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Nanocrystalline Alloys: Fatigue and Fracture

• Improved fatigue resistance compared to
coarse grain counterparts

• Progressive microstructural changes with
cyclic loading, often below yield stress

• Fatigue in nanocrystalline metals

• Grain boundary migration and grain
growth

• Crack initiation

• What are the underlying mechanisms
associated with these phenomena?

• In situ TEM deformation techniques
provide the spatial resolution needed to
investigate these questions

• Ideally coupled with bulk scale testing
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In situ Quantitative Mechanical Testing

Hysitron PI95 In Situ Nanoindentation TEM Holder

• Sub nanometer displacement resolution

• Quantitative force information with FIN resolution

Nanoindentation

Nanopillars
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• Concurrent real-time imaging

• A variety of sample geometries

• Load functions examined at I3TEM:

1) Indentation

2) Tension

3) Fatigue

4) Creep (irradiation and thermal)

5) Compression

6) Future: Nanowear



Precession Electron Diffraction (PED) Microscopy
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Precessed

Advantages 

• < 8 nm spatial resolution (LaB6)
• < 2 nm spatial resolution (FEG)
• Near kinematical electron diffraction
• Symmetry ambiguities are resolved
• Fast and automated acquisition
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Tension Specimen Fabrication

• Hysitron "Push-to-Pull" devices

Sandia
National
Laboratories

o Microfabricated Si test frame

o Pt film (40nm) floated onto device, then FIB milled. Final FIB cut: minimize I-beam
imaging minimize Ga

o Notched test improved "chance" of observing crack initiation and propagation

• Nearly pure tension, uniform cross sectional area, stable load frame
• Sensitive to shape of edges, issues with magnetic materials
• -Fapplied=Fmeasured F sprIng



Notched NC Pt: In-situ Cyclic Loading/Fatigue

• Notch length = 950 nm, Gauge width = 3.3 um
• Notch created by FIB "line"
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Methodology: Cyclic Loading in TEM Protocol
1 6 0

Mean load (Pmean) = 135 uN

Amplitude load (Pamp) = 35 uN
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• Motion blur 4 loading frequency exceeded the frame rate (15 frames/s 413 cycles
per frame)
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Advantages of PED coupled In-situ Experiments

:t 11 ocii

• Ability to couple grain orientation and grain boundary misorientation with crack
propagation
• Feasible to track relative grain rotation or variation in GB misorientation

under loading
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PED orientation maps pre-, intermediate, and post- in-situ mechanical test
can assist in deconvoluting possible NC stress assisted grain growth
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Crack Initiation at Notch

120,000 total cycles

i—Crack 1

Prn = 80 uN

Panip = 30 uN
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Crack 2
grows

• Crack initiation and initial propagation at notch tip
• Second crack initiates at - 90° to first crack, both 45° to notch tip

normal
• lntra-granular crack (crack #2) propagates until reaching initial grain

boundary and is subsequently arrested
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Crack Propagation, Closure, and Re-Direction
564,000 cycles (A)

724,000 cycles (C)

644,000 cycles (B)
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Cyclic Loading: GB Misorientation Changes

Z3 of interest ("GB-1")

PED map at 124,000 total cycles
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• Deformation and stress intensity of
cyclic loaded crack tip induced
modification (change in macroscopic
misorientation) of the coherent X3

• Decrease in X3 coherency from
nearly ideal twin misorientation to

greater than 4° deviation likely
associated:
• Grain rotation and dislocation-

GB impingement

GB-1 (Twin
Boundary E3)

Misorientation Deviation
from ideal E3

Prior to Cyclic
Loading

59.9° [1 1 1] 0.8 °

Crack Impinges
GB at Grains 1-2

56.9 [776] 4.9 °
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Cyclic loading: transgranular crack propagation

8x playback speed
N = 40,000 in 200s
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• Mean load: 135 uN; Amplitude load: 35 uN • da/dN = 1.7 x 1012 m/cycle

• 200 Hz, 200s test (15 fps lkx lk camera) • Non-linear crack extension rate
• Crack propagation path changes
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Fatigue crack propagation and arrest
(a) 800,000 prev. cycles

100 nm

(d) 840,000 cycles

(c) 820,000 cycles

(f) 880,000 cycles
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Multiple
directions of
crack front

• Rapid propagation — transgranular between N = 800K to — 854K

• After 854K cycles, cyclic loading crack impinges grain boundary — no further

propagation
• Transgranular crack propagation non-linear 13



Fatigue crack propagation and arrest
time (s)
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• Rapid propagation — intragranular between N = 800K to — 854K
• After 854K cycles, cyclic loading crack impinges grain boundary —

propagation for addition —106K cycles
• Transgranular crack propagation non-linear: "serpentine fashion"
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Transgranular crack propagation: non-linear
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Ohr, Mat Sci & Eng72
(1985) 1-35

• Classic in-situ tensile straining work by Ohr and colleagues observe zig-zag crack
propagation 4 associated with emission of dislocations on alternating slip planes
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• Non-uniform "fatigue" crack propagation observed here transgranular has similar alternating
crack propagation fronts — possible mechanisms still under review

• PED data provides opportunity to associate with crystal orientation (and subsequent slip plane
normals) 15



Unstable propagation and failure

960,000 total cycles

Arrest at GB

960,000 cycles (+1 frame)
Rapid propagation - failure

Sawtooth type region "pops" out duri
catastrophic crack propagation

100 nm
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New sawtooth region

Confirmed
location of
previous cyclic

1-crack
propagation

• Unstable propagation of crack occurred just under 1M total cycles
• Sample failed on initial ramp (-100 uN) to monotonic mean load (135 uN)

at 960,000 cycles
• Facture surface consistent with location of previous fatigue crack

propagation
• Indications of "sawtooth" intra-grain plasticity during this rapid failure

mechanism
16



Discussion and Conclusions:

• PI-95 in tension-tension "fatigue" mode (nanoDMA)

provide wealth of new in-situ TEM mechanical

testing potential

• Ideally coupled with ACOM TEM or other

methods to enhance analysis

• Dual crack tip initiation observed at notch

• Cyclic load induced crack propagation is effectively

arrested at GBs — indications of effectiveness of NC

materials under fatigue

• — 2 pm/cycle crack growth rate (dA/dN)!

• Non-uniform, non-straight crack propagation —

"zig-zag" motion

• Localized deformation: Coupled ACOM-TEM

indicates grain rotation, dislocation based plasticity

active clear change in E3 coherency in front of
crack tip

• Failure associated with classical in-situ TEM

mechanical "saw-tooth" plasticity

Saw-tooth classically explained by
local plastic flow — (e.g. Wilsdorf
and Kumar et al. Acta 2003)

Sandia
National
Laboratories

17



Future In-Situ Mechanical Testing Directions

at I3TEM Facility
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High cycle fatigue — more detailed
quantification of grain growth

Other model alloys, multi-layers, alloying

effects (e.g. Pt-10Au vs. Pt)

Creep, radiation-induced creep

TEM notched three point bend

Under development capabilities:

DTEM and/or movie mode with
crack propagation for improved
temporal resolution under high Hz
cyclic loading

Combining the precision of Hysitron's Pico-indenter
with harsh environments capable in Sandia's In-situ
Ion Irradiation TEM a wealth of previously impossible

l experiments are now feasible.
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On-going efforts to combining PED/ACOM with quantitative mechanical testing
provides new correlations between structure-property relationships with
unprecedented orientation and mechanical property information.
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