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2 Outline

Solving grid challenges with energy storage

Drivers of grid modernization

How can energy storage help?

• Sandia's energy storage program

Analytics and controls thrust

Analysis, optimization, and control of energy storage

• QuESt open-source software suite

• Optimal, adaptive, real-time dispatch
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3 Energy Storage Capacity Projected to Increase

Electricity generationfrom selected fuels
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Drivers for Grid Modernization

U.S. Energy Information Administration

• Economic — aging power system exacts substantial costs
due to outages and inefficient technologies

• Environmental — increased frequency and severity of
weather events

• Security — cyber and physical

• Competitiveness — global competition in energy sector

#AE02018 i vtwweia.gov/ae CD
400% increase 800% increase

from 2020 to 2050

Energy Storage Can: 

• Reduce T&D upgrade costs

• Mitigate losses from outages

• Improve resilience

• Enable new technologies, growth



4 Energy Storage Capacity Projected to Increase

Electricity generationfrom selected fuels
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Power applications 

Frequency regulation

• Voltage support

• Small signal stability

• Frequency droop

• Synthetic inertia

• Renewable capacity firming

U.S. Energy Information Administration #AE02018 www.eia.gov/aeo

Energy applications 

• Arbitrage

• Transmission and distribution
upgrade deferral

• Customer demand charge or time-
of-use charge reduction

• Grid resiliency

• Renewable energy time shift

95



5 Energy Storage Applications
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6 Energy Storage Applications

Frequency Droop + Synthetic Inertia
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7 Outline

• Solving grid challenges with energy storage

• Drivers of grid modernization

• How can energy storage help?

Sandia's energy storage program

•Analytics and controls thrust

• Analysis, optimization, and control of energy storage

• QuESt open-source software suite

• Optimal, adaptive, real-time dispatch
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8 Energy Storage is a Major Crosscut

Hydrogen Storage
Hydrogen and Fuel Cells program is developing
technologies to accelerate large-scale deployrnent
of hydrogen storage.

Systems Analysis
Sandia has extensive infrastructure to evaluate
megawatt-hour class energy storage systems
in a grid-tied environment to enable industry
acceptance of new energy storage technologies.

Thermal Storage
Sandia's Concentrating Solar Power (CSP)
program is developing molten salt thermal storage
systerns for grid-scale energy storage.

Cell & Module Level Safety
Sandia has exceptional capabilities to evaluate
fundamental safety mechanisms from cell to
module level for applications ranging from electnc
vehicles to military systems.

Battery Materials
Sandia has a large portfolio of R&D proiects
related to advanced materials to support the
development of lower cost energy storage
technologies including new battery chernistnes,
electrolyte matenals, and membranes.

Power Conversion Systems
Leveragng exceptional strengths in power
electronics, Sandia has unique capabilities to
characterize the reliability of power electronics

and power conversion systems.

Systems Modeling
Sandia is

pertiyming
research in a

number of areas
on the reliability
and safety of
energy storage
systems including
simulation,
modeling, and
analysis, from
cell cornponents
to fully integrated
systems.

,4001100

Grid Analytics
Analytical and multi-physics models to
understand risk and safety of compiex systems,
optimization, and efficient utilization of energy

storage systems in the field.

Wide ranging R&D covering energy storage technologies with applications in the grid,
transportation, and stationary storage

1



9 Overview of Sandia Energy Storage Program

• Materials Research — Advancing new battery chemistries through technology development
and commercialization.

• Power Electronics — Optimization at the interface between power electronics and
electrochemistry. Power electronics including high voltage devices (SiC, GaN), high voltage
passives and magnetics.

• Energy Storage Safety — Cell and module level safety test and analysis. Engineered safety
of large systems. Predictive models for ES safety. Storage safety standards and protocols.

• Energy Storage Analytics and Controls — Analytics and controls for integration of utility
class storage systems. Software tools for optimal use of energy storage across the electricity
infrastructure. Standards development.

Energy Storage Project Development — Support for demonstration projects.

Industry Outreach — Outreach to utilities, regulators, and the industry.

