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* Solving grid challenges with energy storage
* Drivers of grid modernization

* How can energy storage help?
* Sandia’s energy storage program

*Analytics and controls thrust

* Analysis, optimization, and control of energy storage

* QuESt open-source software suite

* Optimal, adaptive, real-time dispatch
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31 Energy Storage Capacity Projected to Increase
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Drivers for Grid Modernization Energy Storage Can:
* Economic — aging power system exacts substantial costs * Reduce T&D upgrade costs

due to outages and inefficient technologies .
* Mitigate losses from outages

* Environmental — increased frequency and severity of

. .
weather events Improve resilience

» Security — cyber and physical * Enable new technologies, growth

* Competitiveness — global competition in energy sector




41 Energy Storage Capacity Projected to Increase
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Power applications Energy applications
* Frequency regulation * Arbitrage
* Voltage support * Transmission and distribution
* Small signal stability upgrade deferral
© 1 -
* Frequency droop Customer demand charge or time

L of-use charge reduction
* Synthetic inertia

* Renewable capacity firming * Grid resiliency

* Renewable energy time shift




s | Energy Storage Applications

System frequency after a loss of generation
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s | Energy Storage Applications
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Image credit: AP

Renewable Capacity Firming
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Renewable energy time shift
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System frequency after a loss of generation
or increase in load:
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* Analysis, optimization, and control of energy storage

* QuESt open-source software suite

* Optimal, adaptive, real-time dispatch
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s | Energy Storage is a Major Crosscut

Hydrogen Storage
Hydrogen and Fuel Cells program is developing
technologies to accelerate large-scale deployment
of hydrogen storage.

Systems Analysis
Sandia has extensive infrastructure to evaluate
megawati-hour class energy storage systems
in a grid-tied environment to enable industry
acceptance of new energy storage technologies.

Thermal Storage
Sandia's Concentrating Solar Power (CSP)
program is developing molten salt thermal storage
systems for grid-scale energy storage.

Cell & Module Level Safety
Sandia has exceptional capabilities to evaluate
fundamental safety mechanisms from cell fo
module level for applications ranging from electric
vehicles to military systems

Battery Materials
Sandia has a large portfolio of R&D projects
related to advanced materials to support the
development of lower cost energy storage
technologies including new batiery chemistries,
electrolyte materials, and membranes.

Power Conversion Systems
Leveraging exceptional strengths in power
electronics, Sandia has unique capabilities to
characterize the reliability of power electronics
and power conversion systems.

Sanda National La
Corpera

Systems Modeling
Sandia is
performing — -‘
research in a ?
number of areas
on the reliability
and safety of
energy storage
systems including
simulation,
modeling, and
analysis, from
cell components
to fully integrated
systems.

Grid Analytics
Analytical and multi-physics models to
understand risk and safety of complex systems,
optimization, and efficient utilization of energy
storage systems in the field.

Wide ranging R&D covering energy storage technologies with applications in the grid,
transportation, and stationary storage




9 I Overview of Sandia Energy Storage Program

* Materials Research — Advancing new battery chemistries through technology development
and commercialization.

*  Power Electronics — Optimization at the interface between power electronics and
electrochemistry. Power electronics including high voltage devices (SiC, GaN), high voltage
passives and magnetics.

* Energy Storage Safety — Cell and module level safety test and analysis. Engineered safety
of large systems. Predictive models for ES safety. Storage safety standards and protocols.

Energy Storage Analytics and Controls — Analytics and controls for integration of utility

class storage systems. Software tools for optimal use of energy storage across the electricity
infrastructure. Standards development.

* Energy Storage Project Development — Support for demonstration projects.

* Industry Outreach — Outreach to utilities, regulators, and the industry.




10 I University Partners

CUNY Energy Institute

Davidson College

Northeastern University

Stony Brook University
University of Kentucky
University of Washington

UC Irvine

University of Alaska Fairbanks
University Texas at Austin

New Mexico State University

Ohio State University

University Texas Arlington

New Mexico Tech

University New Mexico
Washington University at S. L.
Michigan State University

University of Utah
South Dakota State University
Clemson University

Southern Methodist University

I
$2.2M in funding to universities ‘



11 I Industry/Utility Partners
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* Analysis, optimization, and control of energy storage

* How can energy storage help?

