

Sandia
National
Laboratories

SAND2019-0421PE

Optimizing grid energy storage systems: From open-source tools to real-time adaptive control

David Copp, 8811

January 16, 2019

8800 Brown Bag

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

- Solving grid challenges with energy storage
 - Drivers of grid modernization
 - How can energy storage help?
- Sandia's energy storage program
- Analytics and controls thrust
 - Analysis, optimization, and control of energy storage
 - QuEST open-source software suite
 - Optimal, adaptive, real-time dispatch

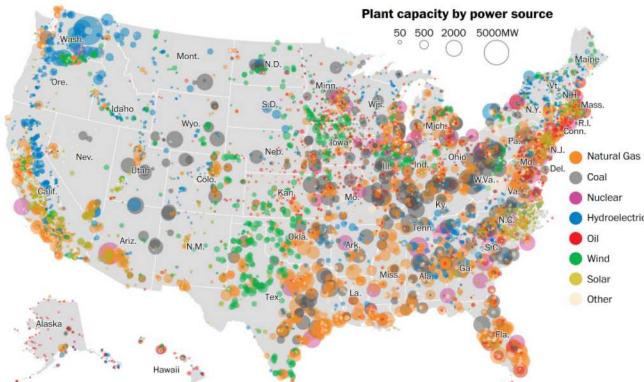
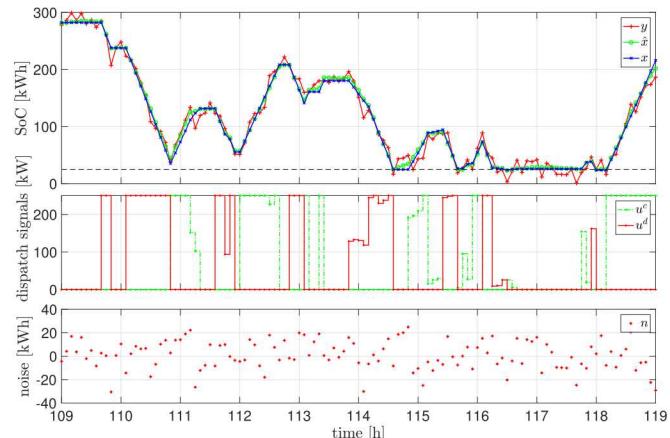
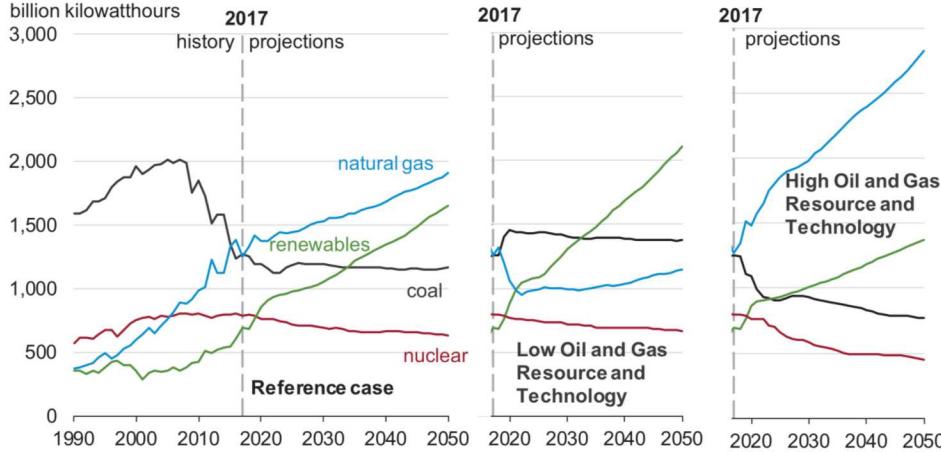


Image credit: Washington Post



Energy Storage Capacity Projected to Increase

Electricity generation from selected fuels
billion kilowatthours

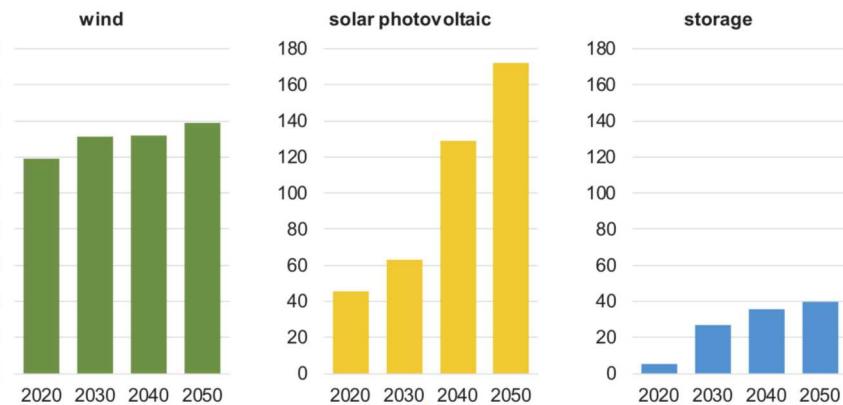


U.S. Energy Information Administration

#AEO2018

www.eia.gov/aeo

Utility-scale wind, solar, and storage operating capacity
gigawatts



U.S. Energy Information Administration

#AEO2018

www.eia.gov/aeo

95

400% increase
from 2020 to 2050

800% increase
from 2020 to 2050

Drivers for Grid Modernization

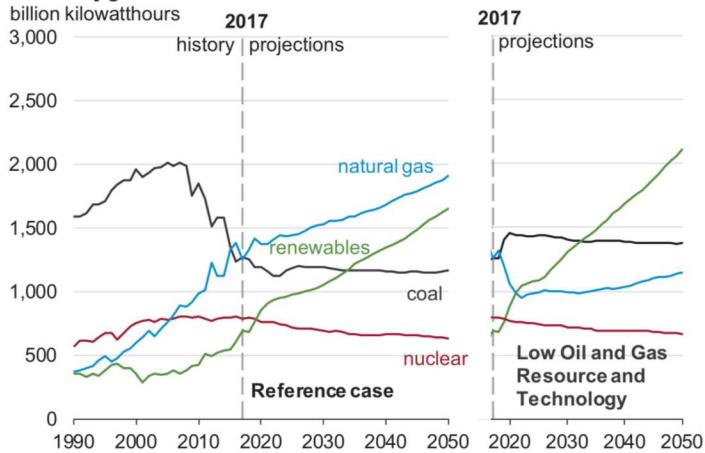
- Economic – aging power system exacts substantial costs due to outages and inefficient technologies
- Environmental – increased frequency and severity of weather events
- Security – cyber and physical
- Competitiveness – global competition in energy sector

Energy Storage Can:

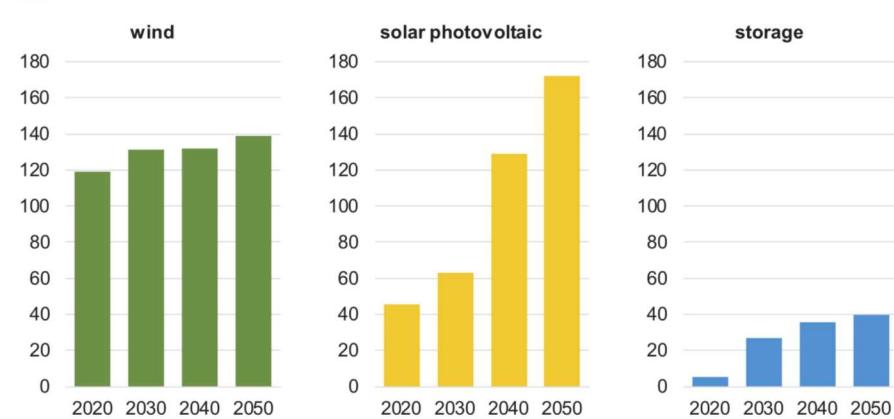
- Reduce T&D upgrade costs
- Mitigate losses from outages
- Improve resilience
- Enable new technologies, growth

Energy Storage Capacity Projected to Increase

Electricity generation from selected fuels



Utility-scale wind, solar, and storage operating capacity



Power applications

- Frequency regulation
- Voltage support
- Small signal stability
- Frequency droop
- Synthetic inertia
- Renewable capacity firming

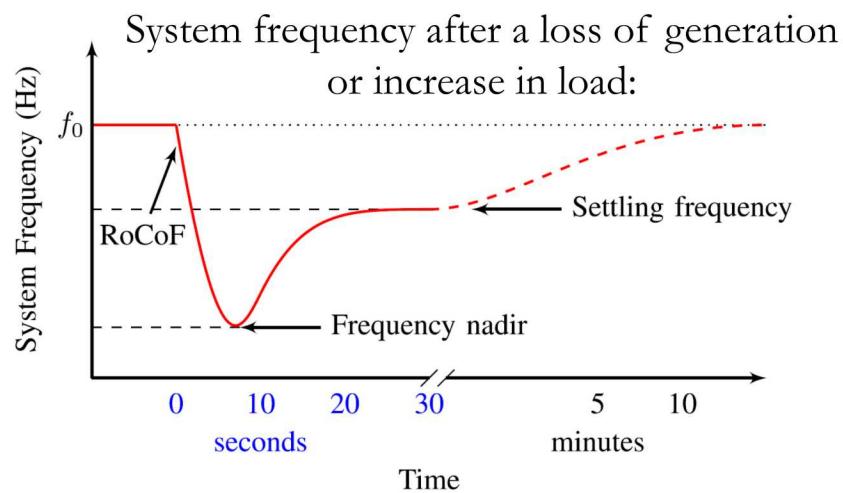
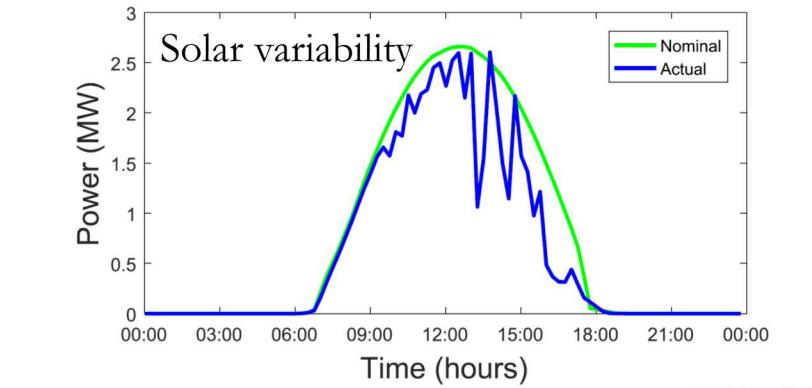
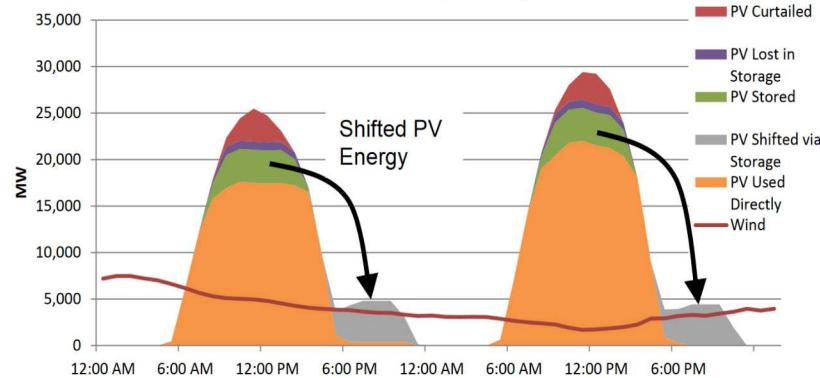
Energy applications

- Arbitrage
- Transmission and distribution upgrade deferral
- Customer demand charge or time-of-use charge reduction
- Grid resiliency
- Renewable energy time shift