Multidisciplinary R&D program collaborating across Sandia

1353, 1816, 1874, 2546, 8762, 8813, 8824

Outward looking with significant external collaboration with industry and academia.



10 University Partners
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11 Industry/Utility Partners
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12 Outline

• Solving grid challenges with energy storage

• Drivers of grid modernization

• How can energy storage help?

• Sandia's energy storage program

•Analytics and controls thrust

• Analysis, optimization, and control of energy storage

QuESt open-source software suite

• Optimal, adaptive, real-time dispatch
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13  OU t Energy Storage Software Suite

https://energy.sandia.gov/quest-optimizing-energy-storage/

• Open source, Python-based energy
storage analysis software application suite.

• Developed as a graphical user interface
for optimization and analysis capabilities
of SNL's energy storage group.

• Initial development driven by Pyomo
models for energy storage valuation in
market areas.

• Now publicly available on GitHub

• https://github.com/rconcep/snl-quest

0 Sandia
Nanonal
Laboratories Energy Secure & Sustainable Energy Future

Stationary Power „, Earth Science „ Transportation Energy , Energy Research , About Energy ,

quest
sear,

Initial Release of QuESt: Optimizing Energy Storage

By Matte Hensley l October loth, MB I Energy, Energy Storage, Energy Storage Systems, News l Comments Off

QUER, a Python-based, open source energy storage software suite, has been

released by the Sandia energy storage software tool team that developed it. QuEST

is an open source, Python-based software application suite for energy storage

simulation and analysis. It is designed to give users access to models and analysis

for energy storage used and developed by Sandia National Laboratories. It is also

designed to be transparent and easy to use without requiring knowledge of the

mathematia behind the models or knowing how to develop code in Python. At the

same time, because it is open source, users may modify it to suit their needs.

The launch version includes QuESt Data Manager, an application for obtaining

market data from ISO/RTO sources, as well as QuESt Valuation, an application for

performing energy storage system valuation (revenue estimation) in different

market areas. Three different market areas (ERCOT, Pf M, MISO) are inidally

supported, and more are in rapid development.

ORM QUEST

Sandia Home Locations

< Previous Next

horx 'even. the devIce vne.ated nior.,



14 gi..1 eSt Data Manager

( Q Data Manager ISO/RTO Market and Operations Data home about settings

Download ISO/RTO market and operations data.

Range of mor, th,

Start:

End:

Month

Month

Year

Year

Download

Settings

• Uses "web crawling' to search ISO/RTO website for download links

• Uses API provided by ISO/RTO to make queries

• Prepares a data bank for use in other applications, e.g., QuESt Valuation
• Downloads and extracts compressed archives

• Formats API query results

• Names files and creates directory structure to keep track of what's been downloaded



15  Valuation: Energy Arbitrage Example

Formulate and solve linear program.
Data: day ahead Locational Marginal Price (LMP), ESS capacity, ESS power rating

Variables: charge and discharge schedules

(QuESt also currently supports participating in frequency regulation)

Power
LMP Powerdischarged

\ / 

harged,a 

max A k (4 — il 4)  
d cu
k)u 

k

1 d

subject to X k +1 nsXk + 11 cri4T — 211`;T
TN

► Revenue

Linear dynamics

► SoC bounds

► Charge/discharge bounds



16 EIU eSt Valuation Wizard

0 Valuation home about settings

Simulation

Wizard

Single Run

t

Batch Runs

Analysis

Results Viewer



17 DU t Valuation Wizard — view results

< n Nrzard

Building and solving models...

Successl

All calculations finished. Let's check out the results!

OK

l'r



1 8  eSt in the future
home about settings help

quest
111

QuESt Data Manager

0 Sandia
National
Laboratories

QuESt Valuation
Estimates value for a given energy storage system. Uses historical data and a
given market structure to determine the maximum amount of revenue that
the energy storage device could have generated by providing multiple services
(e.g., ancillary services, arbitrage, behind-the-meter).

Get started

Copyright 2018 National Technology 8. Engineering Solutions of Sandia, LLC (NTESSI. Under the terms of Contract DE-NA0003525 with

NTESS, the U.S. Government retains certain nghts in this software. 064E6, NffSbii

• Add support in QuESt Valuation/Data Manager for the
remaining US markets.

