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Quotes ) 2=

“The easiest way to make Trilinos build faster would be to
rename all .cpp files to .c, and fix the resulting syntax errors.” —
Jed Brown

“I actually enjoy complexity that’s empowering. If it challenges
me, the complexity is very pleasant. But sometimes | must deal
with complexity that’s disempowering. The effort | invest to
understand that complexity is tedious work. It doesn't add
anything to my abilities.” — Ward Cunningham

“Fools ignore complexity. Pragmatists suffer it. Some can avoid
it. Geniuses remove it.” — Alan Perlis
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TL;DR Plan to purge LO, GO, & Node @&z

1. Fix solver packages so they can build with GO=int OFF
= Epetra & Tpetra support w/ GO=int OFF?
= Make sure all tests build & run (some disabled now)
Forbid CMake options enabling multiple GO or Node types
static_assert that template arguments are enabled types

Add “TpetraNew” replacement classes w/ desired interface
= Reimplement existing “TpetraOld” classes using new ones
= Concurrently add New tests & migrate Old tests

5. Concurrently introduce new interfaces in solver pkgs

Deprecate TpetraOld & replace w/ TpetraNew (how: TBD)
= Make Tpetra{Old & New} interoperable?

= Trilinos’ release schedule & policy changes? Version macros?
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Why bother? ) .

= Most Tpetra template parameters add very little value

= LO, GO: If we only ever use 1 value of “class T”, just make it a typedef

Node: We understand heterogeneous computing better now

= Unneeded template parameters inflate build times & sizes

Can’t hide implementations of templated classes

Enable another GO type =» rebuild all Trilinos thru MuelLu & Stokhos
Executable & libraries >4 GB

Need 64-bit linkers, else linker crashes

20-min single-file build times (now; in 2015 we crashed laptops)

= Mitigations make build system complex & brittle




What’s the point of templates? UL

= Compile-time polymorphism

= Compile time: Can’t {use, afford} virtual method dispatch
= Polymorphism: Need “class T” to work for different T

= Multiple T in the same build, like std::vector<T>

= QOtherwise, make T a configure-time typedef

= |s polymorphism really a requirement?
= Or only a convenience for testing?
= QOr are we just confusing templates w/ configure-time options?
= Ask this for each template parameter separately

= QOpen or closed polymorphism?
= “Open”: Unbounded (tho SFINAE-constrained) set of valid types
= “Closed”: Trilinos explicitly allows finite set of types
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Templating adds build complexity @&,

= Can’t hide implementations of templated classes
= Partial work-around: Explicit template instantiation (ETI)

= Speeds up building code that uses Tpetra classes & functions

= Makes build system obfuscated & brittle
" e.g., {decl,def}.hpp, auto-gen’d .cpp, macros
= Some of these needed so .cpp files build in <=2 GB & <5 mins
= Remember when we tried to outsource a major ETl change?
= Complicates app config & use (bjam)
= Doesn’t solve “add another GO type, rebuild all of Trilinos” problem;
in fact, makes this worse for Trilinos developers

= |mplications for open vs. closed polymorphism...




Trilinos: Closed polymorphism UL

= Trilinos” ETI requires closed polymorphism
= Must know set of types at configure time, for which you want to
instantiate classes & functions
= Trilinos has been depending more on configure-time
knowledge of types, even w/out ETI
= Packages use “ETI” macros to define tests, even w/ ETI OFF
= (We've purged hacky tests that include _def &/or require ETI OFF)
= “Solver factory” dependency injection & inversion (DIl)

= “extern template” ETI approach relaxes this, but:
= Only get build time benefit for closed set; DIl too
= Can’t hide implementation (e.g., users see header files)

= Christian & | first tried this in kokkos-kernels, but k-k & even Kokkos
(for ViewCopy & ViewtFill) starting to favor an “ETl-only” approach
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Put Tpetra’s template parameters on trial

Look one-by-one at Scalar, LocalOrdinal, GlobalOrdinal, & Node




Scalar & Packet live: Both add value @2

= Mixed-precision arithmetic (original Tpetra design goal)

