

Spent Fuel and Waste Science and Technology

Salt Disposal R&D: Big Picture

Kris Kuhlman
Sandia National Laboratories

Roadmap Meeting
Las Vegas, Nevada
January, 2019

■ Salt's benefits as a medium for disposal:

- Impermeable to flow in far field ($\leq 10^{-20} \text{ m}^2$)
- High thermal conductivity ($\sim 5 \frac{\text{W}}{\text{m}\cdot\text{K}}$)
- Relatively dry (<1% porosity; <5% total H_2O)
- Biologically simple
- Creep closure and healing of excavations/fractures
- Easily mined via continuous miner
- Granular salt reconsolidates back to intact salt

■ No release to far field without human intrusion

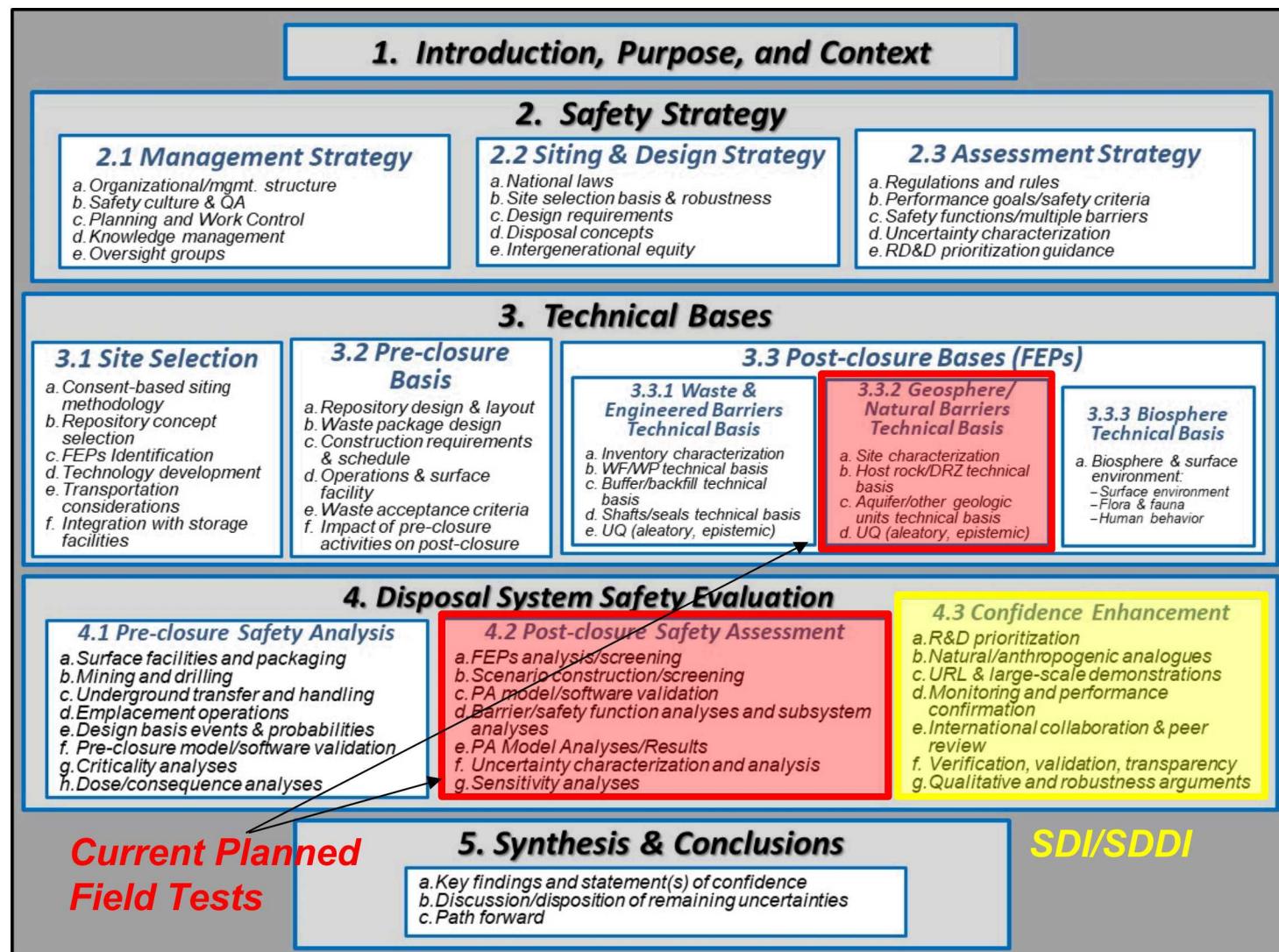
- WIPP Performance Assessment
- Long time scales/Large length scales
- Shaft seals only pathway out of repository