• Additional energy storage models, such as degradation

• New applications
• Behind-the-meter ES sizing and valuation

• Solar + storage

• Technology selection assistant

• Data explorer for ES finance information (leverage global
energy storage database)

Inquiries to:

Ricky Concepcion, 8813

rconcep@sandia.gov

Follow us on GitHub:

github.com/rconcep/snl-quest



19 Outline

• Solving grid challenges with energy storage

• Drivers of grid modernization

• How can energy storage help?

• Sandia's energy storage program

•Analytics and controls thrust

• Analysis, optimization, and control of energy storage

• QuESt open-source software suite

• Optimal, adaptive, real-time dispatch
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20 Battery Energy Storage System (BESS)

BESS

Grid

Di
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l 

PCS 1 

A
Control
Signal

BAT

1 Measurements
(V,I,...)

PCS

Controller BMS

EMS

Grid Data
(Energy price, system frequency, ...)

System/Process

,scr)mn cA_. .,.___,p,,
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,, Estimation
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21 Challenges

Grid

MSS

PCS

A

Con rol
Sig al

BAT

i Measurements
(V,I,...)

PCS

Controller BMS

EMS

Grid Data
(Energy price, system frequency, ...)

1) Often not yet cost effective or optimally
utilized. Need:

a) Optimal deployment and operation in
existing environment

b) New market design to accommodate and
compensate new resource capabilities

c) Modeling, analysis, testing

i. Models range from cells to systems:

• Often too complicated (computationally
intractable)

• Or too simple (reasonable for analysis but not
realistic enough for control)

• Safety

Energy flow models for Energy Management System (EMS):

d
X k+1 = 71sXk + ,a(xk,111, ...)T — g( kluk) • . •)7 Nonlinear dynamics

1 d
Xk+1 = 11sXk + 1/1cUiej — —UkT Linear dynamics

irld



22 Challenges

Grid

MSS

PCS

A

Con rol
Sig al

BAT

Measurements
(V,I,...)

PCS

Controller BMS

Ener

EMS

1) Often not yet cost effective or optimally
utilized. Need:

a) Optimal deployment and operation in
existing environment

b) New market design to accommodate and
compensate new resource capabilities

c) Modeling, analysis, testing

i. Models range from cells to systems:

• Often too complicated (computationally
intractable)

• Or too simple (reasonable for analysis but not

Can an adaptive approach effectively capture the nonlinear dynamics
and maintain computational tractability?

Xk+1 = rIsXk -

1 d
Xk+1 = TisXk TicqT — UkT

k l iak) • • •)T Nonlinear dynamics

Linear dynamics



23 I Online Optimization in Feedback Control

Moving Horizon Estimation (MHE) Model Predictive Control (MPC)

fProces] 

(BESS)

r MHE   ►

11

Process I 
(BESS)

MPC
uri

Finite-horizon online optimization problems that handle:

• nonlinear dynamics • constraints • sophisticated noise/disturbance models (MHE)
A y(t-L)

U 0 :t-L-1

dO:t-L-1

Ut-L:t-1

1-1

cl *t-L:t-1

A

UO:t-1

u*t:t+T-1

x*(t+T)

•

_
t-L t+T



24 Combined MPC + MHE

A

60:t-L-1

dO:t-L-1

d —• Process

(BESS)

MPC/MHE

Yt-L

Ut-L:t-1

u*t:t+T-1
_ _1- - _ _ ,

d*t-L:t-1 I d*t:t+T-1
- -1

- r - -

process dynamics:

xt+1 = f (xt, ut, dt)

yt = g(xt) nt

X*t+T

•

t-L t+T

1
 ► 1



25  Combined MPC + MHE

d _.1._ Process(BESS) —0—n

y
MPC/MHE 4-

1

process dynamics:

xt+1 = f (xt, ut, dt)

yt = g(xt) + nt

Why combine MPC + MHE in a single optimization?

1. [Theory] Enables stability analysis of the closed-loop.