5 Energy Storage Applications

Image credit: AP

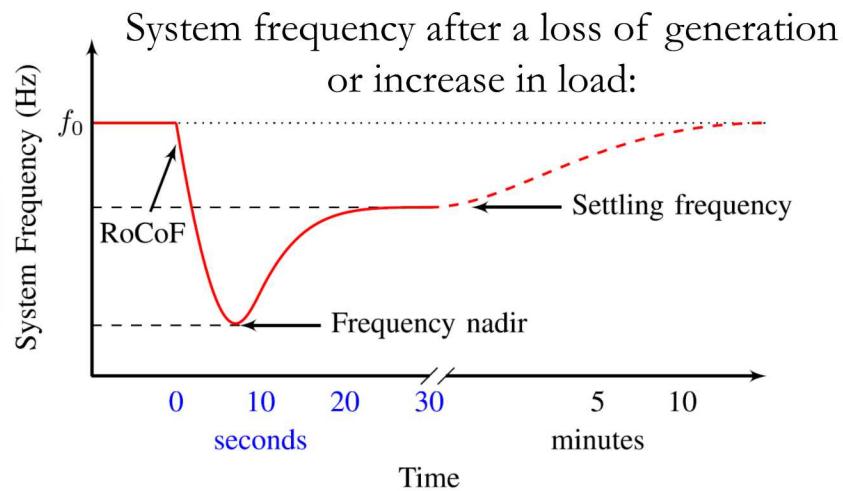
Image credit: mathworks.com



6 Energy Storage Applications

Frequency Droop + Synthetic Inertia

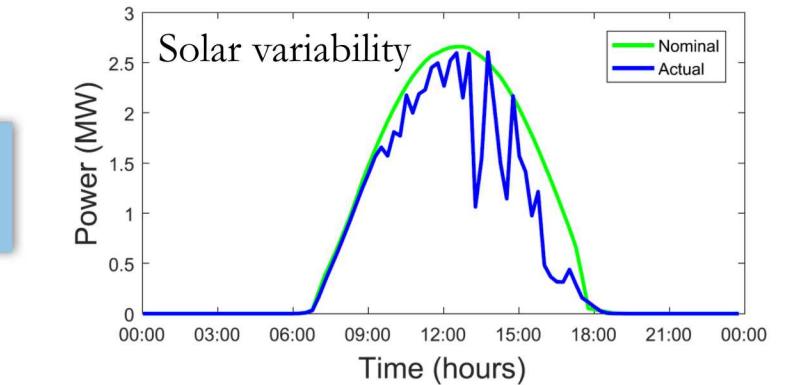
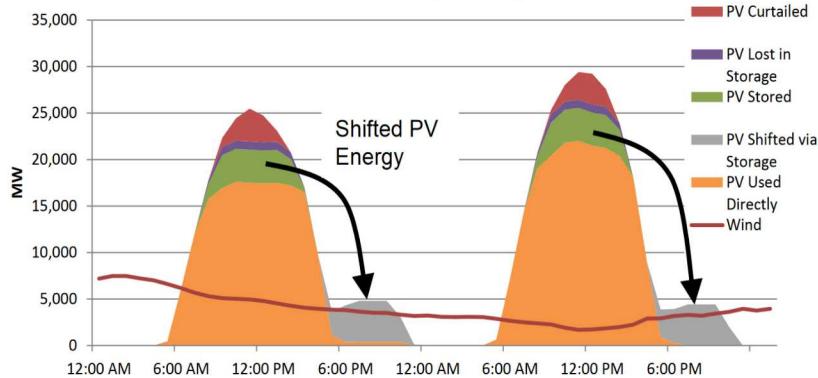
Image credit: AP



Renewable Capacity Firming

Renewable energy time shift

Image credit: mathworks.com



Outline

- Solving grid challenges with energy storage
 - Drivers of grid modernization
 - How can energy storage help?
- Sandia's energy storage program
- Analytics and controls thrust
 - Analysis, optimization, and control of energy storage
 - QuEST open-source software suite
 - Optimal, adaptive, real-time dispatch

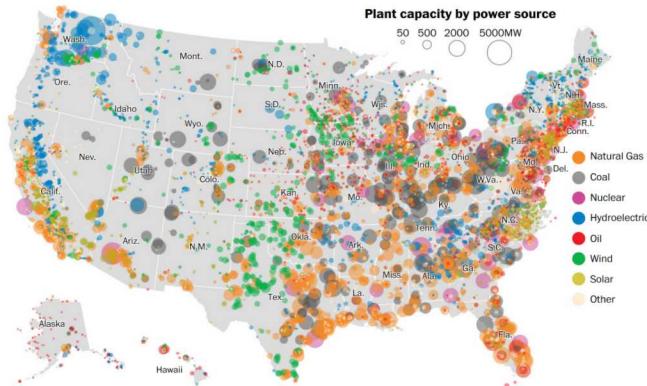
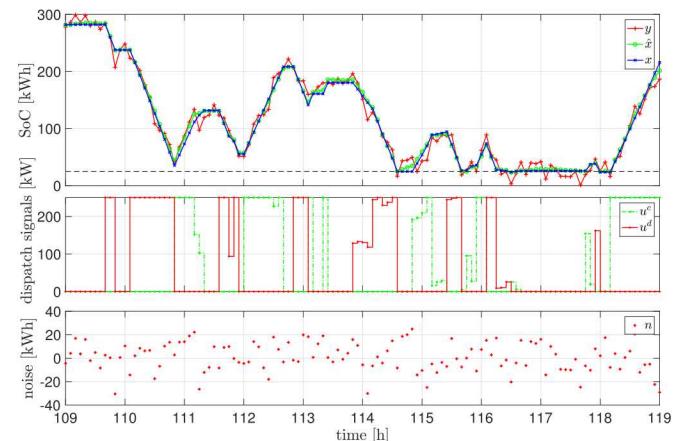


Image credit: Washington Post



Energy Storage is a Major Crosscut

Hydrogen Storage

Hydrogen and Fuel Cells program is developing technologies to accelerate large-scale deployment of hydrogen storage.

Thermal Storage

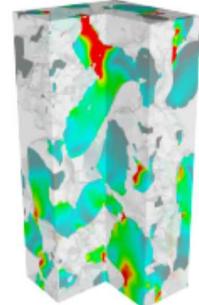
Sandia's Concentrating Solar Power (CSP) program is developing molten salt thermal storage systems for grid-scale energy storage.

Battery Materials

Sandia has a large portfolio of R&D projects related to advanced materials to support the development of lower cost energy storage technologies including new battery chemistries, electrolyte materials, and membranes.

Systems Modeling

Sandia is performing research in a number of areas on the reliability and safety of energy storage systems including simulation, modeling, and analysis, from cell components to fully integrated systems.



Systems Analysis

Sandia has extensive infrastructure to evaluate megawatt-hour class energy storage systems in a grid-tied environment to enable industry acceptance of new energy storage technologies.

Cell & Module Level Safety

Sandia has exceptional capabilities to evaluate fundamental safety mechanisms from cell to module level for applications ranging from electric vehicles to military systems.

Power Conversion Systems

Leveraging exceptional strengths in power electronics, Sandia has unique capabilities to characterize the reliability of power electronics and power conversion systems.

Grid Analytics

Analytical and multi-physics models to understand risk and safety of complex systems, optimization, and efficient utilization of energy storage systems in the field.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Wide ranging R&D covering energy storage technologies with applications in the grid, transportation, and stationary storage

Overview of Sandia Energy Storage Program

- **Materials Research** – Advancing new battery chemistries through technology development and commercialization.
- **Power Electronics** – Optimization at the interface between power electronics and electrochemistry. Power electronics including high voltage devices (SiC, GaN), high voltage passives and magnetics.
- **Energy Storage Safety** – Cell and module level safety test and analysis. Engineered safety of large systems. Predictive models for ES safety. Storage safety standards and protocols.
- **Energy Storage Analytics and Controls** – Analytics and controls for integration of utility class storage systems. Software tools for optimal use of energy storage across the electricity infrastructure. Standards development.
- **Energy Storage Project Development** – Support for demonstration projects.
- **Industry Outreach** – Outreach to utilities, regulators, and the industry.

Multidisciplinary R&D program collaborating across Sandia
1353, 1816, 1874, 2546, 8762, 8813, 8824

Outward looking with significant external collaboration with industry and academia.

University Partners

CUNY Energy Institute

Davidson College

Northeastern University

Stony Brook University

University of Kentucky

University of Washington

UC Irvine

University of Alaska Fairbanks

University Texas at Austin

New Mexico State University

Ohio State University

University Texas Arlington

New Mexico Tech

University New Mexico

Washington University at S. L.

Michigan State University

University of Utah

South Dakota State University

Clemson University

Southern Methodist University

\$2.2M in funding to universities

Industry/Utility Partners

GeneSic Semiconductor

Creare

InnoCit

Mainstream Engineering

Powdermet

Urban Electric Power

Helix Power Corporation

Eugene Water and Electric Board

Cordova Electric Cooperative

Strategen

Mustang Prairie Energy

ANZA Electric

Anza Electric Cooperative, Inc.
A Touchstone Energy® Cooperative

PNM Resources

WattJoule

WattJoule

UniEnergy Technologies

Sterling Municipal Light Department

Public Service of New Mexico

National Rural Electric Cooperative Association

Hawaii Electric Light

Green Mountain Power

Electric Power Board of Chattanooga

Electric Power Research Institute

Ecoult Battery

Demand Energy

Burlington Electric Department

NELHA

Outline

- Solving grid challenges with energy storage
 - Drivers of grid modernization
 - How can energy storage help?
- Sandia's energy storage program
- Analytics and controls thrust
 - Analysis, optimization, and control of energy storage
 - QuEST open-source software suite
 - Optimal, adaptive, real-time dispatch

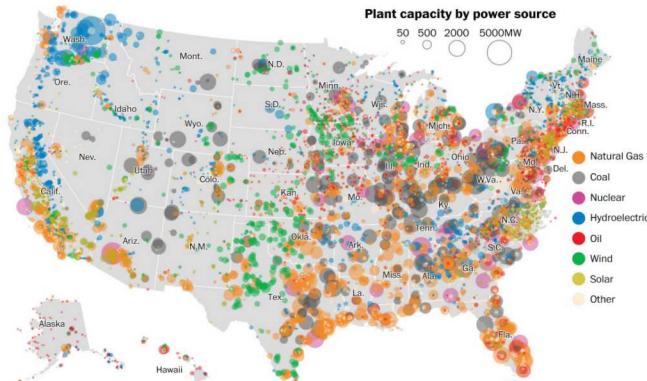
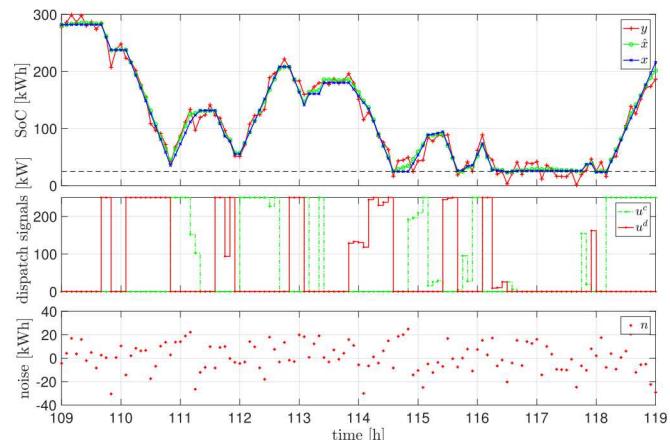


Image credit: Washington Post



<https://energy.sandia.gov/quest-optimizing-energy-storage/>

- Open source, Python-based energy storage analysis software application suite.
- Developed as a graphical user interface for optimization and analysis capabilities of SNL's energy storage group.
- Initial development driven by Pyomo models for energy storage valuation in market areas.
- Now publicly available on GitHub
 - <https://github.com/rconcep/snl-quest>

Sandia National Laboratories

Energy

Secure & Sustainable Energy Future

Sandia Home Locations

Stationary Power ▾ Earth Science ▾ Transportation Energy ▾ Energy Research ▾ About Energy ▾

Search ...

🔍

< Previous Next >

Initial Release of QuEST: Optimizing Energy Storage

By Mattie Hensley | October 15th, 2018 | Energy, Energy Storage, Energy Storage Systems, News | Comments Off

QuEST, a Python-based, open source energy storage software suite, has been released by the Sandia energy storage software tool team that developed it. QuEST is an open source, Python-based software application suite for energy storage simulation and analysis. It is designed to give users access to models and analysis for energy storage used and developed by Sandia National Laboratories. It is also designed to be transparent and easy to use without requiring knowledge of the mathematics behind the models or knowing how to develop code in Python. At the same time, because it is open source, users may modify it to suit their needs.

The launch version includes QuEST Data Manager, an application for obtaining market data from ISO/RTO sources, as well as QuEST Valuation, an application for performing energy storage system valuation (revenue estimation) in different market areas. Three different market areas (ERCOT, PJM, MISO) are initially supported, and more are in rapid development.

Month	Revenue (in millions)
Jan	~100
Feb	~200
Mar	~400
Apr	~450
May	~400
Jun	~350
Jul	~400
Aug	~500
Sep	~400
Oct	~750
Nov	~300
Dec	~500

The screenshot shows the QuEST Data Manager interface for the MISO market. At the top, there are tabs for ERCOT, MISO (which is selected), and PJM. Below the tabs, the MISO logo is displayed. A section titled "Range of months" contains two rows of dropdown menus. The first row is labeled "Start:" and the second row is labeled "End:". Each row has two dropdowns: "Month" and "Year". To the right of the dropdowns is a large "Download" button. At the bottom right of the main content area is a "Settings" button.

- Uses “web crawling” to search ISO/RTO website for download links
- Uses API provided by ISO/RTO to make queries
- Prepares a data bank for use in other applications, e.g., QuEST Valuation
 - Downloads and extracts compressed archives
 - Formats API query results
 - Names files and creates directory structure to keep track of what’s been downloaded

Formulate and solve linear program.