■ In short term/near field salt is more complex

- Salt is very soluble in water
- Brine very corrosive to common waste package materials
- Water exists in 3 significant forms
 - *Fluid inclusions migrate under T gradient*
 - *Hydrous minerals dehydrate at elevated T*
- Hypersaline brines have complex geochemistry
 - *Requires Pitzer model or similar*
- Complex geomechanical behavior
 - *Cannot support differential stress (openings creep closed during operations – WIPP requires significant maintenance)*
 - *Constitutive models are complex and still under research*
 - *Laboratory/field behavior notably different (creep at low τ)*
- Granular salt reconsolidation:
 - *Reconsolidation path very stress, T & water content sensitive.*
- HMC aspects of intact salt are quite T -sensitive

■ Salt's long-term PA benefits vs. short-term complications

- Long-term benefits generally seen as more important


■ WIPP Performance Assessment

- Non-heat generating waste
- Conservative regarding waste package corrosion (took no credit)
- Granular salt reconsolidation only considered in shaft seal (no backfill around waste)
- Human intrusion brine source overwhelms local brine source

■ Study short-term “complications” and “deviations”

- Importance to Safety Case?
 - *Initial conditions to long-term performance assessment?*
- Importance to Confidence Enhancement?
- Importance to Pre-Closure Safety?

Salt R&D in Safety Case

■ 2012 UFD Roadmap Document

- Five of top 6 high-priority FEPs (Appendix B) are on Salt [score]
 1. *2.2.01.01 – Evolution of Clay/Shale EDZ [8.00]*
 2. *2.2.08.01 – Flow through salt host rock [7.73]*
 3. *2.2.08.02 – Flow through other geologic units near salt repository [7.73]*
 4. *2.2.08.06 – Flow through the salt EDZ [7.73]*
 5. *2.2.08.04 – Effect of repository excavation on flow in salt host rock [7.10]*
 6. *2.2.08.07 – Mineralogic dehydration of salt [6.49]*

■ These FEPs rated “High: information essential to decisions”

- Site Selection
- Site Characterization
- Site Suitability

■ 2012 UFD Roadmap Document: “State of the Art” for key FEPs

- Need to understand ***fracturing and healing*** in clays and salt.
- ***Water migration in salt is a unique process that needs to be better understood.*** Need to understand thermal and pressure gradients and gas generation and migration.
- Need to know the ***evolution of the characteristics of the EDZ*** under the thermal-mechanical and wetting changes (clay and salt).
- Need to understand the ***coupled evolution of near-field host rock (EDZ)*** and backfill.
- Considerable work has been done for WIPP and European programs.
- European programs starting multi-year projects investigating thermal-mechanical and moisture effects in the EDZ.
- This issue includes ***other disturbances (e.g., ventilation) beyond just excavation effects.***

■ 2012 UFD Roadmap “take-away message” regarding Salt

- Brine migration (+ventilation dry-out) needs to be better understood
- THMC Evolution of EDZ is complex, but important
- Significant existing international field testing database exists

■ Salt R&D is focused on field test

- Shakedown heater test in existing boreholes (now)
- Heater test in new built-for-purpose boreholes (later FY19)
- Larger scale follow-on demonstrations

■ Salt R&D Modeling/Lab Efforts Support field test

- Numerical modeling to design and interpret results of field test
 - *LANL (FEHM) & LBL (TOUGH-FLAC)*
- Laboratory testing to analyze brine/gas/solid samples collected during field test
 - *SNL (solids and liquids) & LANL (liquids and gases)*

■ Developments for GDSA are lower priority in Salt R&D (FY18)