2. [Practice] Resulting controller protects system against potentially optimistic/naïve state

estimates

Is it too conservative?
Not necessarily, since one can control conservativeness by penalizing unlikely

disturbances /noise.



26 MPC/MHE Theory and References

Stability Theory

Process
(BESS)

MPC/Mi-TE
Uri'm

Controllability

Observability

Saddle-point solution

y

process dynamics:

xt+1 = f (xt, ut, dt)

yt = g(xt) nt

closed-loop stability

Numerical Optimization primal-dual-like interior-point method

Applications online parameter estimation, artificial pancreas, UAV coordination

References Copp, Hespanha, Automatica, 2017.

Copp, Gondhalekar, Hespanha, OCAM, 2017.

Copp, Hespanha, Control of Complex Systems, 2016.

Copp, Hespanha, ACC, 2016.

Quintero, Copp, Hespanha, ACC, 2015.

Copp, Hespanha, CDC, 2014.
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27 Adaptive M PC/M H E

Past

control

inputs
State

estimates/predictions

min max A
li 1'le,f1d,*

X ,

Past

measurements
Future

control Estimated

inputs efficiencies

1

u, 11, Y., ric, 71d)

CIO:t-L-1.

'60:t-L-1

Ut-L:t-1.

U*r:t+T-1

.-----1--.
1

d*r-Lt-1. 1 d*r:t+T-1

r - - i
• - - i I I 1

- - -1_ _ 1 1

t-L t

Copp, Nguyen, Byrne. Submitted, 2018.
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28  Adaptive MPC/MHE

Past
control

inputs
State

estimates /predictions

min max
f1c,f1d1*

subject to fik < U

Past
measurements

Future
control

inputs

y,

Estimated
efficiencies

Ut-L:t-1

Ll*t:t+T-1

—
—

O

x*t+T

1d*t-ut-1 1 d*t:t+T-1
—
s ` — —

I I i 1
• L • _ _ _ .

 ►
t-L t t+T

ESS power rating

Copp, Nguyen, Byrne. Submitted, 2018.
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29  Adaptive MPC/MHE

Past
control

inputs
State

estimates/predictions

Past
measurements

Future
control Estimated

inputs efficiencies

I

min max A 3Z, u, 11, y, Tic, TN)
U 9"le,f1d,*

subject to fik < ft

1  -d
.0 < h + 1)0'4T UkT

Desired fraction TN
of unused SoE

i  -d1(5 < 'k + 1-)crakT UkT
frld

_ _. - - - Ii_ _ ..

dt-L:t-1

U*t:t+T-1

_ _I- - 1 _ _ .

d*t-ut-i. d*t:t+T-1

1 I . _,

— i(5

t-L

ESS power rating

dynamics

Copp, Nguyen, Byrne. Submitted, 2018.
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30 Adaptive MPC/MHE

Past
control

inputs
State

estimates/predictions

Past
measurements

Future
control Estimated

inputs efficiencies

min max 3Z, u, 11,y,Tic, TN)
fle,f1d,*

subject to fik < ft

1  -d
< 1)0'4T UkT

Desired fraction
of unused SoE

-d1(5 < 1-)crakT  UkT

Yk

X —

dt-L:t-1

u*t:t+T-1

_

d *t- d*t:t+T-1

_ - - - _

O

X* t+T

•
-

t-L

ESS power rating

dynamics

Output equation

Copp, Nguyen, Byrne. Submitted, 2018.
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31  Adaptive MPC/MHE

Past
control

inputs
State

estimates /predictions

min max Xl
fl 5Zd ) 

subject to iik <

Past
measurements

Future
control

inputs

fil Y1 7)d)

Estimated
efficiencies

d
0 < + is) U— kT <

Desired fraction r/d
of unused SoE 1_ „

-A-ox < + ficfikT — —ukT
Tid

yk

,min < 
•ic 
< limax

'/  •ic

min < fid rircni ax

• O

x*t+T

•

Ut-L:t-1

• . .