* Sandia’s energy storage program
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3 ‘ QU&QI Energy Storage Software Suite

https://energy.sandia.gov/quest-optimizing-energy-storage/

* Open source, Python-based energy

storage analysis software application suite.

* Developed as a graphical user interface
for optimization and analysis capabilities
of SNL’s energy storage group.

* Initial development driven by Pyomo
models for energy storage valuation in
market areas.

* Now publicly available on GitHub
* https://github.com/rconcep/snl-quest

@ Sandla
labmalones E n e rgy able Energy Future

Stationary Power .,  Earth Science .,  Transportation Energy .,  Energy Research .,  About Energy . 3 n

U

Initial Release of QUESt: Optimizing Energy Storage

By Mattie Hensley | October 15th, 2018 | Energy, Energy Storage, Energy Storage Systems, News | Comments off

QUES, a Python-based, open source energy storage software suite, has been kQworr e e oee]
released by the Sandia energy storage software tool team that it. QUEST e
market data from ISO/RTO sources, as well as QuESt Valuation, an application for

is an open source, Python-based software application suite for energy storage infmans g g RS SR o tream
performi ge gy storage system valuation (revenue estimatios ) n different IIIIIIIIIIII

designed to be transparent and easy to use without requiring knowledge of the
mathematics behind the models or knowing how to develop code in Python. At the
same time, because it is open source, users may modify it to suit their needs.

The launch version includes QuESt Data Manager, an application for obtaining

simulation and analysis. It is designed to give users access to models and analysis
for energy storage used and developed by Sandia National Laboratories. It is also

market 5. Three different market areas (ERCOT, PJM, MISO) are initially e
suppot ned and more are in rapid development.




14 ‘ DU 1 Data Manager

{ D Data Manager: ISO/RTO Market and Operations Data

Download ISO/RTO market and operations data.

ERCOT PIM

MISO

Range of months

Start Month Year

Download

* Uses “web crawling” to search ISO/RTO website for download links
* Uses API provided by ISO/RTO to make queries

* Prepares a data bank for use in other applications, e.g., QuESt Valuation
* Downloads and extracts compressed archives
* Formats API query results
* Names files and creates directory structure to keep track of what’s been downloaded




15 I Valuation: Energy Arbitrage Example
Formulate and solve linear program.
Data: day ahead Locational Marginal Price (LMP), ESS capacity, ESS power rating
Variables: charge and discharge schedules

(QuESt also currently supports participating in frequency regulation)

Power
LMP discharged Power
\ / charged
A\ d _..c
Hdla}g E\UL Up) =mm m e e == = » Revenue
uf,ug 3
. c L 4 | |
Sllb_]eCt t0 Tp41 = NsTi + NeULT — —ULT Linear dynamics
Nd
0 < L e A » SoC bounds
0<ué<u |

——————— » Charge/discharge bounds




16 QU%t Valuation Wizard

Simulation Analysis

Wizard

@

Results Viewer

R E 4
AR

Single Run Batch Runs




u T Valuation Wizard — view results

All calculations finished. Let's check out the results!




18 ‘ Out in the future G

0 Quest

home about settings help

0

[-] LIeS t @ Sandia
AN | umlh National
oo

Laboratories
QuESt Valuation

Estimates value for a given energy storage system. Uses historical data and a
BE given market structure to determine the maximum amount of revenue that
the energy storage device could have generated by providing multiple services

QuESt Data Manager
(e.g. ancillary services, arbitrage, behind-the-meter).

Get started

Copyright 2018 National Technology & Engineering Solutions of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with e EEEEEEEEEEEEE NAYS"{Q‘)
NTESS, the U.S. Govern ENERGY AVA NS

ment retains certain rights in this software.

* Add support in QuESt Valuation/Data Manager for the
remaining US markets.

