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Introduction

We describe recent research on plasma opacity produced by two-photon absorption.
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Principal motivation: series of foil transmission experiments performed by J. Bailey et al. on the Z
machine in the Sandia Laboratory: higher measured opacity for hot Fe foil samples than predicted
by several well-known opacity theory codes.

The mystery arises in a context of uncertainty in modeling the Solar interior.

Quantum theory of two-photon emission/absorption published by Goeppert-Mayer in 1931 and
applied to emission from metastable hydrogen in interstellar space by Breit and Teller.

Two-photon cross-sections are obtained using Fermi's "Golden Rules" for quantum perturbation theory.
We investigate the two-photon process in which one photon comes from a backlighter radiation

source and the other photon comes from the ambient plasma.
The fact that the two photons are not identical greatly increases this process rate.

M. Goeppert-Mayer, Ann Phys 9, 273 (1931).
G. Breit and E. Teller, Ap] 91, 215 (1940).
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Introduction

m Calculation of two-photon opacity is challenging because four radiative processes -
absorption, emission and two Raman effects (Stokes and anti-Stokes) - occur at each photon energy.

Necessary to sum over various classes of intermediate states,
including different orders of photo-absorption and electron
excitation;

Necessary to evaluate angular averages over radiation field;

Integrals over the continuum states are singular integrals.

m Atomic data for the calculations is generally available, although:

free-free dipole matrix elements present special difficulties,
high density of the experiments raises an issue of plasma
effects on the matrix elements.

We describe our own evaluation of these matrix-elements.

A new sum-rule is directly aimed at the two-photon opacity.

2-y absorption Raman anti-Stokes

1\—

2-y emission Raman Stokes

Our calculations (based on second-order perturbation theory) are tested by a second computational
approach, the numerical solution of the time-dependent Schrodinger equation for an ion interacting
with high-frequency electromagnetic fields ("AC Stark Effect” model). The latter includes Raman
processes and provides an independent approximate calculation of one-, two- and even three-photon

cross-sections.
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The Z iron experiment

I p! I pl
Dipole matrix element: —eFD™,*  where DI = fooo Rye(r) Ry (r)ridr.

. .o . . 2 =2 n’/{// 1 n’f’
(Very) simplified two-photon matrix element: —e“F Znn,{;n Dy, FapEra—— T
Two-photon effect becomes of the same order of one-photon contribution if eFD = eze BXR (2ra)

14
(R is a general notation for D], .

2
Since AE = 2Ryd % and (If n and n’ large but close to each other) and D= %nz Za_o

eff

, we finally get

; Z3e 3 7.5x 1012 2.5x 106 v/
~ =~ =~ m
12m2aeqans T nS ns
F? <8 5><1025
and the corresponding flux is @i, = c€g— > W/cm?.

For the SNL experiment, backlighter temperature is Tg;, = 350 eV and the dilution factor f; = 0.13.
The flux on the sample is 6T ~ 0.13 X 0Tg, = 2 X 10 W/cm? and @5, = 0T impliesn > 15 ..

But, in the conditions of the experiment: 1, ~ 3.1 10%? cm~3, due to density effects,
the last populated subshell correspondsto n =8 ...

J.-C. Pain, High Energy Density Phys. 26, 23 (2018).
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R. M. More’s relevant criticism

One should consider two photons of different energies hw,, hw, = o(w4, w,)
w1 = w, occurs only by accident and makes a tiny contribution.

M. Kruse made a 1-color calculation (RPHDM 2016) and found o (w4, w,) was too small.
He calculated o (w4, w;) but agreed he should find a way to do the two-color cross-sections.

With the AC code, R M More calculated (w4, w;) for 2s — 4d with hw;=586.14 eV and found
5.62 10°% cm*s eV, which is also too small.

Everybody agree it’s too small, but it’s not the right process!

Photon w is from the backlighter, the other photon is from the plasma or from the backlighter.
Total photon energy is constrained : hw; + hw, = AE = Efna1 — Einitial-

For any hw, (< AE), there can be a second photon that has the right energy hw, = AE — hw;.
- Itis a continuous absorption, even for bound-bound transitions.
- It should be compared to the low-opacity gaps between one-photon lines.

The opacity of attenuation of photon 1 is proportional to integral [ o (w4, w,)cn(w,)g(w,)dw,

The integral is much larger than the cross-section for two identical photons.
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Two-photon two-color opacity

Cross-section per electron and per process: d(wq, w,) = 107°% cm*s eV (from R. M. More’s AC Stark
code for Fe'®*). M. S. Pindzola and J. Colgan got the same order of magnitude for hw; = hw,.

Photon energy w4 ~5kgT, dilution factor f;~0,1, kzgT = 200eV - oT*~1.6 10* W/cm?.

4
Photon flux (hv,): @, = f; —— ~ 102 cm~2s~1eV~1 for T ~ 200 eV.

hw
N,,: Number of eV-size photon energy groups in [0, 5Tx] ~ 103.