U*t:t+T-1

- .1 —
1

d*t-L:t-1 d*t:t+T-1

• ,
t-L

- - _

ESS power rating

dynamics

Output equation

Bounds on efficiencies

Copp, Nguyen, Byrne. Submitted, 2018.
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32 Example: Energy Arbitrage

min max
fic,fid,*

Real-time

energy price

(t+T T

k=t

Power
charge

Time step

Power
discharge Weight*Noise

Ak(fticz
-d\

— Itkr

subject to fik < arbi rage

• . •• •

130:1-1-1

60:t-L-1

L

Ut t 1

J-1-1
U*t:t+T-1

O

d*t-L:t-1 d*t:t+T-1- -

W k

k=t—L

1 -dp,
0 < +11)c kT

Desired fraction r/d
of unused SoE 

1 -d
< + VikT UkT

71d

= Yk lk

li
min

nfmin

< 
, 
< nmax

c _

< fid < ncrx 1 

estim

X

ation

—

t-L t+T

ESS power rating

dynamics

Output equation

Bounds on efficiencies

Copp, Nguyen, Byrne. Submitted, 2018.



33 Adaptive MPC: Results for January 18-24, 2018

Process: Nonlinear Li-ion BESS model Predictive model: adaptive linear energy flow
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34 Adaptive MPC: Results for January I 8-24, 20 I 8
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35 Results Comparison

,4

300

200

0100
cf)

Process

(BESS)

0 1 1 1 1 1 [ • [ • 1  -.10  
109 110 111 112 113 114 115 116 117 118 119 18 20 22

Time [h] Day

Using 5-minute real-time energy prices from East Cambridge node in ISO New England...

Results for January 18-24, 2018.

Case Revenue RMSE of Constraint violation e

24

Adaptive $439.30 3.631— 36.87 1—
Tic = rid = 0.90 $437.78 13.44 168.14

Tic = rid = 0.91 $441.73 11.36 150.92
7/c = rid = 0.92 $443.49 6.52 101.34
T/c = rid = 0.93 $442.85 5.96 130.50

r ]Advantages: 1) Significantly improved state estimation
2) Significantly less constraint violation

1
I

1
Copp, Nguyen, Byrne. Submitted, 2018.
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38  queSt Valuation Software Architecture

Valuation GUI
User specifies a set of
mathematical programs
to solve.
• Market model
• ESS characteristics
• Historical data

Widgets 
Scores orwidgets" are
defined and arranged into
object trees to describe
the Ul.

Pass set of
instructions

Extract results
from solved
instance

Val. Op. Handler
Interprets what models
to build, solves them,
and saves the object
states.

For each model:
retrieve

historical data

r Val. DMS
Manages historical data
in memory; returns
requested data, reading
from XLS/CSV files as
necessary.

4

J

Return solved
instance

Create a new
Val.Op. instance,

populate, and solve

1 
Results Viewer

Plot s optimization
results or exports the
results as DataFrames in
CSV format.

r
Wizard Reporting

Creates fancy
visualizations using
wizard output and
generates printout
reports.

 ►

ValuationOptimizer
Defines a mathematical
program, solves it, and can
return results.



39 Energy Storage Analytics

Equitable Regulatory Environment Thrust Area

Goals: Lower barriers to widespread deployment of energy storage by identifying
new and existing value streams, quantifying the impact of policy on deployment,
and developing new control strategies

Objectives:
O Project case studies

o Tools for storage valuation

O Identify new value streams

o Control strategies to maximize

revenue/grid benefit

O Assess policy impact on storage

o Develop policy recommendations



7 Energy Storage as Flexible Resource

Grid-scale energy storage can enable significant cost savings to industry while
improving infrastructure reliability and efficiency

Mitigate $79B/yr in commercial

losses from outages

A
Ma, deemed e.t.a storage

Max demand WM swage

ogional Spending on T&D Projects Completed by

• 20 lieavily Weighted lowards the Rockies

Caen ►
.

'

V.

Reduce $2T in required T&D

upgrades

-o
Reduce commercial and industrial electrical bills Balance the variability of 825 GW of new

through demand charge management. 7.5 million U.S. renewable generation while improving

customers are enrolled in dynamic pricing (EIA 2015) grid reliability and efficiency.