Data: day ahead Locational Marginal Price (LMP), ESS capacity, ESS power rating

Variables: charge and discharge schedules

(QuEST also currently supports participating in frequency regulation)

Diagram illustrating the components of the objective function:

- LMP** (Left Marginal Price) is represented by a blue arrow pointing to the coefficient λ_k in the term $\lambda_k(u_k^d - u_k^c)$.
- Power discharged** is represented by a blue arrow pointing to the term u_k^d in the objective function.
- Power charged** is represented by a blue arrow pointing to the term u_k^c in the objective function.
- A dashed arrow points from the objective function to a box labeled **Revenue**.

subject to $x_{k+1} = \eta_s x_k + \eta_c u_k^c \tau - \frac{1}{\eta_d} u_k^d \tau$ Linear dynamics

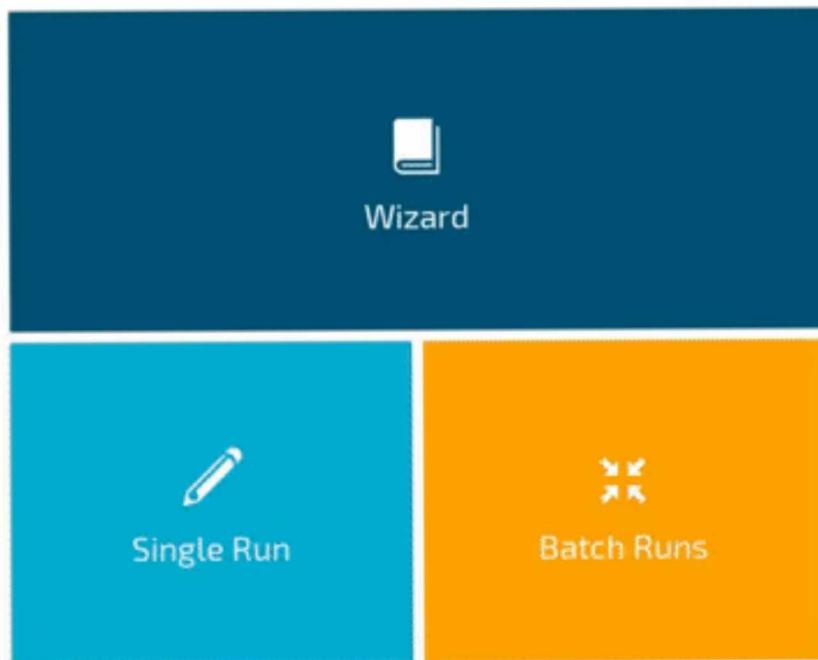
$$0 \leq x_k \leq \bar{x} \quad \text{---} \quad \text{SoC bounds}$$

$$0 \leq u_k^c \leq \bar{u}$$

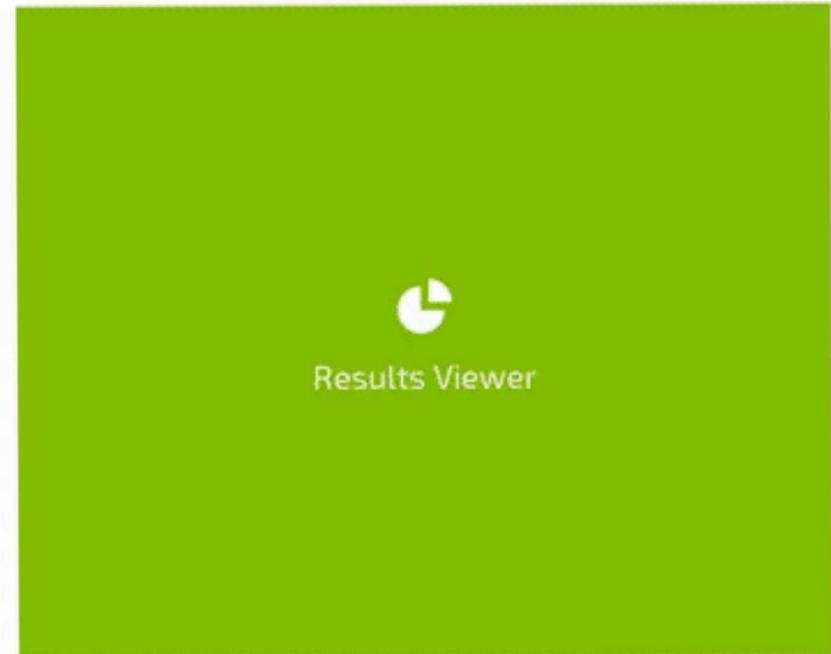
$$0 \leq u_k^d \leq \bar{u}$$

Charge/discharge bounds

Simulation



Analysis



Wizard

home about settings

Building and solving models...

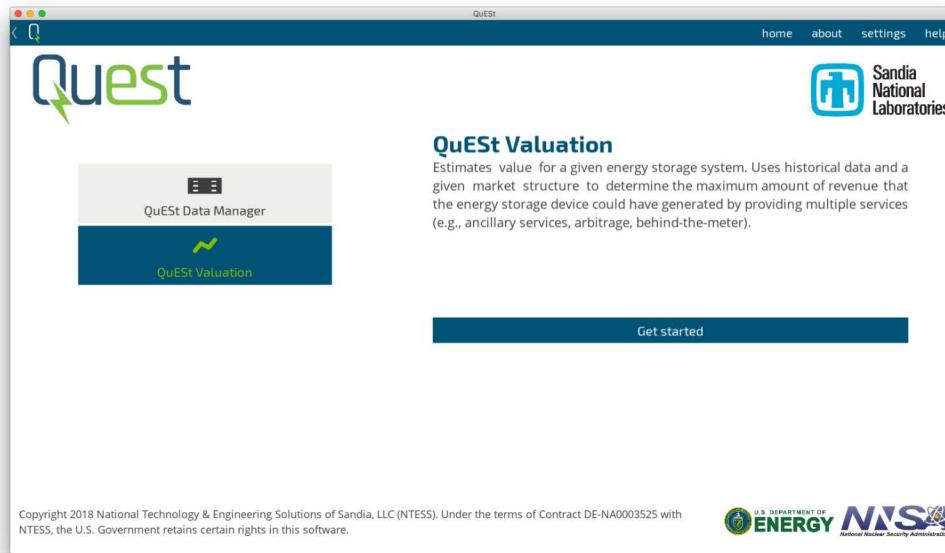
This may take a while. Please wait patiently!

Success!

All calculations finished. Let's check out the results!

OK

Previous



- Add support in QuEST Valuation/Data Manager for the remaining US markets.
- Additional energy storage models, such as degradation
- New applications
 - Behind-the-meter ES sizing and valuation
 - Solar + storage
- Technology selection assistant
- Data explorer for ES finance information (leverage global energy storage database)

Inquiries to:

Ricky Concepcion, 8813
 rconcep@sandia.gov

Follow us on GitHub:

github.com/rconcep/snl-quest

Outline

- Solving grid challenges with energy storage
 - Drivers of grid modernization
 - How can energy storage help?
- Sandia's energy storage program
- Analytics and controls thrust
 - Analysis, optimization, and control of energy storage
 - QuEST open-source software suite
 - Optimal, adaptive, real-time dispatch

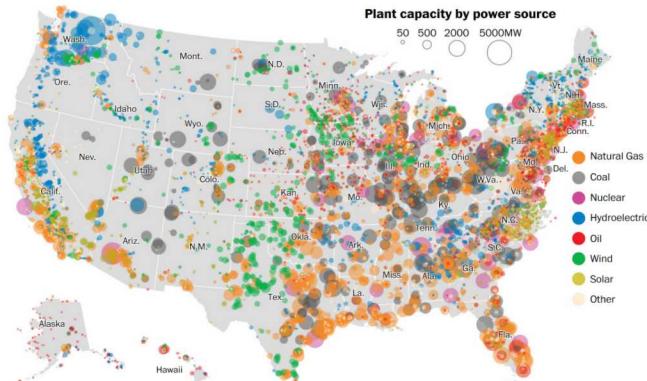
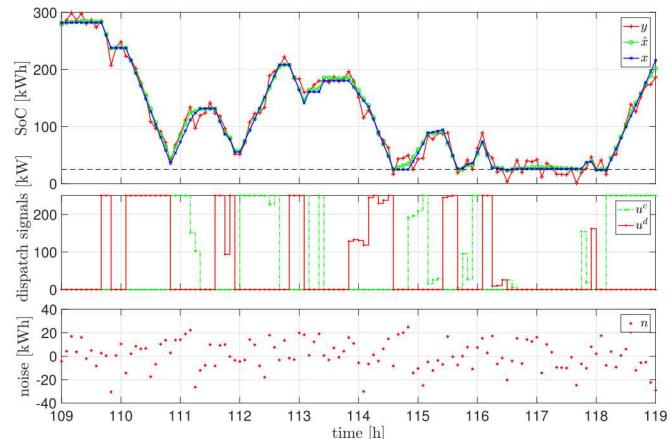
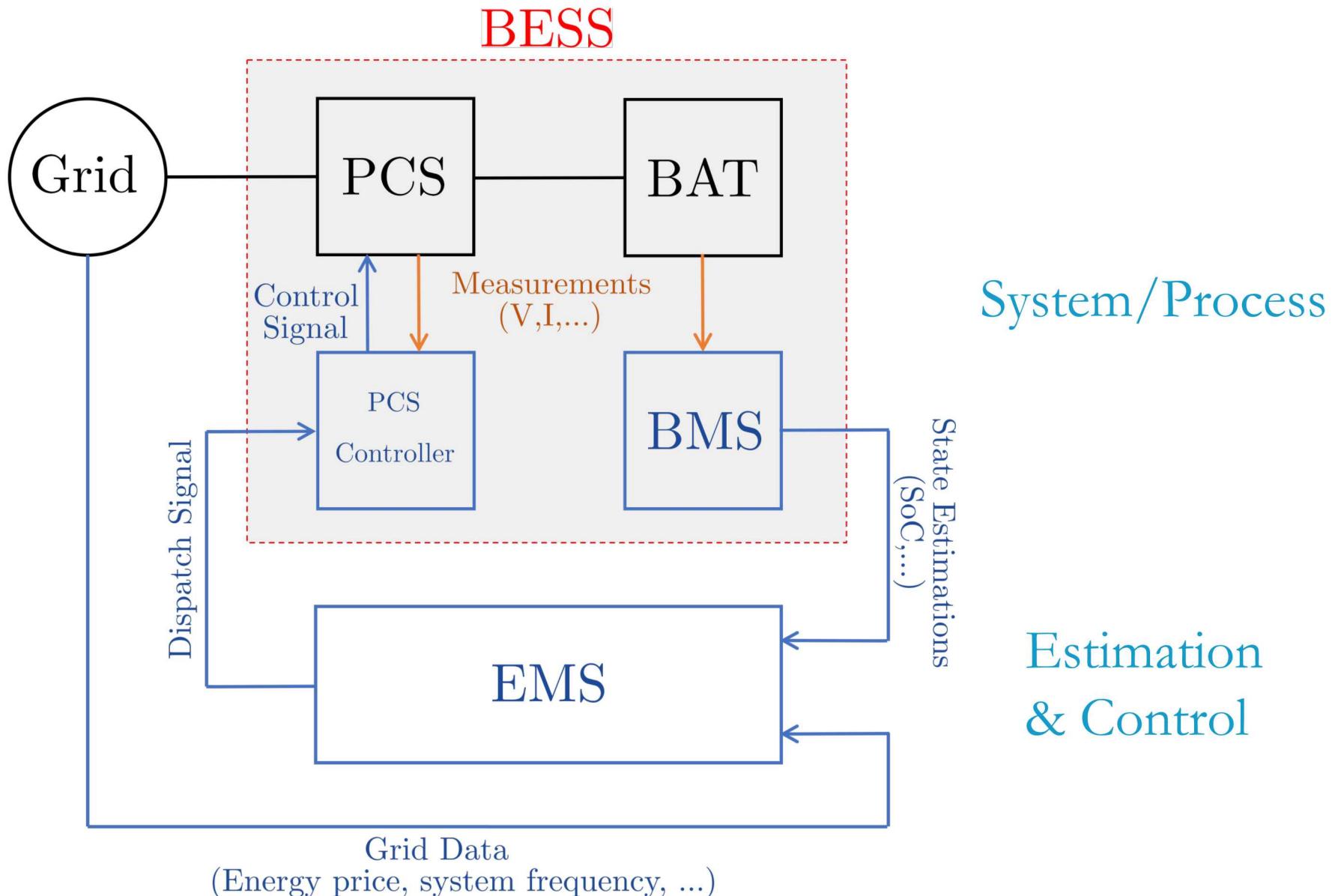
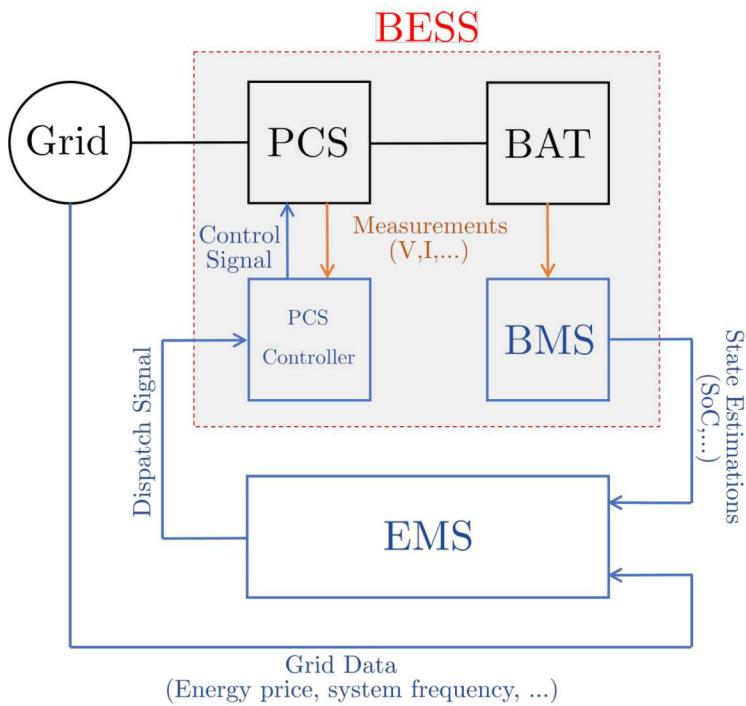