- Numerical modeling to design/interpret tests takes priority

■ GDSA and PA potential contribution areas for Salt

- Pitzer model needed to do “full chemistry” in salt (using EQ3/6 now)
- Other chemistry → fluid flow coupling effects with brine
 - *FEHM implements some of these now (e.g., vapor-pressure lowering)*
 - *Implementing analogous features in PFLOTRAN is possible*
- EDZ development and evolution is especially important in salt
 - *TOUGH-FLAC implements these now*
 - *Moving features from TOUGH-FLAC to PFLOTRAN is difficult / requires “response surface” for PA*

■ **DOE-EM planned Disposal Demonstrations planned at WIPP**

- DOE-Environmental Management (**DOE-EM**) Carlsbad Field Office runs WIPP
- Salt Disposal Investigations (SDI) – 2011 (hot alcove-style disposal demo)
- Salt Defense Disposal Investigations (SDDI) – 2013 (cooler in-drift disposal demo)

■ **DOE-NE Salt R&D Albuquerque Workshop (March 27, 2013)**

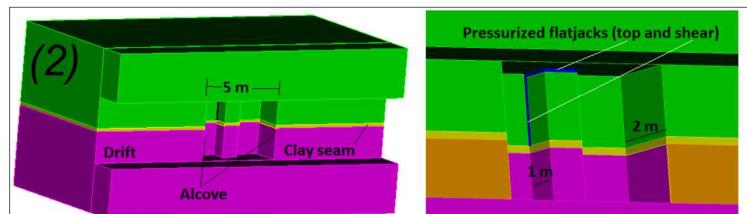
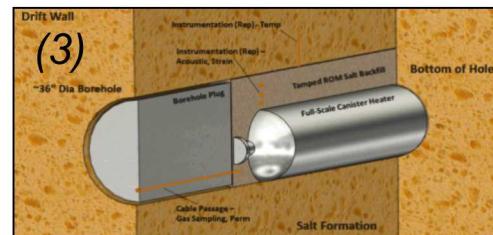
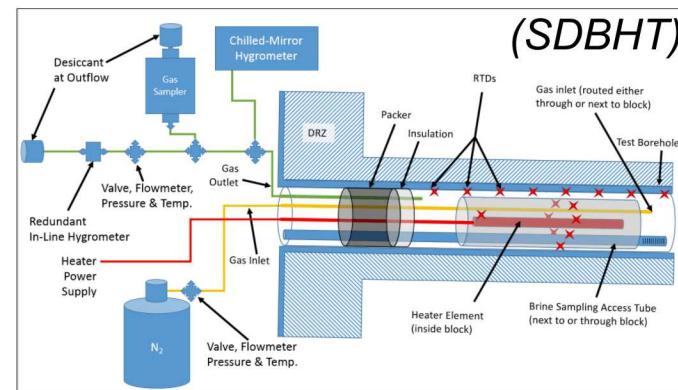
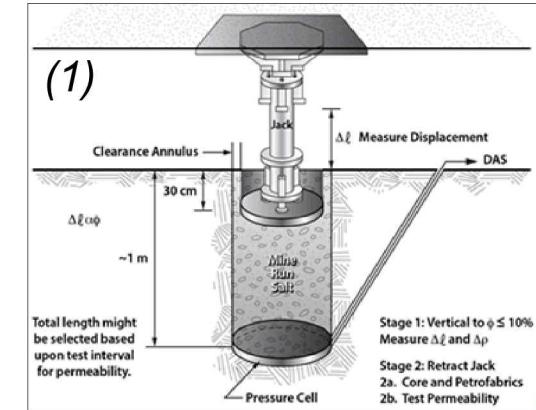
- SNL, LANL, LBNL, DOE: salt field experiments consistent w/ UFD roadmap