Inquiries to:

Ricky Concepcion, 8813

* Additional energy storage models, such as degradation

* New applications

* Behind-the-meter ES sizing and valuation rconcep@sandia.gov

* Solar + storage .

, : Follow us on GitHub:
* Technology selection assistant

* Data explorer for ES finance information (leverage global github.com/ rconcep/ snl—quest
energy storage database)
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* Analysis, optimization, and control of energy storage

* How can energy storage help?

* Sandia’s energy storage program

w
=]
S

* QuESt open-source software suite

C [kWh]
n
S

So
=)
(=]

o

* Optimal, adaptive, real-time dispatch

n

o

S
T

o
=]

o

SN
=3K=]

noise [kWh] dispatch signals [kW]

BN
o O o
T—T%

‘I 1 . 1 Il \. I. 1
110 111 112 113 114 115 116 17 118 119

time [h]

o
©




20

Battery Energy Storage System (BESS)

______________________________________________________________

Gry PCS BAT

Control| | Measurements i System/Process
gt I.... :
i Signal £ (V.L...) v i ¥
PCS
> wn
= Controller B M S §
G| T {3 &
> |
= 5 . .
= EMS s = Estimation
& Control
Grid Data

(Energy price, system frequency, ...)




21 I Challenges

BESS 1) Offt.en not yet cost effective or optimally
utilized. Need:
| PCS BAT a) Opdmal deployment and operation in
‘ existing environment

:Control
i Signal

=

z

g

@

&« ———
T
NS

New market desigh to accommodate and
compensate new resource capabilities

(V.I...)

PCS

Controller

c)  Modeling, analysis, testing

‘D0S)
SUOTYRUIT)SH 998)G
—t

Models range from cells to systems:

Dispatch Signal

¢ Often too complicated (computationally
EMS intractable)

*  Or too simple (reasonable for analysis but not
realistic enough for control)

Grid Data
(Energy price, system frequency, ...) . Safﬁty

Energy flow models for Energy Management System (EMS):

Tir1 = NsTi + [E(@p,us, .. )T — fH 2k, ul,.. )T  Nonlinear dynamics

1
Thk41 = NsTk + 770“27- — n—u‘,iT Linear dynamics
d




2 I Challenges

BESS 1) O.ft.en not yet cost effective or optimally
utilized. Need:

@ PCS BAT a)  Optimal deployment and operation in

existing environment

Measurements
Control ;
(V.L,... : b)

Signal v ¥

New market design to accommodate and
compensate new resource capabilities

PCS

> BMS

Controller

c)  Modeling, analysis, testing

Models range from cells to systems:

¢ Often too complicated (computationally
EMS intractable)

Dispatch Signal
SuoIjRUIIIST )e)S
—

*  Or too simple (reasonable for analysis but not

Ener

Th41 = NsTk + f,g(xk, uz, i .)7‘ — f,g(xk, ug, - .)’7’ Nonlinear dynamics

1
Tht1 = NsTk + 77611,27' — —’U,ZT Linear dynamics

[ §
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Online Optimization in Feedback Control

Moving Horizon Estimation (MHE)

U

Process

(BESS)

Y

MHE

A 4

Model Predictive Control (MPC)

Process

(BESS)

Finite-horizon online optimization problems that handle:

* nonlinear dynamics * constraints ® sophisticated noise/disturbance models (MHE)
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24 1 Combined MPC + MHE

Process
.
d .  (BESS) —~(O—n process dynamics:
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5 I Combined MPC + MHE (dh)

Process
(BESS) N process dynamics:

Li+1 = f(xta Ut, dt)
Yt = g(xt) + Ny




26| MPC/MHE Theory and References

Process
d_: (BESS) —»O<—'n, process dynamics:
Y Tep1 = f(@e, ug, dy)
u )
* ye = g(@e) +

Stability Theory Controllability
Observability / closed-loop stability
Saddle-point solution

Numerical Optimization  primal-dual-like interior-point method

Applications online parameter estimation, artificial pancreas, UAV coordination

References Copp, Hespanha, Automatica, 2017.

Copp, Gondhalekar, Hespanha, OCAM, 2017.