Image credit: Washington Post





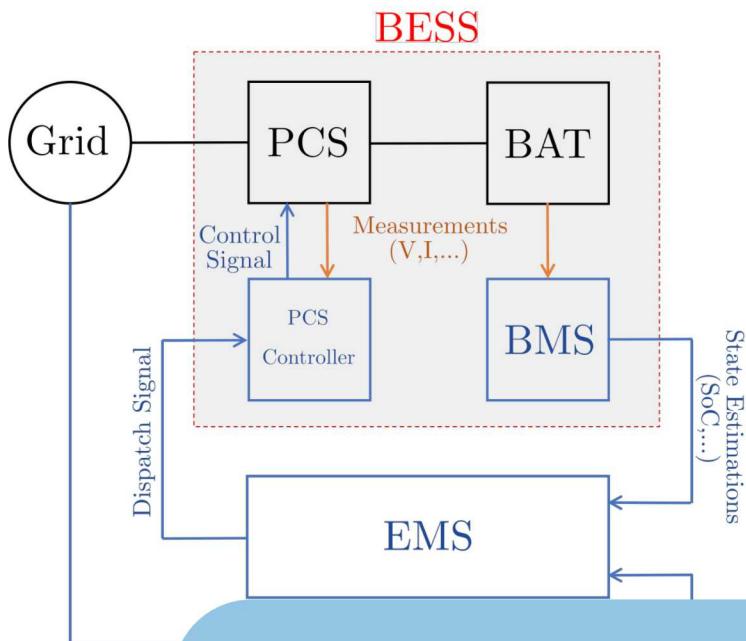


- 1) Often not yet cost effective or optimally utilized. Need:
 - a) Optimal deployment and operation in existing environment
 - b) New market design to accommodate and compensate new resource capabilities
 - c) Modeling, analysis, testing
 - i. Models range from cells to systems:
 - Often too complicated (computationally intractable)
 - Or too simple (reasonable for analysis but not realistic enough for control)
 - Safety

Energy flow models for Energy Management System (EMS):

$$x_{k+1} = \eta_s x_k + f_k^c(x_k, u_k^c, \dots) \tau - f_k^d(x_k, u_k^d, \dots) \tau \quad \text{Nonlinear dynamics}$$

$$x_{k+1} = \eta_s x_k + \eta_c u_k^c \tau - \frac{1}{\eta_d} u_k^d \tau \quad \text{Linear dynamics}$$



- 1) Often not yet cost effective or optimally utilized. Need:
 - a) Optimal deployment and operation in existing environment
 - b) New market design to accommodate and compensate new resource capabilities
 - c) Modeling, analysis, testing
 - i. Models range from cells to systems:
 - Often too complicated (computationally intractable)
 - Or too simple (reasonable for analysis but not

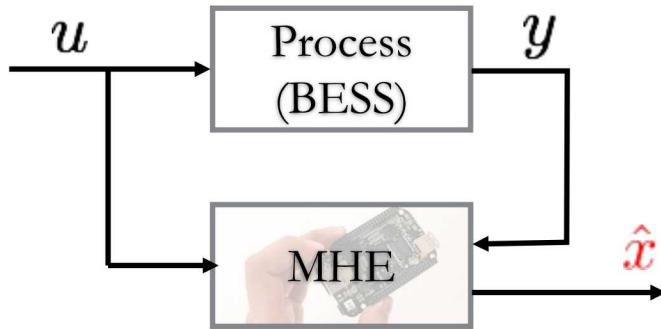
Can an adaptive approach effectively capture the nonlinear dynamics and maintain computational tractability?

$$x_{k+1} = \eta_s x_k + f_k^c(x_k, u_k^c, \dots) \tau - f_k^d(x_k, u_k^d, \dots) \tau \quad \text{Nonlinear dynamics}$$

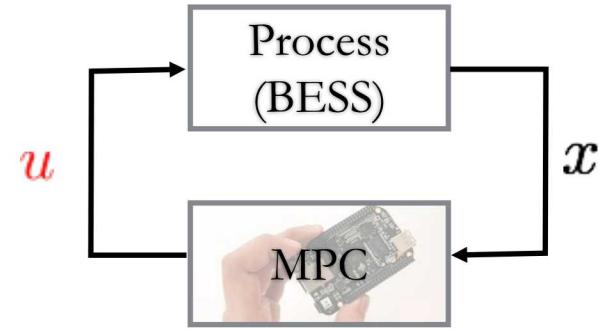
$$x_{k+1} = \eta_s x_k + \eta_c u_k^c \tau - \frac{1}{\eta_d} u_k^d \tau \quad \text{Linear dynamics}$$

Online Optimization in Feedback Control

Moving Horizon Estimation (MHE)

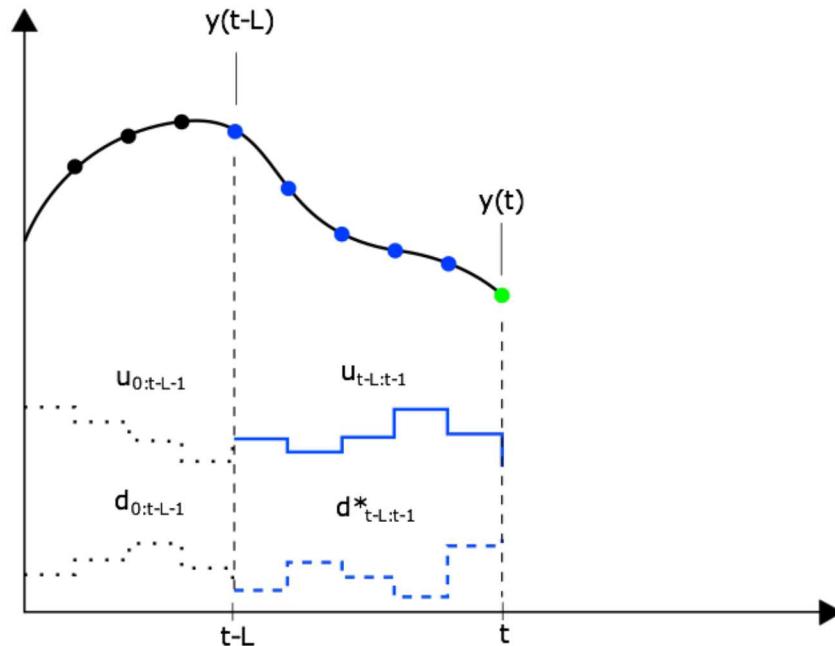
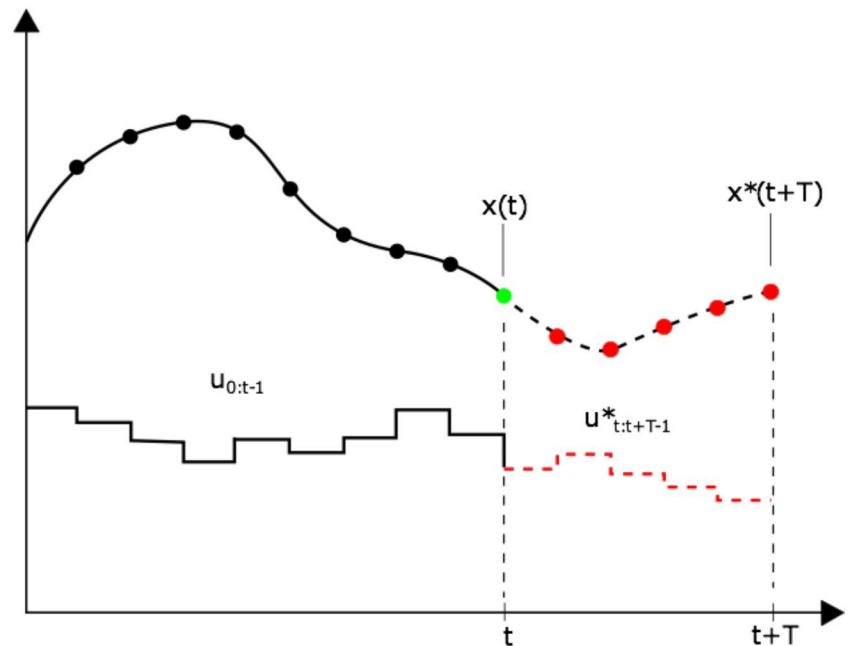


Model Predictive Control (MPC)

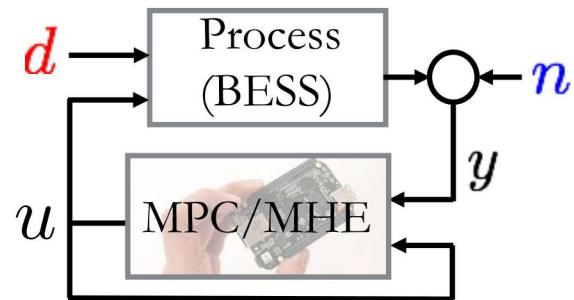


Finite-horizon online optimization problems that handle:

- nonlinear dynamics
- constraints
- sophisticated noise/disturbance models (MHE)



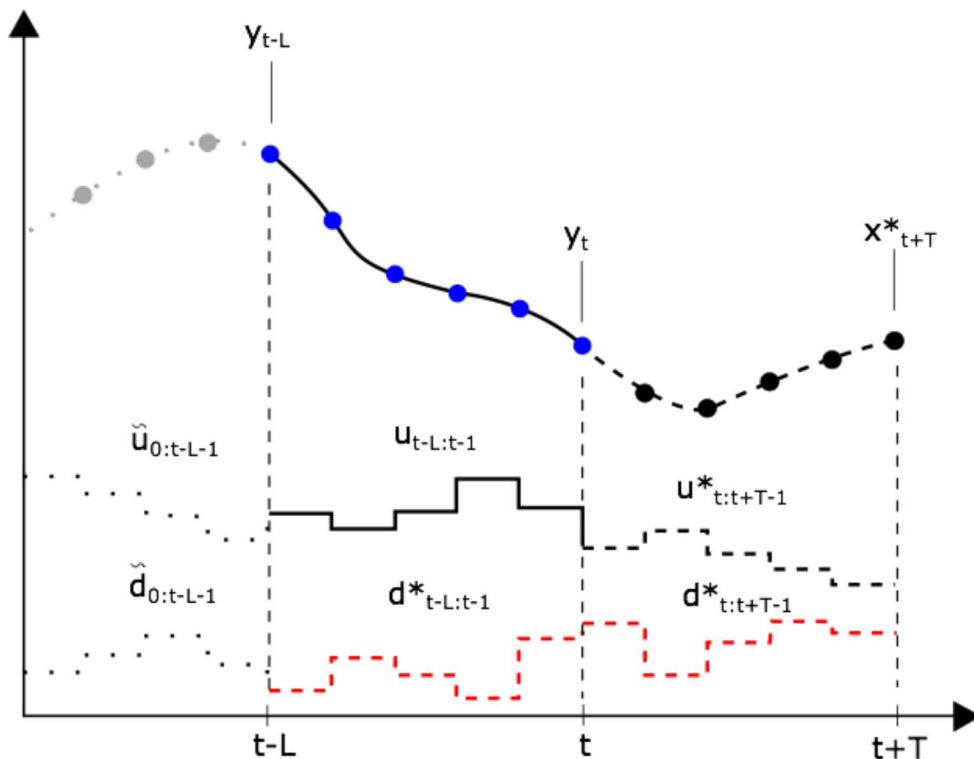
Combined MPC + MHE

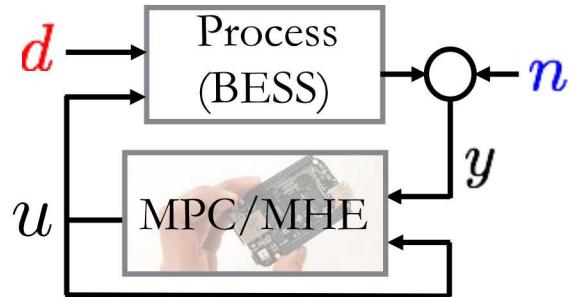


process dynamics:

$$x_{t+1} = f(x_t, u_t, d_t)$$

$$y_t = g(x_t) + n_t$$





process dynamics:

$$x_{t+1} = f(x_t, u_t, d_t)$$

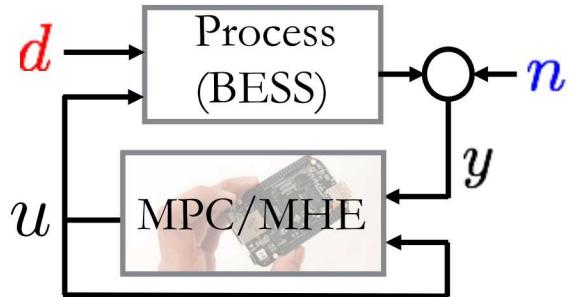
$$y_t = g(x_t) + n_t$$

Why combine MPC + MHE in a single optimization?