4110 U.S. DEPARTMENT OF

ENERGY



41 Example: Optimal Sizing Behind-the-Meter Energy Storage

Chlorine
Tank

Secondary
Treatment

AiC
SUPPLY
FROM
GRID

Aeration Tank

tes.com

Primary
Sedimentation

Tank

Waste Water
Treatment

Plant cat.com

Copp, Nguyen, Byrne. IEEE PESGM, 2018.



42 Example: Optimal Sizing Behind-the-Meter Energy Storage

Chlorine
Tank

Secondary
Treatment

AIC
SUPPLY
FROM
GRID

Aeration Tank

tes.com

Primary
Sedimenta"--

Ta

\ met ptload ptPV
-rt

nbalance = ptnet pte ptd 13?

rik

cat.corr

minimize energy from ES and generator

to balance critical load

subject to dynamics

constraints

Decision Irariables

Copp, Nguyen, Byrne. IEEE PESGM, 2018.



43 Example: Optimal Sizing Behind-the-Meter Energy Storage

Chlorine
Tank

Secondaiy
Treatment

AJC
SUPPLY
FROM
GRID

Aeration Tank

tes.com
WA% tr
Trtatriirn!

Mont

SOLAR PANEL

Primary
Sedimenta"--

Ta

Dnet ptload ptPV
t

Dbalance = ptnet ptc ptd ptg
t

nk

IEI
• • ■

cat.corr

Stochastic optimization considering PV and load uncertainty.
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44 I Stochastic Optimization

min w1 SESS w2 Sgenpc lpd lpg

subject to

Vt E T Optimization horizon

SESS > ESS energy capacity

t=1

Ptg S gen

Pc > 0
Pc] 

>

Ptc Pd < PESS

0 < Pg < Paen

< eyA eYcPtc Pd < SESS
ptn e t ptc ptd ptg < >

Generator energy provided

ESS charge

ESS discharge

ESS power rating

Generator power rating

ESS SOC dynamics

Load balancing probabilistic constraint

Copp, Nguyen, Byrne. IEEE PESGM, 2018.
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45 I Stochastic Optimization

min w1SESS w2 Sgen
pelpdyg

subjer•+ +c‘

Vt E T Optimization horizon

rqq ininnrmi

If forecasts follow normal distributions...
probabilistic constraint can be formulated
as a deterministic inequality constraint

11.1 Solve resulting Linear Program

< < Pgen

< 7s St + eycPtc — Ptd < SESS
ptn et +Pt

ptd -Ptg <

Generator power rating

ESS SOC dynamics

Load balancing probabilistic constraint

Copp, Nguyen, Byrne. IEEE PESGM, 2018.



46 Results: Optimizing Behind-the-Meter Energy Storage

min w1 SESS + W2 Sgen
pc Ipd lpg

 .1
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47 Parameters

Parameter Description Value Units
h Time step 1 hour

tYPV PV panel efficiency 0.15 -

'Yconv PV conversion efficiency 0.90 -

'Ys ESS storage efficiency 1.00 -

7c ESS charging efficiency 0.85 -
Apv Total area of solar panels 1000 m2

PESS ESS power rating 150 kW

Pgen Generator power rating 15 kW

So Initial SOC 0.8SEss kWh

w1 Weight on SESS 1 -
w2 Weight on Sgen 1.1 -
T Optimization horizon 168 hours
a Desired fraction of time

critical load is met
0.99 -

May 28 - June 3 August 28 - September 3

SESS
rgen

871 kWh

1870 kWh

1276 kWh

2092 kWh



48 Conclusion

Proposed stochastic optimization for sizing and scheduling behind-the-meter energy
storage.

With normally distributed forecasting errors, probabilistic constraint can be
reformulated as a linear inequality constraint, and optimization problem becomes a
linear program.

Case study: Reasonably-sized energy storage system, when optimally scheduled with
the generator, successfully balanced critical load with naive forecasts of stochastic load
and PV generation.

Smaller energy storage may be used times of year when PV generation is higher
relative to critical load, such as Spring and Summer.

Chi ini
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