This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2018-12003C

Deprecating & removing most of
Tpetra’s template parameters

Mark Hoemmen, on behalf of the Tpetra Team
Trilinos Users” Group meeting
October 2018

U.8. DEPARTMENT OF UV YA =)
@ E"ERGY .v" Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
Ateint Wectinr Secelyy fulelitation subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.




Quotes ) 2=

“The easiest way to make Trilinos build faster would be to
rename all .cpp files to .c, and fix the resulting syntax errors.” —
Jed Brown

“I actually enjoy complexity that’s empowering. If it challenges
me, the complexity is very pleasant. But sometimes | must deal
with complexity that’s disempowering. The effort | invest to
understand that complexity is tedious work. It doesn't add
anything to my abilities.” — Ward Cunningham

“Fools ignore complexity. Pragmatists suffer it. Some can avoid
it. Geniuses remove it.” — Alan Perlis

2




TL;DR Plan to purge LO, GO, & Node @&z

1. Fix solver packages so they can build with GO=int OFF
= Epetra & Tpetra support w/ GO=int OFF?
= Make sure all tests build & run (some disabled now)
Forbid CMake options enabling multiple GO or Node types
static_assert that template arguments are enabled types

Add “TpetraNew” replacement classes w/ desired interface
= Reimplement existing “TpetraOld” classes using new ones
= Concurrently add New tests & migrate Old tests

5. Concurrently introduce new interfaces in solver pkgs

Deprecate TpetraOld & replace w/ TpetraNew (how: TBD)
= Make Tpetra{Old & New} interoperable?

= Trilinos’ release schedule & policy changes? Version macros?
3




Why bother? ) .

= Most Tpetra template parameters add very little value

= LO, GO: If we only ever use 1 value of “class T”, just make it a typedef

Node: We understand heterogeneous computing better now

= Unneeded template parameters inflate build times & sizes

Can’t hide implementations of templated classes

Enable another GO type =» rebuild all Trilinos thru MuelLu & Stokhos
Executable & libraries >4 GB

Need 64-bit linkers, else linker crashes

20-min single-file build times (now; in 2015 we crashed laptops)

= Mitigations make build system complex & brittle




What’s the point of templates? UL

= Compile-time polymorphism

= Compile time: Can’t {use, afford} virtual method dispatch
= Polymorphism: Need “class T” to work for different T

= Multiple T in the same build, like std::vector<T>

= QOtherwise, make T a configure-time typedef

= |s polymorphism really a requirement?
= Or only a convenience for testing?
= QOr are we just confusing templates w/ configure-time options?
= Ask this for each template parameter separately

= QOpen or closed polymorphism?
= “Open”: Unbounded (tho SFINAE-constrained) set of valid types
= “Closed”: Trilinos explicitly allows finite set of types

5




Templating adds build complexity @&,

= Can’t hide implementations of templated classes
= Partial work-around: Explicit template instantiation (ETI)

= Speeds up building code that uses Tpetra classes & functions

= Makes build system obfuscated & brittle
" e.g., {decl,def}.hpp, auto-gen’d .cpp, macros
= Some of these needed so .cpp files build in <=2 GB & <5 mins
= Remember when we tried to outsource a major ETl change?
= Complicates app config & use (bjam)
= Doesn’t solve “add another GO type, rebuild all of Trilinos” problem;
in fact, makes this worse for Trilinos developers

= |mplications for open vs. closed polymorphism...




Trilinos: Closed polymorphism UL

= Trilinos” ETI requires closed polymorphism
= Must know set of types at configure time, for which you want to
instantiate classes & functions
= Trilinos has been depending more on configure-time
knowledge of types, even w/out ETI
= Packages use “ETI” macros to define tests, even w/ ETI OFF
= (We've purged hacky tests that include _def &/or require ETI OFF)
= “Solver factory” dependency injection & inversion (DIl)

= “extern template” ETI approach relaxes this, but:
= Only get build time benefit for closed set; DIl too
= Can’t hide implementation (e.g., users see header files)

= Christian & | first tried this in kokkos-kernels, but k-k & even Kokkos
(for ViewCopy & ViewtFill) starting to favor an “ETl-only” approach



\"‘.ﬂ% ms‘ay

gy

)