1. [Theory] Enables stability analysis of the closed-loop.
2. [Practice] Resulting controller protects system against potentially optimistic/naïve state estimates

Is it too conservative?

Not necessarily, since one can control conservativeness by penalizing unlikely disturbances/noise.



process dynamics:

$$x_{t+1} = f(x_t, u_t, \textcolor{red}{d}_t)$$

$$y_t = g(x_t) + \textcolor{blue}{n}_t$$

Stability Theory

Controllability
Observability
Saddle-point solution

closed-loop stability

Numerical Optimization

primal-dual-like interior-point method

Applications

online parameter estimation, artificial pancreas, UAV coordination

References

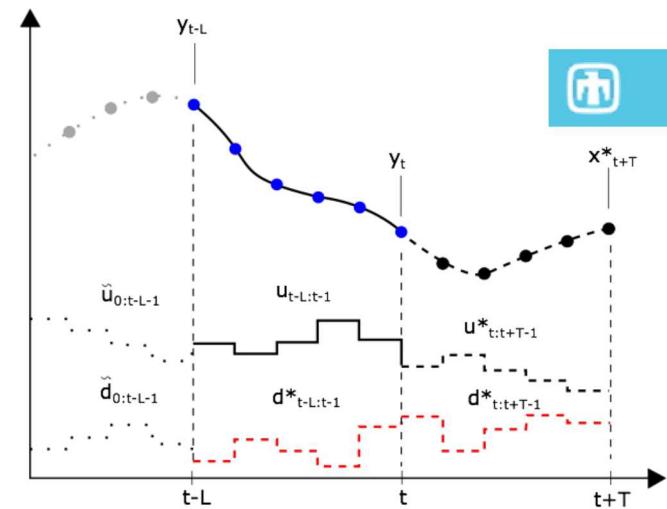
- Copp, Hespanha, *Automatica*, 2017.
- Copp, Gondhalekar, Hespanha, *OCAM*, 2017.
- Copp, Hespanha, *Control of Complex Systems*, 2016.
- Copp, Hespanha, *ACC*, 2016.
- Quintero, Copp, Hespanha, *ACC*, 2015.
- Copp, Hespanha, *CDC*, 2014.

Adaptive MPC/MHE

$$\min_{\hat{\mathbf{u}}} \max_{\hat{\eta}_c, \hat{\eta}_d, \hat{\mathbf{x}}} J_k(\hat{\mathbf{x}}, \mathbf{u}, \hat{\mathbf{u}}, \mathbf{y}, \hat{\eta}_c, \hat{\eta}_d)$$

Annotations pointing to the equation:

- Past control inputs
- Past measurements
- Estimated efficiencies
- Future control inputs
- State estimates/predictions



Adaptive MPC/MHE

State estimates/predictions

Past control inputs

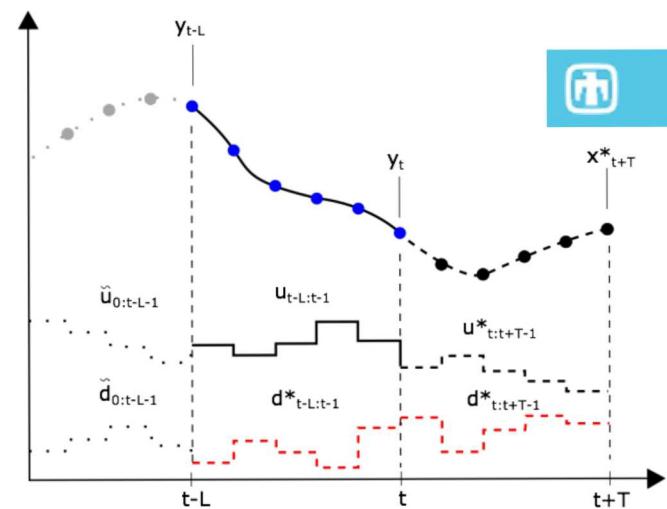
Past measurements

Future control inputs

Estimated efficiencies

$$\min_{\hat{\mathbf{u}}} \max_{\hat{\eta}_c, \hat{\eta}_d, \hat{\mathbf{x}}} J_k(\hat{\mathbf{x}}, \mathbf{u}, \hat{\mathbf{u}}, \mathbf{y}, \hat{\eta}_c, \hat{\eta}_d)$$

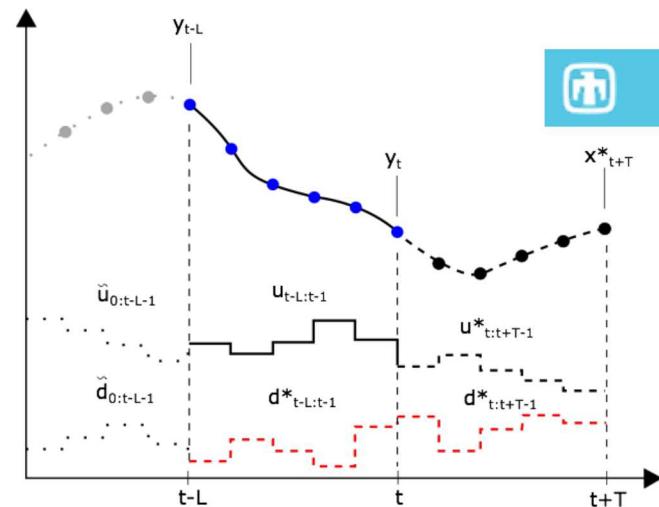
subject to $\hat{u}_k \leq \bar{u}$



ESS power rating

Adaptive MPC/MHE

$$\begin{aligned}
 & \text{State} \\
 & \text{estimates/predictions} \\
 & \text{Past control inputs} \\
 & \text{Future control inputs} \\
 & \text{Past measurements} \\
 & \text{Estimated efficiencies} \\
 & \min_{\hat{\mathbf{u}}} \max_{\hat{\eta}_c, \hat{\eta}_d, \hat{\mathbf{x}}} J_k(\hat{\mathbf{x}}, \mathbf{u}, \hat{\mathbf{u}}, \mathbf{y}, \hat{\eta}_c, \hat{\eta}_d) \\
 & \text{subject to } \hat{u}_k \leq \bar{u}
 \end{aligned}$$



ESS power rating

Desired fraction
of unused SoE

$$0 \leq \hat{x}_k + \hat{\eta}_c \hat{u}_k \tau - \frac{1}{\eta_d} \hat{u}_k^d \tau \leq \bar{x}$$

$$\delta \bar{x} \leq \hat{x}_k + \hat{\eta}_c \hat{u}_k \tau - \frac{1}{\eta_d} \hat{u}_k^d \tau \leq \bar{x} - \delta \bar{x}$$

ESS linear dynamics

Adaptive MPC/MHE

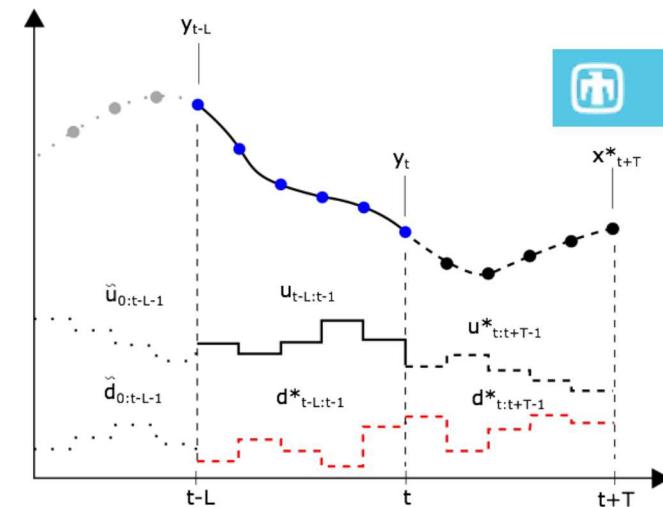
$$\begin{aligned}
 & \text{State} \\
 & \text{estimates/predictions} \\
 & \text{Past control inputs} \\
 & \text{Future control inputs} \\
 & \text{Past measurements} \\
 & \text{Estimated efficiencies} \\
 & \min_{\hat{\mathbf{u}}} \max_{\hat{\eta}_c, \hat{\eta}_d, \hat{\mathbf{x}}} J_k(\hat{\mathbf{x}}, \mathbf{u}, \hat{\mathbf{u}}, \mathbf{y}, \hat{\eta}_c, \hat{\eta}_d) \\
 & \text{subject to } \hat{u}_k \leq \bar{u}
 \end{aligned}$$

Desired fraction
of unused SoE

$$0 \leq \hat{x}_k + \hat{\eta}_c \hat{u}_k \tau - \frac{1}{\eta_d} \hat{u}_k^d \tau \leq \bar{x}$$

$$\delta \bar{x} \leq \hat{x}_k + \hat{\eta}_c \hat{u}_k \tau - \frac{1}{\eta_d} \hat{u}_k^d \tau \leq \bar{x} - \delta \bar{x}$$

$$\hat{x}_k = y_k - \hat{n}_k$$



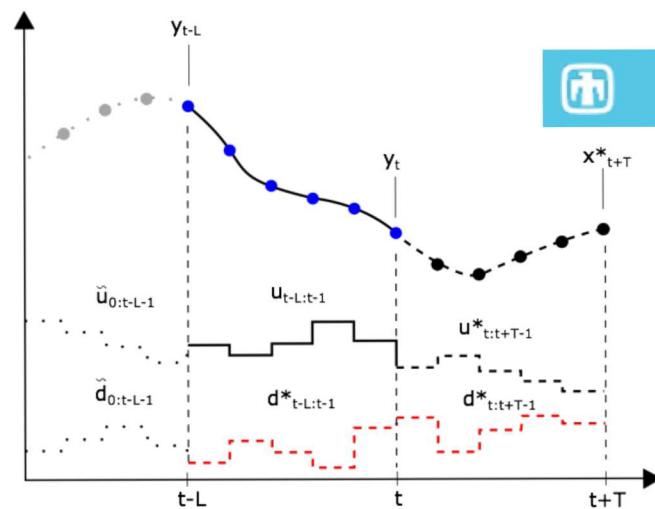
ESS power rating

ESS linear dynamics

Output equation

Adaptive MPC/MHE

$$\begin{aligned}
 & \text{State} & \text{Past control inputs} & \text{Future control inputs} & \text{Past measurements} & \text{Estimated efficiencies} \\
 & \text{estimates/predictions} & & & & \\
 & \min_{\hat{\mathbf{u}}} \max_{\hat{\eta}_c, \hat{\eta}_d, \hat{\mathbf{x}}} J_k(\hat{\mathbf{x}}, \mathbf{u}, \hat{\mathbf{u}}, \mathbf{y}, \hat{\eta}_c, \hat{\eta}_d) & & & & \\
 & \text{subject to } \hat{u}_k \leq \bar{u} & & & & \\
 \end{aligned}$$



