unstable propagation of crack occurred just under 1M total cycles

« Sample failed on initial ramp (~100 uN) to monotonic mean load (135 uN)
at 960,000 cycles

« Facture surface consistent with location of previous fatigue crack
propagation

 Indications of “sawtooth” intra-grain plasticity during this rapid failure
mechanism
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Discussion and Conclusions: ) i
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= PI-95 in tension-tension “fatigue” mode (nanoDMA)
provide wealth of new in-situ TEM mechanical
testing potential

= |deally coupled with ACOM TEM or other
methods to enhance analysis

= Dual crack tip initiation observed at notch

= Cyclic load induced crack propagation is effectively
arrested at GBs — indications of effectiveness of NC
materials under fatigue

= ~ 2 pm/cycle crack growth rate (dA/dN)!
= Non-uniform, non-straight crack propagation -

Saw-tooth classically explained by

o - : local plastic flow — (e.g. Wilsdorf
zig-zag" motion and Kumar et al. Acta 2003)

= Localized deformation: Coupled ACOM-TEM
indicates grain rotation, dislocation based plasticity
active > clear change in £3 coherency in front of
crack tip

= Failure associated with classical in-situ TEM
mechanical “saw-tooth” plasticity
17




Future In-Situ Mechanical Testing Directions )i
at I'TEM Facility
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= High cycle fatigue — more detailed
qguantification of grain growth

= QOther model alloys, multi-layers, alloying
effects (e.g. Pt-10Au vs. Pt)

= Creep, radiation-induced creep
= TEM notched three point bend
= Under development capabilities:

= DTEM and/or movie mode with

Images from Integrated Dynamic Electron Solutions IDES): crack propagation for imprOVEd
temporal resolution under high Hz

cyclic loading

Combining the precision of Hysitron’s Pico-indenter
with harsh environments capable in Sandia’s In-situ
lon Irradiation TEM a wealth of previously impossible
experiments are now feasible.




Summary: ) e
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On-going efforts to combining PED/ACOM with quantitative mechanical testing
provides new correlations between structure-property relationships with
unprecedented orientation and mechanical property information.
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