■ **DOE-EM work on SDI/SDDI stopped (Feb 7, 2014)**

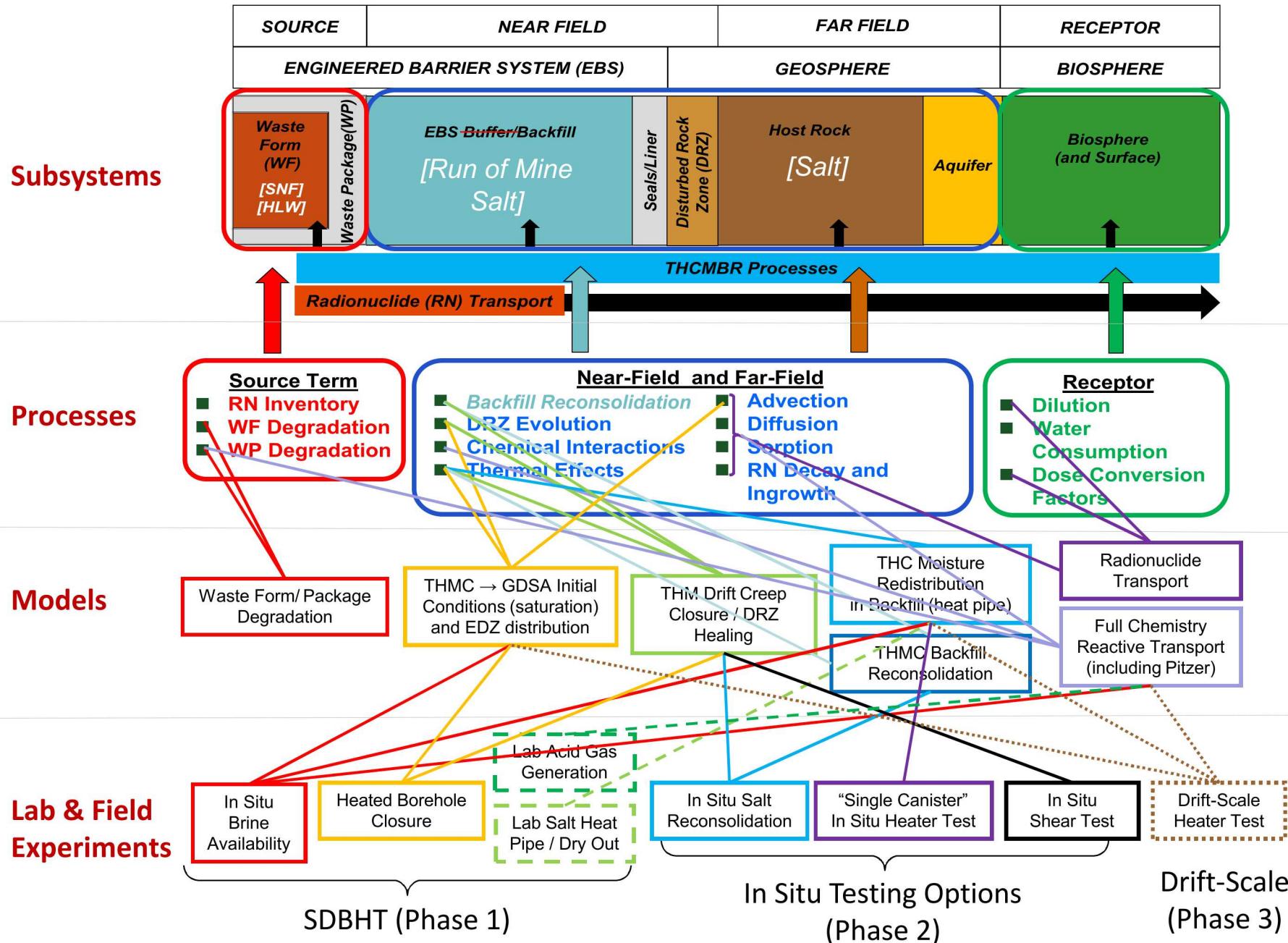
■ **DOE-NE Small-scale (phased) testing approach at WIPP**

- 2014 DOE-NE ramps down generic modeling and laboratory work on salt
- 2014-2016: morphed from drift-scale demonstration to borehole-scale test
- Small-scale borehole heater test designed in FY17 (SNL/LANL/LBNL)
- Small-scale borehole heater test implementation beginning **June 2018**

■ Small-Diameter Borehole Heater Test (SDBHT)





- FY17-18 test plan / late FY18 begin execution
- Isothermal test & 120 °C test in existing holes
- Re-design for follow-on heated tests

■ Other Possible Tests in “Out Years”


- Further SDBHT configurations
- Intermediate-scale testing
 1. *Large-scale granular salt reconsolidation*
 2. *Shear testing (being done at WIPP)*
 3. *Single-canister thermal test*

■ Laboratory/Modeling Investigations

- Only those supporting field investigations

Salt Host Rock Integration Pyramid