ESS power rating

Desired fraction of unused SoE

$$0 \leq \hat{x}_k + \hat{\eta}_c \hat{u}_k \tau - \frac{1}{\eta_d} \hat{u}_k^d \tau \leq \bar{x}$$

$$\delta \bar{x} \leq \hat{x}_k + \hat{\eta}_c \hat{u}_k \tau - \frac{1}{\eta_d} \hat{u}_k^d \tau \leq \bar{x} - \delta \bar{x}$$

$$\hat{x}_k = y_k - \hat{n}_k$$

$$\eta_c^{\min} \leq \hat{\eta}_c \leq \eta_c^{\max}$$

$$\eta_f^{\min} \leq \hat{\eta}_d \leq \eta_d^{\max}$$

ESS linear dynamics

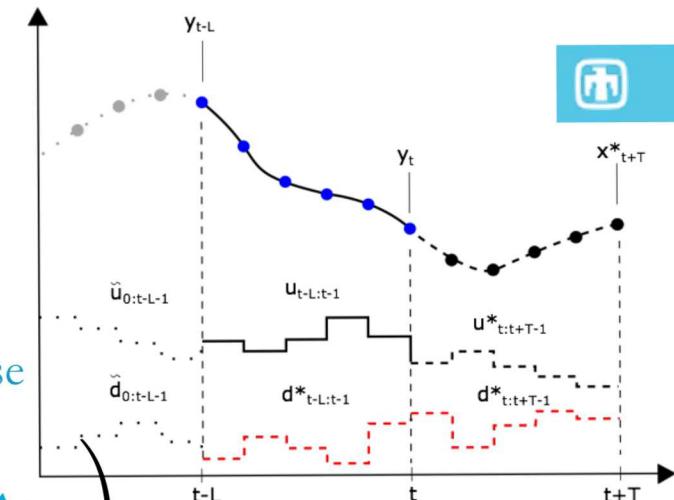
Output equation

Bounds on efficiencies

Example: Energy Arbitrage

$$\min_{\hat{\mathbf{u}}} \max_{\hat{\eta}_c, \hat{\eta}_d, \hat{\mathbf{x}}} \left(\sum_{k=t}^{t+T-\tau} \lambda_k (\hat{u}_k^c - \hat{u}_k^d) \tau - \sum_{k=t-L}^t w \hat{n}_k \right)$$

subject to $\hat{u}_k \leq \bar{u}$ arbitrage



ESS power rating

Desired fraction
of unused SoE

$$0 \leq \hat{x}_k + \hat{\eta}_c \hat{u}_k \tau - \frac{1}{\eta_d} \hat{u}_k^d \tau \leq \bar{x}$$

$$\delta \bar{x} \leq \hat{x}_k + \hat{\eta}_c \hat{u}_k \tau - \frac{1}{\eta_d} \hat{u}_k^d \tau \leq \bar{x} - \delta \bar{x}$$

ESS linear dynamics

$$\hat{x}_k = y_k - \hat{n}_k$$

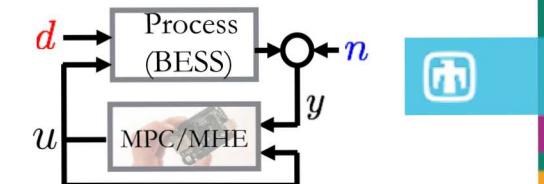
Output equation

$$\eta_c^{\min} \leq \hat{\eta}_c \leq \eta_c^{\max}$$

$$\eta_f^{\min} \leq \hat{\eta}_d \leq \eta_d^{\max}$$

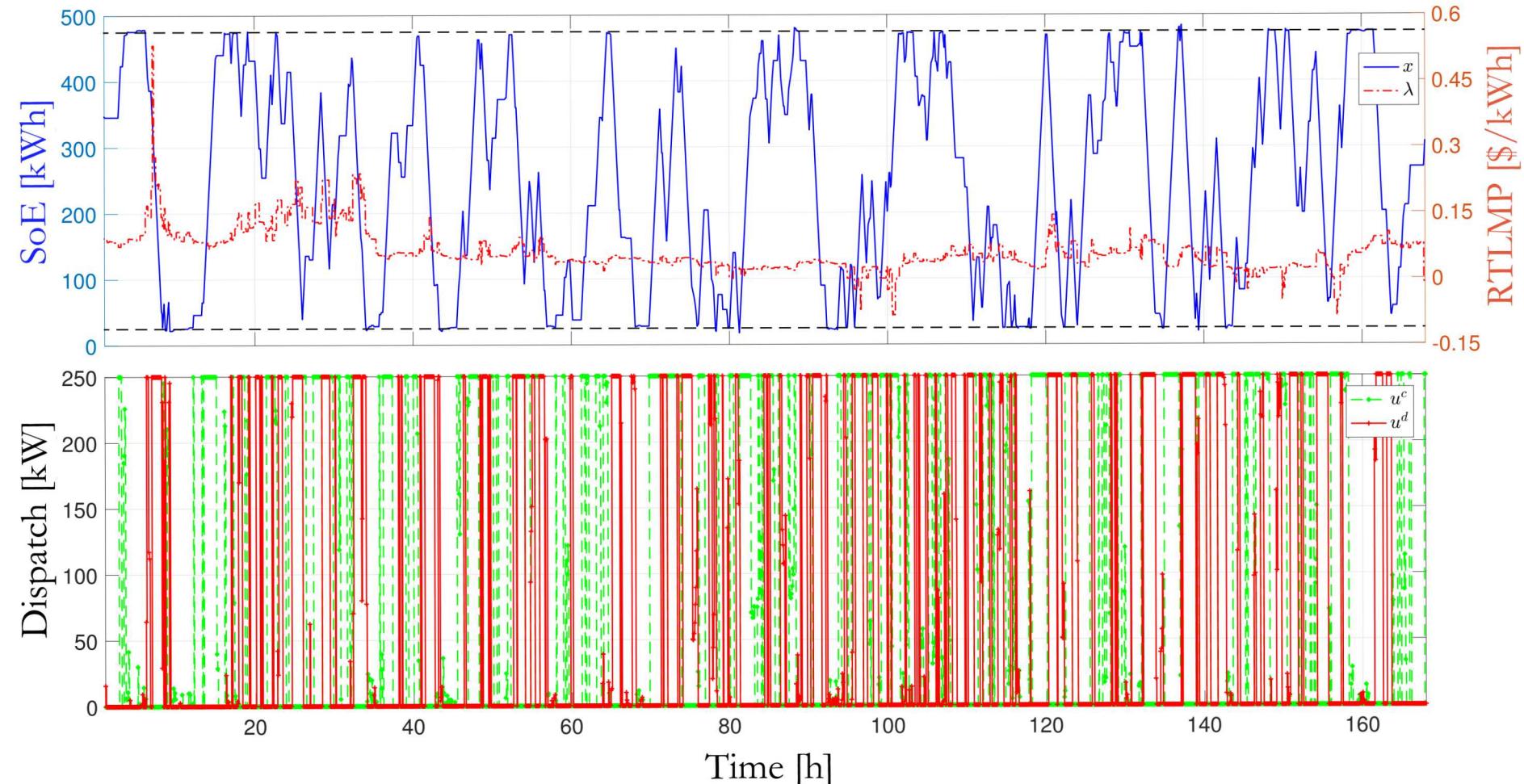
Bounds on efficiencies

Adaptive MPC: Results for January 18-24, 2018

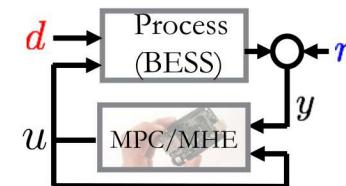
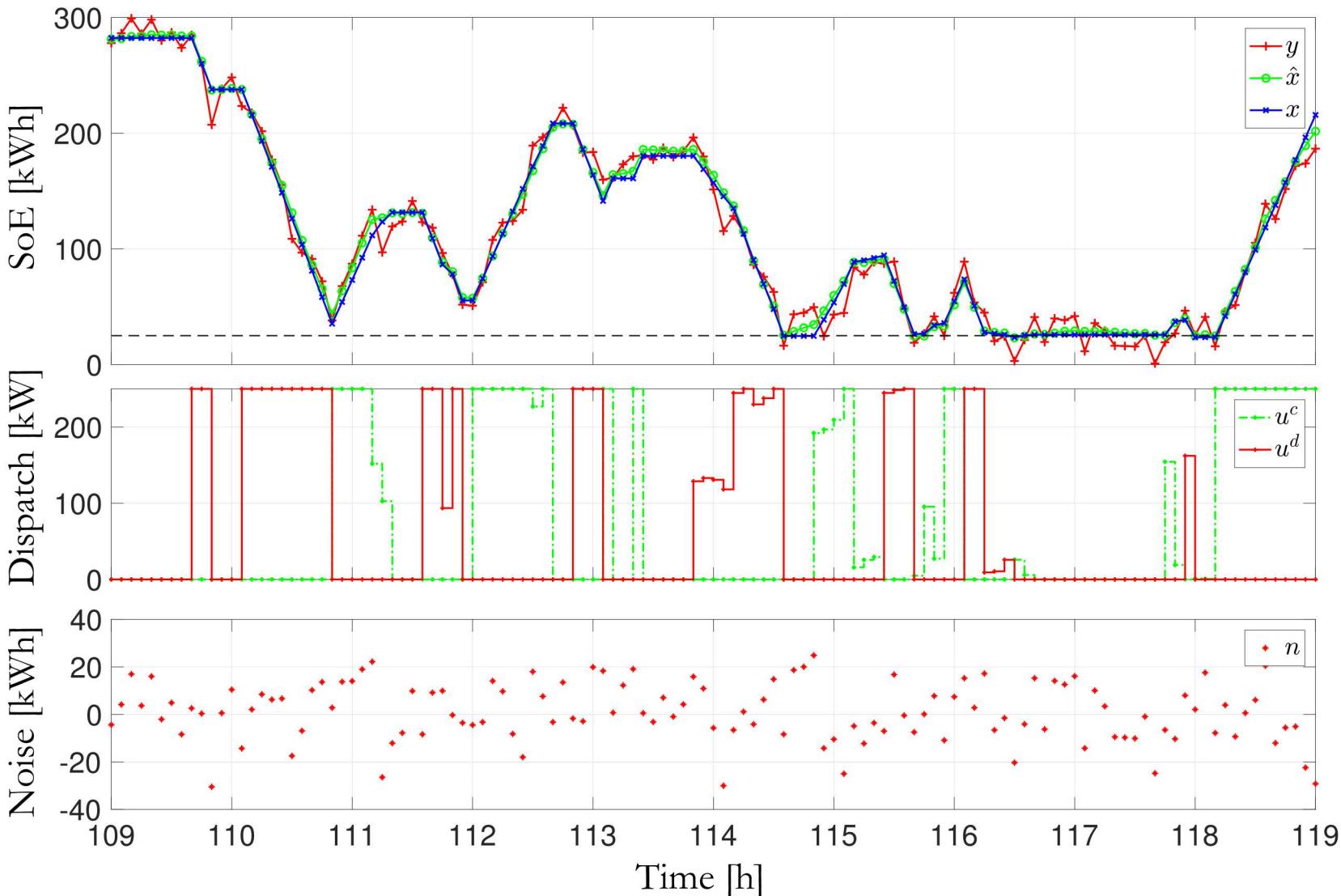


Process: Nonlinear Li-ion BESS model

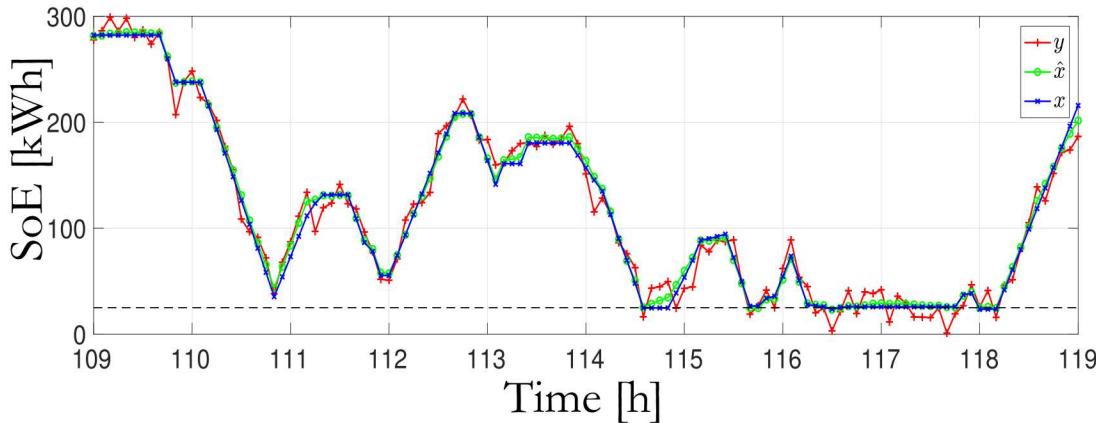
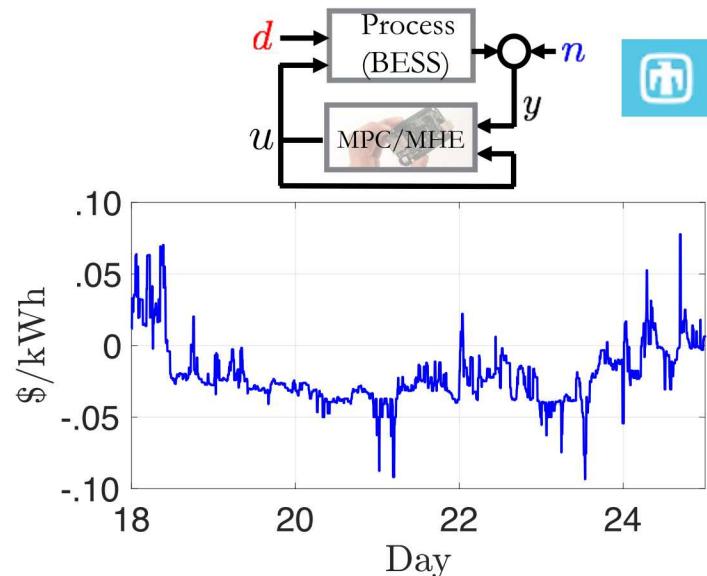
Predictive model: adaptive linear energy flow



Adaptive MPC: Results for January 18-24, 2018



Results Comparison



Using 5-minute real-time energy prices from East Cambridge node in ISO New England...