Copp, Hespanha, Control of Complex Systems, 2016.
Copp, Hespanha, ACC, 2016.

Quintero, Copp, Hespanha, ACC, 2015.

Copp, Hespanha, CDC, 2014.




27 1 Adaptive MPC/MHE L
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Copp, Nguyen, Byrne. Submitted, 2018.
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Copp, Nguyen, Byrne. Submitted, 2018.
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; Yt
Past Past |
(?ontrol measurements s . e o
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\ % L — t g
min max Ji(X,u, u Y5 Nes Nd)
a 776777d7
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A A A 1 ,\d _ =
0 < Z +neupT — —URT < T
Desired fraction Nd . .
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Copp, Nguyen, Byrne. Submitted, 2018.
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; Yt
Past Past E ‘
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Copp, Nguyen, Byrne. Submitted, 2018.
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31 I Adaptive MPC/MHE L S
. l Yt
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| State o — Estimated g ! P T o
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Copp, Nguyen, Byrne. Submitted, 2018.




2 I Example: Energy Arbitrage .
Power ,
. h Time step
Real-time CHAarge
- Power X
energy price _ , _
discharge | Weight*Noise -
t+T \ \ t\ N
min max. E A (G — a$)T — E wﬁk)
u C) Y
TlesTd,X ' ket — I
| J

SllbjeCt to Ug S U  arbifrage estimjation
0 < T+ NelUupT — — U, TSI
Desired fraction Md
of unused SoE 1
0T < B 4 Dol — —AYT < T — 0T
Nd

T = Yk — Nk
,r}c min < ,r]c < 77IIla,X

77]1‘ min < Tld < nmax

Copp, Nguyen, Byrne. Submitted, 2018.

ESS power rating

—HSSHinear dynamics

Output equation

Bounds on efficiencies
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Using 5-minute real-time energy prices from East Cambridge node in ISO New England...

Results for January 18-24, 2018.

Case Revenue @ RMSE of £  Constraint violation ¢
Adaptive $439.30 3.63 ¢ 36.87 =

Ne = Ng = 0.90  $437.78 13.44 168.14

ne =ng = 0.91  $441.73 11.36 150.92

e =ng = 0.92  $443.49 6.52 101.34

Ne = Ng = 0.93  $442.85 5.96 130.50

Advantages: 1) Significantly improved state estimation

2) Significantly less constraint violation

Copp, Nguyen, Byrne. Submitted, 2018.
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38 ‘ QU%t Valuation Software Architecture

Valuation GUI

User specifies a set of
mathematical programs

to solve.

*  Market model

* ESS characteristics
* Historical data

Pass set of
instructions

retrieve
historical data

For each model:

Extract results
from solved
instance

Return solved
instance

Create a new
Val.Op. instance,
populate, and solve

ValuationOptimizer
Defines a mathematical
program, solves it, and can
return results.




39 I Energy Storage Analytics

Equitable Regulatory Environment Thrust Area

Goals: Lower barriers to widespread deployment of energy storage by identitying
new and existing value streams, quantifying the impact of policy on deployment,
and developing new control strategies

Objectives:
° Project case studies

° Tools for storage valuation

° Identify new value streams

> Control strategies to maximize
revenue/grid benefit

° Assess policy impact on storage

> Develop policy recommendations




71 Energy Storage as Flexible Resource

Grid-scale energy storage can enable significant cost savings to industry while
improving infrastructure reliability and efficiency
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Mitigate $79B/yr in commercial Reduce $2T in required T&D

losses from outages upgrades

g
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Reduce commercial and industrial electrical bills Balance the variability of 825 GW of new
through demand charge management. 7.5 million U.S. renewable generation while improving
customers are enrolled in dynamic pricing (EIA 2015) grid reliability and efficiency.
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41 1 Example: Optimal Sizing Behind-the-Meter Energy Storage

AIC
SUPPLY
FROM
GRID

Copp, Nguyen, Byrne. IEEE PESGM, 2018.
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Example: Optimal Sizing Behind-the-Meter Energy Storage

\ Y
FROM SOLAR PANEL 4 ,)\\

GRID | net __ load PV
— gt
balance __ pnet c d g
£ ot Py =L+ BB
— T

Decision variables

minimize  energy from ES and generator
to balance critical load |

subject to  dynamics

constraints

Copp, Nguyen, Byrne. IEEE PESGM, 2018.