N,: Number of active electrons (2s, 2p) in Ne-like Fe: = 8.
Nyroc: Number of processes (i.e., final states): = 102

Examples: 2s — 3d, 2s — 4d, 2s — ed (continuum final states), 2p — 4f, etc.

Estimate: 0@, N, N Npyroe = 107°% x 1029x 103x 8 X 10% ~ 8 1072° cm? which is enough extra
opacity to understand the Sandia Fe experiment!

In addition, as will be shown in figure 1, the cross-section is sometimes much larger (even 6 orders of
Magnitude larger, see Fig. 1)!

« Radiative Properties of Hot Dense Matter », October 21-26% 2018, Hamburg (Germany)



We all made simplifying assumptions...

Two-photon processes make an extra attenuation (opacity)
hot backlighter Tamped Fe sample spectrometer
] ; / ~200 eV
w §
one photon from + one photon from attenuation of
backlighter local BB field backlight beam
‘:DM ®

R. M. More, S. B. Hansen and T. Nagayama, High Energy Density Phys. 24, 44 (2017):

- Calculations shown in Santa Barbara in November 2016 gave an opacity change that was too large and
had odd oscillations accross the range of the measured spectrum.

- left out the bound-free and free-free contributions because the free-free matrix elements were
unreliable. Density effects were not included.

J.-C. Pain, High Energy Density Phys. 26, 23 (2018):

- omitted two-color two-photon absorption.

- omitted intermediate states in the continuum.

- did not consider two-photon photo-ionization. They involve final states in the continuum and are even
more important when there is continuum lowering.

- did not consider Raman (Stokes and Anti-Stokes) processes. They contribute to opacity too.
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Free-free matrix elements for two-photon opacity

I pl!
Five ways to compute the free-free matrix elements for two-photon opacity Rg {'f :

1. B. Gao and A. Starace! published 8 calculations using an original method of « complex contour rotation »
limited to pure Coulomb potential (H-like ions), but that can be scaled using effective charges.
No density effets included. No information about behavior at E = E' (studied by V. Veniard and B. Piraux?).

2. Analytic continuation of the Gordon formula for bound-bound matrix elements. Limited to H-like ions.

No idea how to include density effects. Results are good near the E = E' singularity but Rg:f’ diverges.

3. Saddle-point method and WKB wavefunctions. Described by More and Warren? for bound-bound and
bound-free transitions, but difficult to extend to free-free transitions.

4. Numerical integration. Calculations started using confluent hypergeometric function at small radius.
Enhanced Simpson rule is used to form the continuum wavefunctions. Agrees with methods 1 and 2
to a fraction of %. Can be extended to include density effects.

5. Acceleration formula with numerical WKB wavefunctions. Differences with method 4 around
the inner turning point.

1B. Gao and A. Starace, Numerical Methods for free-free radiative transition matrix elements,
University of Nebraska Digital Commons (1987).

2V. Veniard and B. Piraux, Phys. Rev. A 41, 4019 (1990).

3R. More and K. H. Warren, Ann. of Phys. 207, 282 (1991).
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Free-free matrix elements for two-photon opacity

Compare Gao-Starace, Analytic continuation and numerical wave-functions
Analytic Numerical
Gao-Starace continuation integral

E=016 I=0 E' =059 [I'=1 Rg=111.060 Rac=111.064 Ry = 111.0906

E=016 I=1 E'=.059 [I'=0 Rg=57943 Ric=57.9434 Ry =58.0109

E=016 I=1 E'=059 ['=2 Rgs=114240 Ryc=114.243 Ry = 114.229012

E=016 =2 E'=.059 ['=1 Rgs = 33414 Rac=334126 Ry =33.479428

E=100 /=0 E'=.700 I'=1 Rg=129930 Ruyc=129927 Ry =1.299249

E=.100 /=1 E'=700 I'=0 Rgs=.35695 Rac = 356944 Ry = 356911

E=100 I=1 E'=.700 I'=2 Rgg=.72339  Ruc=.723395 Ry =.723416

E=100 I=2 Jog T=1 Rgs = 08783 Rac= 0878189 Ryy=.087823
Method 2 E=05 A(E,s — E-OE p) = 22071 extrap to A(E,s — E,p) = 2234755
Method 4 221002 evaluation at E=E" 226056
Method 2 E=06 A(E,s — E-OFE p) = 23097 extrap to A(E,s — E p) = 233652
Method 4 231341 evaluationat E=E" 235935
Method 2 E=0.7 A(E,;s — E-OE p) = 23924 extrap to A(E,s — E,p) = 241816
Method 4 239659 evaluation at E=E" 243863
Method 2 E=08 A(E,s — E-OE p) = 24605 extrap to A(E,s — E p) = 248521
Method 4 246496 evaluation at E=E" 250375
Method 2 E=09 A(E;s — E-0E,p) = 251763  extrap to A(E,s — E p) = 254131
Method 4 252225 evaluation at E=E" 255822
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Two-photon perturbation theory vs. AC Stark code

Bridge code: second-order perturbation theory.
AC Stark code: solves time-dependent Schrodinger equation for Fel®* ion subject to two overlapping
pulses of X rays.