Results for January 18-24, 2018.

Case	Revenue	RMSE of \hat{x}	Constraint violation ϵ
Adaptive	\$439.30	3.63 ←	36.87 ←
$\eta_c = \eta_d = 0.90$	\$437.78	13.44	168.14
$\eta_c = \eta_d = 0.91$	\$441.73	11.36	150.92
$\eta_c = \eta_d = 0.92$	\$443.49	6.52	101.34
$\eta_c = \eta_d = 0.93$	\$442.85	5.96	130.50

Advantages:

- 1) Significantly improved state estimation
- 2) Significantly less constraint violation

Acknowledgements

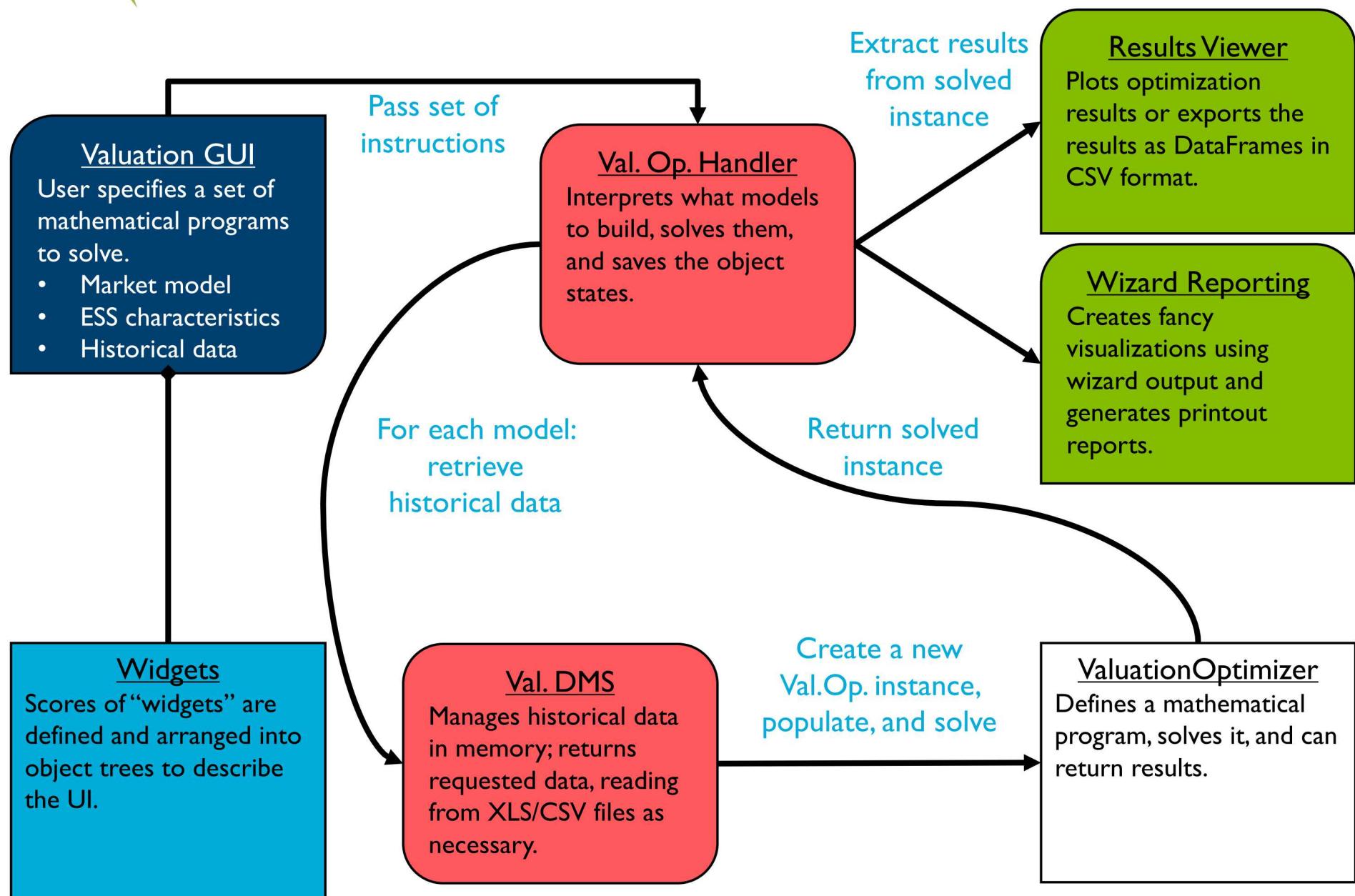
Funding provided by US DOE Energy Storage Program managed by Dr. Imre Gyuk of the DOE Office of Electricity Delivery and Energy Reliability.

Colleagues:

Tu Nguyen
Felipe Wilches-Bernal
Ricky Concepcion
David Schoenwald
Ray Byrne
Babu Chalamala

dcopp@sandia.gov

Thank you.



Equitable Regulatory Environment Thrust Area

Goals: Lower barriers to widespread deployment of energy storage by identifying new and existing value streams, quantifying the impact of policy on deployment, and **developing new control strategies**

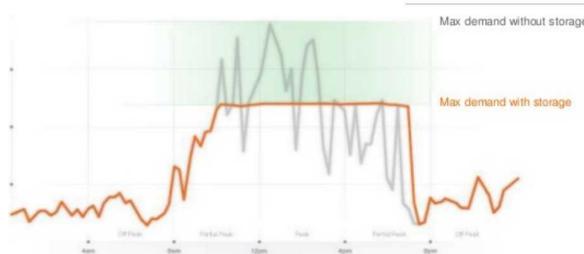
Objectives:

- Project case studies
- Tools for storage valuation
- Identify new value streams
- **Control strategies to maximize revenue/grid benefit**
- Assess policy impact on storage
- Develop policy recommendations

Energy Storage as Flexible Resource

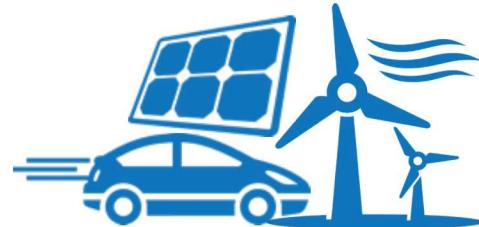
Grid-scale energy storage can enable significant cost savings to industry while improving infrastructure reliability and efficiency

Mitigate \$79B/yr in commercial losses from outages



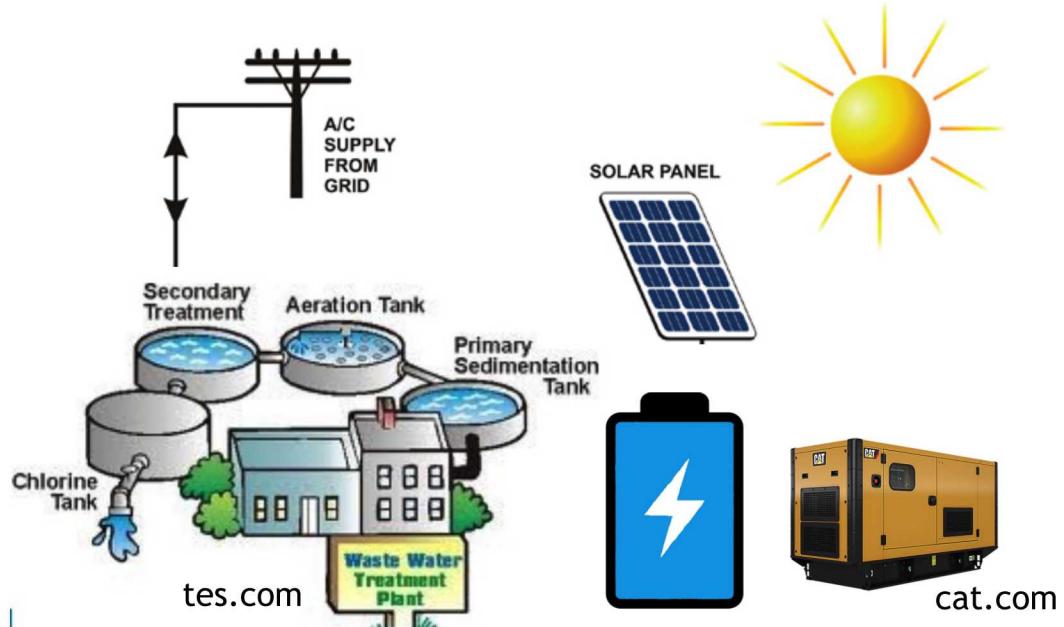
Reduce commercial and industrial electrical bills through demand charge management. 7.5 million U.S. customers are enrolled in dynamic pricing (EIA 2015)

Reduce \$2T in required T&D upgrades

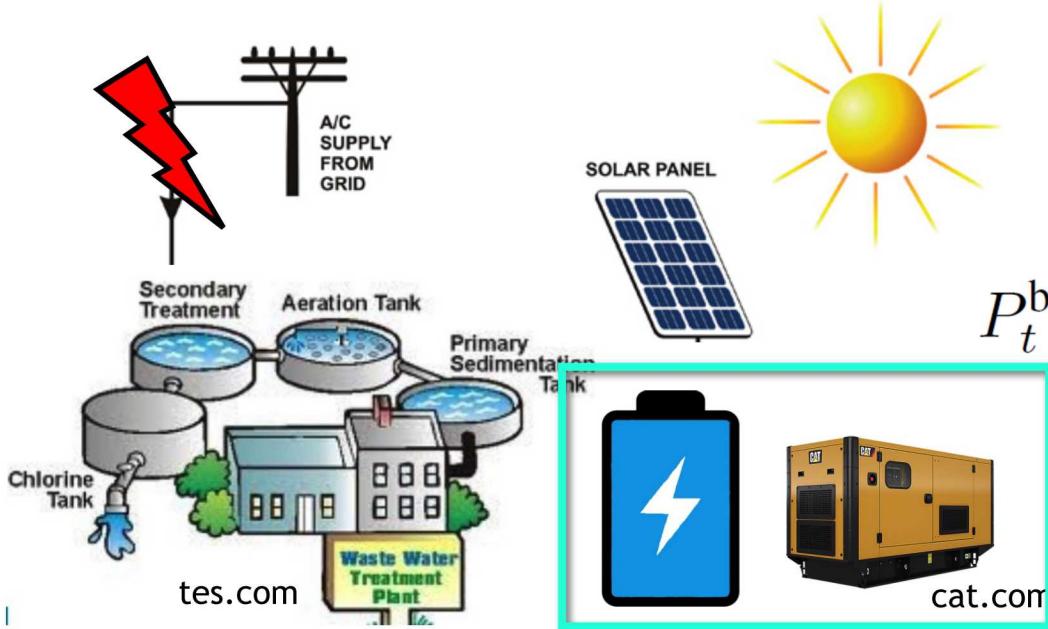


Balance the variability of 825 GW of new renewable generation while improving grid reliability and efficiency.