= Some features removed over time to reduce build complexity
= CrsMatrix’s templated local sparse mat-vec & local triangular solve
= |fpack2 Container templated apply

= Still possible with Operator interface (matrix Scalar != vector Scalar)
= |nteresting features like automatic differentiation (AD)
= Large apps use multiple Scalar types in 1 build

= double & complex<double>
= double & AD

= DistObject’s “Packet” a key part of Petra Object Model

= Decouples boundary exchange implementation from data structure




LO & GO die: Little value, high cost @&

= LO: LocalOrdinal (type of local indices)
= Stored in sparse matrices; used in computational kernels

= Flexibility could pay: Save memory/time vs. large single-process solve

= But: 64-bit LO doesn’t build (1 externally contributed PR touched all of
Trilinos, except for Kokkos (where it matters), but added no tests)

= |nterface could have hidden storage representation mostly from
users, just like Tpetra did once w/ CRS row offset type

= GO: GlobalOrdinal (type of global indices)
= Why would you want anything other than int64_t ?
= |f you store & use GO a lot, you're slow anyway
= Mixing multiple (LO,GO) in one build?
= QOld Ifpack2 Container example: Intraprocess domain decomp

= But: GO causes most build complexity & outstanding issues
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Node dies: Wrong model, high cost @&

= QOriginal heterogeneity model: Per object
= Node determines memory & execution spaces (anachronism)
= Rarely used (Stokhos LDRD, CASL VERA), mainly thru clone()
= HybridPlatform (per-process choice) never used, hard to load balance
= True concurrency never tested & likely broken due to MPI
= Node: leftover from Chris Baker’s Kokkos 1.0

= Proposed new model: Per kernel, not per object
= Choose default Kokkos exec. (& memory) space(s) at config time
= Users may ask to view an object’s data in a given memory space

= Users may give each kernel an optional execution space instance
= May use enum / wrapper, to avoid exposing implementation
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Must break backwards compatibility® .

= Can’t change template parameters w/out breakage
= We tried using type aliases to hide/ease changes

= Make e.g., Tpetra::Vector an alias to Tpetra::Classes::Vector

= Use C++11 parameter pack & fancy deduction to let us deprecate &
remove template parameters w/out changes to user code

~ 200 LOC, fancy

template<class ... Args>
using Vector =

= Problem: Partial specialization doesn’t take type aliases
= Breaks Belos::MultiVecTraits & other traits classes

= Technique thus not a complete solution; can’t hide “Classes::SCLASS"
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Remaining questions ) .

= Epetra & Tpetra both enabled in Amesos2 & Xpetra?
= Amesos2 & Xpetra both define wrappers / adapters for {E, T}petra
= Wrappers take same template parameters as Tpetra
= Wrappers do no index conversion: Wrappers’ GO == Tpetra’s GO
= Problem: Epetra requires GO=int in the wrapper

= Do users ever need to enable Epetra, & Tpetra with GO !=int?
* |f so, must change wrappers to do index conversion
= Muelu willing to exclude this

= 1 app needs Amesos2 w/ both Epetra & Tpetra enabled; still waiting to
hear whether they need Tpetra w/ GO != int in this case

= How to manage backwards compatibility?
= Need Trilinos to state & follow a release & deprecation policy

= |f not, Tpetra will need to imitate Kokkos in defining its own policy &

release cycle
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Questions?




Concurrent build times/sizes efforts @ .

= New forward declaration headers

= Help apps get advantages of fwd decls, but maintain backwards
compatibility (vs. just fwd-decl’ing themselves — an issue w/
deprecation of the bool “classic” template parameter)
= Purge unneeded header includes

= Historically has broken downstream apps e.g., Albany
= Distributor

= Hide underlying implementation
= Planned anyway as part of comm/comput. overlap & better
MPI/{CUDA,OpenMP} interactions
= General code discipline (everyone’s job!)
= DefaultPlatform deprecation & removal

= Avoid exposing TPL header includes
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