\fi\

.LF:% T"

Put Tpetra’s template parameters on trial

Look one-by-one at Scalar, LocalOrdinal, GlobalOrdinal, & Node




Scalar & Packet live: Both add value @2

= Mixed-precision arithmetic (original Tpetra design goal)

= Some features removed over time to reduce build complexity
= CrsMatrix’s templated local sparse mat-vec & local triangular solve
= |fpack2 Container templated apply

= Still possible with Operator interface (matrix Scalar != vector Scalar)
= |nteresting features like automatic differentiation (AD)
= Large apps use multiple Scalar types in 1 build

= double & complex<double>
= double & AD

= DistObject’s “Packet” a key part of Petra Object Model

= Decouples boundary exchange implementation from data structure




LO & GO die: Little value, high cost @&

= LO: LocalOrdinal (type of local indices)
= Stored in sparse matrices; used in computational kernels

= Flexibility could pay: Save memory/time vs. large single-process solve

= But: 64-bit LO doesn’t build (1 externally contributed PR touched all of
Trilinos, except for Kokkos (where it matters), but added no tests)

= |nterface could have hidden storage representation mostly from
users, just like Tpetra did once w/ CRS row offset type

= GO: GlobalOrdinal (type of global indices)
= Why would you want anything other than int64_t ?
= |f you store & use GO a lot, you're slow anyway
= Mixing multiple (LO,GO) in one build?
= QOld Ifpack2 Container example: Intraprocess domain decomp

= But: GO causes most build complexity & outstanding issues
10




Node dies: Wrong model, high cost @&

= QOriginal heterogeneity model: Per object
= Node determines memory & execution spaces (anachronism)
= Rarely used (Stokhos LDRD, CASL VERA), mainly thru clone()
= HybridPlatform (per-process choice) never used, hard to load balance
= True concurrency never tested & likely broken due to MPI
= Node: leftover from Chris Baker’s Kokkos 1.0

= Proposed new model: Per kernel, not per object
= Choose default Kokkos exec. (& memory) space(s) at config time
= Users may ask to view an object’s data in a given memory space

= Users may give each kernel an optional execution space instance
= May use enum / wrapper, to avoid exposing implementation

11
-



Must break backwards compatibility® .

= Can’t change template parameters w/out breakage
= We tried using type aliases to hide/ease changes

= Make e.g., Tpetra::Vector an alias to Tpetra::Classes::Vector

= Use C++11 parameter pack & fancy deduction to let us deprecate &
remove template parameters w/out changes to user code

~ 200 LOC, fancy

template<class ... Args>
using Vector =

= Problem: Partial specialization doesn’t take type aliases
= Breaks Belos::MultiVecTraits & other traits classes

= Technique thus not a complete solution; can’t hide “Classes::SCLASS"

12
-



Remaining questions ) .

= Epetra & Tpetra both enabled in Amesos2 & Xpetra?
= Amesos2 & Xpetra both define wrappers / adapters for {E, T}petra
= Wrappers take same template parameters as Tpetra
= Wrappers do no index conversion: Wrappers’ GO == Tpetra’s GO
= Problem: Epetra requires GO=int in the wrapper

= Do users ever need to enable Epetra, & Tpetra with GO !=int?
* |f so, must change wrappers to do index conversion
= Muelu willing to exclude this

= 1 app needs Amesos2 w/ both Epetra & Tpetra enabled; still waiting to
hear whether they need Tpetra w/ GO != int in this case

= How to manage backwards compatibility?
= Need Trilinos to state & follow a release & deprecation policy

= |f not, Tpetra will need to imitate Kokkos in defining its own policy &

release cycle
13



Questions?




Concurrent build times/sizes efforts @ .

= New forward declaration headers

= Help apps get advantages of fwd decls, but maintain backwards
compatibility (vs. just fwd-decl’ing themselves — an issue w/
deprecation of the bool “classic” template parameter)
= Purge unneeded header includes

= Historically has broken downstream apps e.g., Albany
= Distributor

= Hide underlying implementation
= Planned anyway as part of comm/comput. overlap & better
MPI/{CUDA,OpenMP} interactions
= General code discipline (everyone’s job!)
= DefaultPlatform deprecation & removal

= Avoid exposing TPL header includes
15