Example: Optimal Sizing Behind-the-Meter Energy Storage



Example: Optimal Sizing Behind-the-Meter Energy Storage



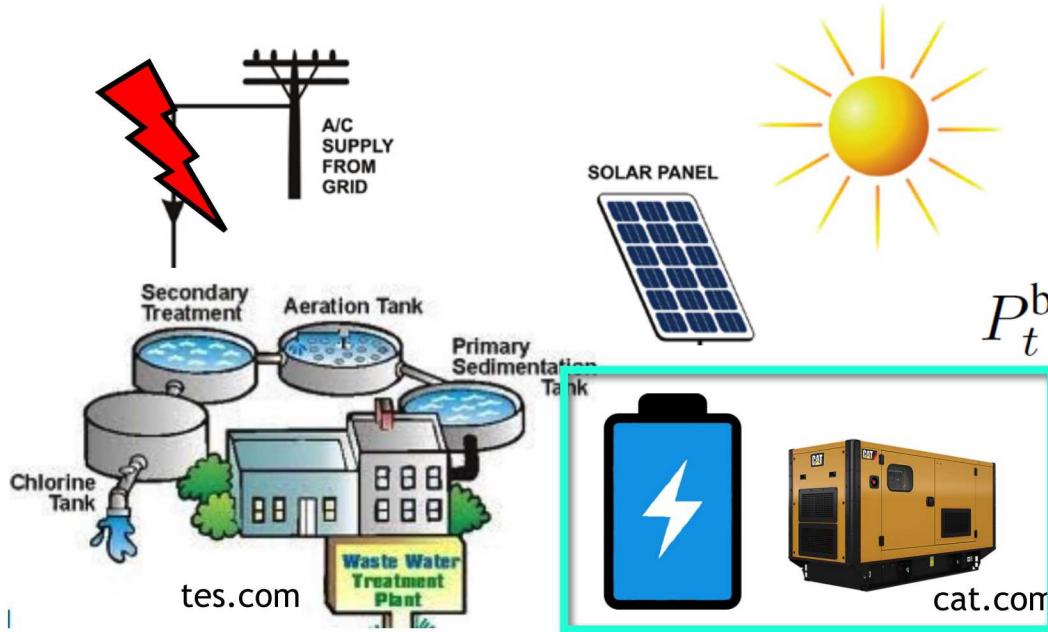
$$P_t^{\text{net}} = P_t^{\text{load}} - P_t^{\text{PV}}$$

$$P_t^{\text{balance}} = P_t^{\text{net}} + P_t^c - P_t^d - P_t^g$$

Decision variables

minimize energy from ES and generator
 subject to to balance critical load
 dynamics
 constraints

Example: Optimal Sizing Behind-the-Meter Energy Storage

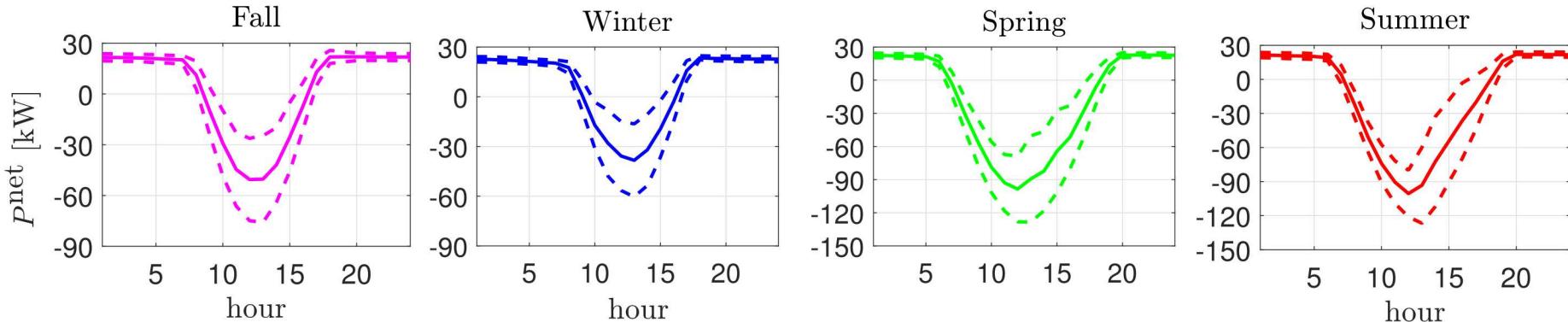


$$P_t^{\text{net}} = P_t^{\text{load}} - P_t^{\text{PV}}$$

$$P_t^{\text{balance}} = P_t^{\text{net}} + P_t^c - P_t^d - P_t^g$$

Decision variables

Stochastic optimization considering PV and load uncertainty.



$$\min_{\mathbf{P}^c, \mathbf{P}^d, \mathbf{P}^g} \quad w_1 \overline{S}_{\text{ESS}} + w_2 \overline{S}_{\text{gen}} \quad \forall t \in \mathcal{T} \quad \text{Optimization horizon}$$

subject to $\overline{S}_{\text{ESS}} \geq 0$

$$\sum_{t=1}^T P_t^g \leq \overline{S}_{\text{gen}}$$

$$P_t^c \geq 0$$

$$P_t^d \geq 0$$

$$P_t^c + P_t^d \leq \overline{P}_{\text{ESS}}$$

$$0 \leq P_t^g \leq \overline{P}_{\text{gen}}$$

$$0 \leq \gamma_s S_t + \gamma_c P_t^c - P_t^d \leq \overline{S}_{\text{ESS}}$$

$$\mathbb{P}\{P_t^{\text{net}} + P_t^c - P_t^d - P_t^g \leq 0\} \geq \alpha \quad \text{Load balancing probabilistic constraint}$$

ESS energy capacity

Generator energy provided

ESS charge

ESS discharge

ESS power rating

Generator power rating

ESS SOC dynamics

$$\min_{\mathbf{P}^c, \mathbf{P}^d, \mathbf{P}^g} \quad w_1 \bar{S}_{\text{ESS}} + w_2 \bar{S}_{\text{gen}} \quad \forall t \in \mathcal{T} \quad \text{Optimization horizon}$$

subject to $\bar{S}_{\text{ESS}} > 0$ ESS energy capacity

If forecasts follow normal distributions...
 probabilistic constraint can be formulated as a deterministic inequality constraint

Solve resulting Linear Program

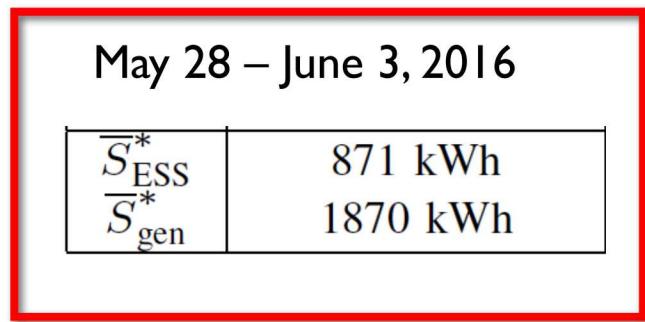
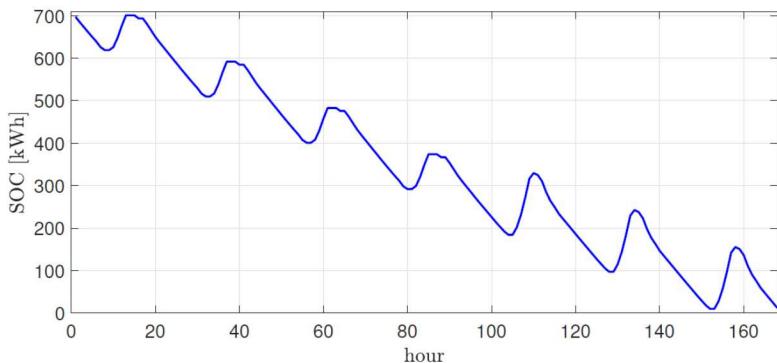
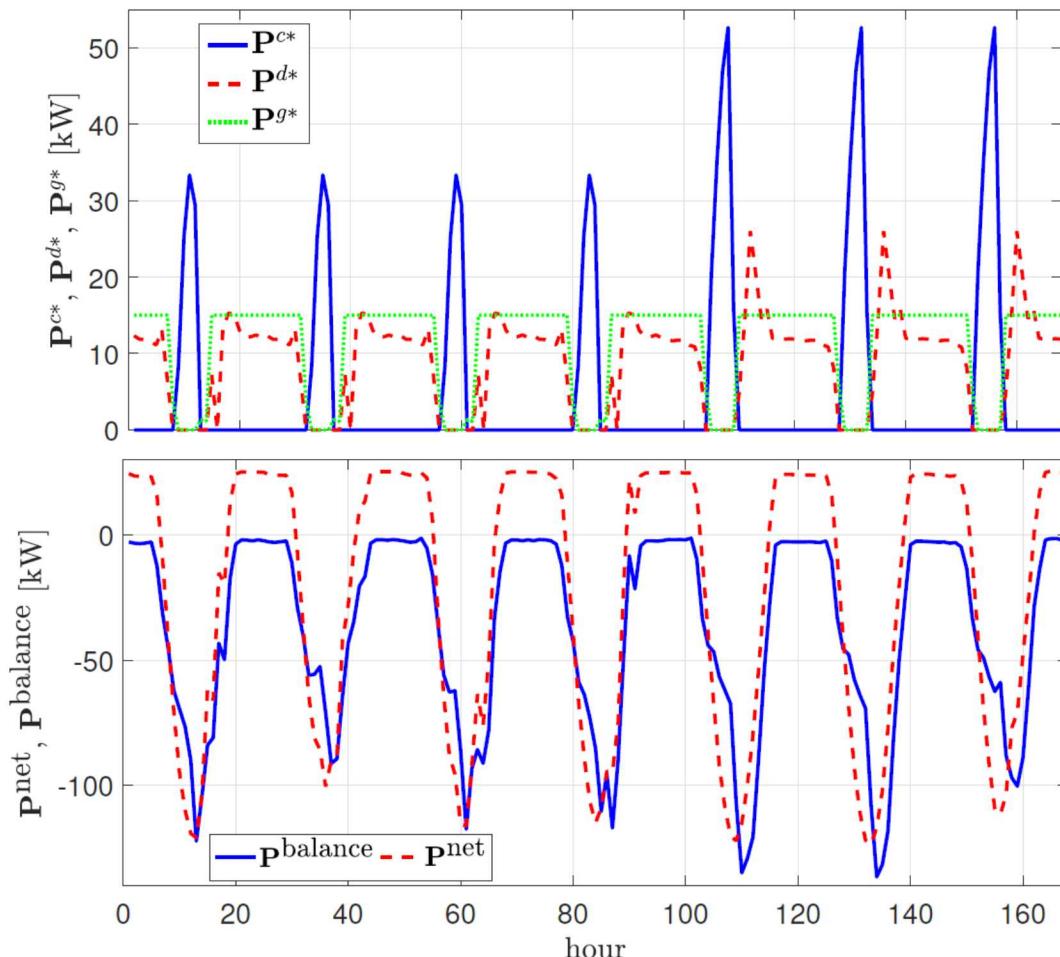
$$0 \leq P_t^g \leq \bar{P}_{\text{gen}} \quad \text{Generator power rating}$$

$$0 \leq \gamma_s S_t + \gamma_c P_t^c - P_t^d \leq \bar{S}_{\text{ESS}} \quad \text{ESS SOC dynamics}$$

$$\mathbb{P}\{P_t^{\text{net}} + P_t^c - P_t^d - P_t^g \leq 0\} \geq \alpha \quad \text{Load balancing probabilistic constraint}$$

Results: Optimizing Behind-the-Meter Energy Storage

$$\min_{\mathbf{P}^c, \mathbf{P}^d, \mathbf{P}^g} \quad w_1 \bar{S}_{\text{ESS}} + w_2 \bar{S}_{\text{gen}}$$



$$P_t^{\text{net}} = P_t^{\text{load}} - P_t^{\text{PV}}$$

$$P_t^{\text{balance}} = P_t^{\text{net}} + P_t^c - P_t^d - P_t^g$$

Parameter	Description	Value	Units
h	Time step	1	hour
γ_{PV}	PV panel efficiency	0.15	-
γ_{conv}	PV conversion efficiency	0.90	-
γ_s	ESS storage efficiency	1.00	-
γ_c	ESS charging efficiency	0.85	-
A_{PV}	Total area of solar panels	1000	m^2
\bar{P}_{ESS}	ESS power rating	150	kW
\bar{P}_{gen}	Generator power rating	15	kW
S_0	Initial SOC	$0.8\bar{S}_{\text{ESS}}$	kWh
w_1	Weight on \bar{S}_{ESS}	1	-
w_2	Weight on \bar{S}_{gen}	1.1	-
T	Optimization horizon	168	hours
α	Desired fraction of time critical load is met	0.99	-

	May 28 - June 3	August 28 - September 3
\bar{S}_{ESS}^*	871 kWh	1276 kWh
\bar{S}_{gen}^*	1870 kWh	2092 kWh

Conclusion

- Proposed stochastic optimization for sizing and scheduling behind-the-meter energy storage.
- With normally distributed forecasting errors, probabilistic constraint can be reformulated as a linear inequality constraint, and optimization problem becomes a linear program.
- Case study: Reasonably-sized energy storage system, when optimally scheduled with the generator, successfully balanced critical load with *naive forecasts* of stochastic load and PV generation.
- Smaller energy storage may be used times of year when PV generation is higher relative to critical load, such as Spring and Summer.