4 | Example: Optimal Sizing Behind-the-Meter Energy Storage

3\ '
SOLAR PANEL 4 ) >

1\ Ptnet - Ptload L PtPV

Ptbalance _ Ptnet + Ptc o Ptd o Ptg

Decision variables

Stochastic optimization considering PV and load uncertainty.

Fall Winter Spring
30 30
0 0
-30 -30
-60 -60
-90 -90
-120 1 -120
-90 ; -90 : : : : -150 -150 ' : : :
5 10 15 20 5 10 16 20 5 10 15 20
hour hour hour

Copp, Nguyen, Byrne. IEEE PESGM, 2018.



44 1 Stochastic Optimization
min w1 SESS -+ ’lUQSgen Vt € 7 Optimization horizon
Pc,Pd P9
subject to Sgss > 0 ESS energy capacity
¥
Z Ptg < Fgen Generator energy provided
=1
Ptc = ESS charge
Ptd >0 ESS discharge
Py + Ptd < Pgss ESS power rating
0< Ptg < ?gen Generator power rating
0 < 7S5 + ”)/CPtc — Ptd < gESS ESS SOC dynamics

P{Ptnet + Ptc — Ptd — Ptg = O} > (¢ Load balancing probabilistic constraint

Copp, Nguyen, Byrne. IEEE PESGM, 2018.



45 1 Stochastic Optimization

min w" SESS -+ W9 Sgen Vt € 7 Optimization horizon
Pc,Pd P9

subjec

0< Pt < Pgen Generator power rating

0 < ¥sS; + Ve P — P < Skss ESS SOC dynamics

P{Ptnet -+ Ptc — Ptd — Ptg = O} > (¢ Load balancing probabilistic constraint

Copp, Nguyen, Byrne. IEEE PESGM, 2018.
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Results: Optimizing Behind-the-Meter Energy Storage

min
Pc Pd Pg

w1 SEss + W Sgen

w »

o o

o o
T T

)_Pbalance - Pnet‘

871 kWh .
1870 kWh
E 0
)
g
E -50
=
e
A
%.. -100
20 20 60 P 100 120 140 160 0 20
hour
Pnet
3
Pbalance
t

40

60 80

hour
:Ptload_PtPV
_ net C d g

100 120 140 160

Copp, Nguyen, Byrne. IEEE PESGM, 2018.
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Parameters

Parameter Description Value | Units
h Time step 1 hour
gi% PV panel efficiency 0.15 -
Yconv PV conversion efficiency 0.90 -
Ve ESS storage efficiency 1.00 -
Ve ESS charging efficiency 0.85 -
Apv Total area of solar panels | 1000 m?
Pgsg ESS power rating 150 kW
?gen Generator power rating 15 kW
So Initial SOC O-8§ESS kWh
w1 Weight on Sgsg 1 -
Wo Weight on ggen 1.1 -
T Optimization horizon 168 hours
Q Desired fraction of time 0.99 -
critical load is met
May 28 - June 3 | August 28 - September 3
Shag 871 kWh 1276 kWh
S en 1870 kWh 2092 kWh
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Conclusion

Proposed stochastic optimization for sizing and scheduling behind-the-meter energy
storage.

With normally distributed forecasting errors, probabilistic constraint can be
reformulated as a linear inequality constraint, and optimization problem becomes a
linear program.

Case study: Reasonably-sized energy storage system, when optimally scheduled with
the generator, successfully balanced critical load with naive forecasts of stochastic load
and PV generation.

Smaller energy storage may be used times of year when PV generation is higher
relative to critical load, such as Spring and Summer.

SOLAR PANEL «J

se:;t“,:% Aeration Tank
=

2 . Primary

Sedimentation