MGM cross-sections (per electron)
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Figure 1: solid and dashed lines: Bridge code, points: AC Stark code. The same list of states, energies
and matrix elements were used for the two codes.
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Two-photon perturbation theory vs. AC Stark code

MGM cross-section per electron (2s,2p - n = 3to 7)
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Figure 2: Bridge code for 19 transitions from 2s, 2p states of Ne-like Fe.
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m Since the energies are ~200 eV larger for Ni than for Fe, the cross-section and the population from the
Bose-Einstein factor are smaller. The 2-photon process in Ni is 10 times smaller than for Fe. That helps
to understand why it is not visible in the experiments that have been done. At a higher temperature, it

might be visible.

Compare Fe, Ni absorption 2s --> np --> 4d
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A two-photon sum rule to check the calculations

m Let us consider the Hamiltonian
2

p
H=+—+V
>+ V()

and define the suite of successive commutations of r with H :

CO=r ; c®=[H1]
C® = [H,[H,7]] = [H D]
¢® =|n,[1,[H,7]]| = [H,c?]

i.e., in the general case
c) = [H,C(k—l)]

It is easy to see that
(m|C®|¢t) = (Ep — E)¥(m|r|t)

where |m) is an eigenstate (for instance |nf)) so that H|m) = E,;|m). We have

(mllr, c®]|q) = (mlrc®]q) - (m|c®rlq) = Y mirled(elc®]q) - > (mlc®e)elria)
t

t

= ) (mlrle) (B — B) (tlrla) = ) (B — ED*Gmlrle)elrla)
t t
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A two-photon sum rule to check the calculations

m In order to obtain a sum rule, we have to evaluate (m| [r, C(k)”q). For k=1:

__ 1 _ _ix P
c = —%[r,pz] = lhm
h DL h?
(m”T’C(l)”q) - <m|[r' [H»r]]|Q> = <m [T‘,%p] ‘Q> = (Lrn) <m|Q> = Eém,q
which yields
h2
Z<m|r|t>(Et — Eq)(¢lrlq) - Z(Em — EY(mIrleXElrIa) = —6m g
Or

1 h*
zZ | =5 (B + En)| (mirle)elria) = —8mgq

Changing from vector r ro radial dipole R giving a factor 1/3 for s — p transitions and setting
|Im) = |nys),|q) = |n3s) and |t) = |n,p), we obtain

1 h?
2 z lEnzp ) (Enis + En3s)] (nys|r|napXnyplrings) = H6n1,n3
np
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Two-photon absorption and radiative acceleration of heavy metal ions in stars?

m We were wondering: does two-photon absorption affect radiative diffusion? in stars?
m Stellar envelope has normal diffusion o« Vn, and radiation-driven diffusion « k, VTg.

m To our knowledge, the problem of acceleration (diffusion) induced by two-photon radiation was
never studied before.

The diffusion current is related to the opacity as an integral over the "out-of-equilibrium" part of the
radiation field. For two-photon absorption, there is a similar integral, a little more complicated,
which might yield extra diffusion due to the two-photon absorption.

m A phenomenon might be affected by two-photon radiative acceleration: the so-called
“saturation effect3”. When matter density increases, the number of ions per volume unit getting higher,
the number of available photons likely to yield the acceleration decreases.

For two-color absorption, saturation should be weaker, because of the many possible intermediate
states, and the process is less stringent as concerns the photon energy; however, one has
to ensure hv; + hv, = hv, which is also a strong constraint, and therefore may increase the saturation...

1S. Turcotte, J. Richer, G. Michaud, C. A. Iglesias and F. J. Rogers , Ap] 504, 539 (1998).
2G. Michaud, Ap] 160, 641 (1970).
3G. Alecian and F. LeBlanc, MNRAS 319, 677 (2000).
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Backup




Sometimes the terms cancel!

m Unlinked cluster theorem of Many Body Perturbation Theory
Consider 152252%2p® — 1522s2p°3p3d
There are four terms: which electron (2s or 2p) moves first, which photon is absorbed first.

Energy conservation: €,5 + €35, + hw; + hw, = €35 + €34
or Ezp — €34 = ha)l = Egp — €5 — ha)z = _(EZS - E3p =+ ha)z)

Channel 1 has 2s going first: 15s22522p® — 15%2s2p°3p — 1522s2p°3p3d

(3plé,.712s)(3d|é;.7|2p) N (3plé,.7|2s)(3d|é;.7|2p)
€rs — E3p + h(l)z €rs — E3p + h(i)l

Channel 2 has 2p going first: 1522s522p® — 1522522p°3d — 1s%2s2p°3p3d

(3d|é;.7|2p)(3plé,.7|2s) + (3d|é,.7|2p)(3p|é;.7|2s)
Ezp — €34 + hwz Ezp — €34 + h(i)l

The four terms cancel!
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