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Context: Topology Optimization
Design Tools to Leverage Additive Manufacturing
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National
Laboratories

Objective: Provide a design environment that can leverage existing simulation tools and
emerging HPC architectures.

Design + Materials

Forward Problem:

..> Response

Inverse Problem:

Design + Materials +H Response

Approach: Use topology optimization to let performance objectives dictate the design

Objective: m in 1 ain(ui, z, x)z
,
x

.
I

PDE Constraint: gi(ui, z, x) = 0

Inequality Constraint: h(u, z, x) < 0
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WATCHING DESIGNS EVOLVE THROUGH SIMULATION

Real time multi-physics design
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GPU enabled solver package

■ Optimized for stiffness and thermal

conductivity

■ Video is timfis the real time to

optimize the design



DIFFERENT PERFORMANCE OBJECTIVES LEADS TO DIFFERENT
DESIGNS
Important to incorporate as much of the relevant physics as possible

Mechanical compliance
minimization
—

Constraint: Equal
mass in each design
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Thermal compliance Mechanical and thermal
minimization

—

Note: Structure is disconnected from
the mounts — no consideration was
given to mechanical stiffness!

compliance minimization



Incorporating Uncertainty

• Probabilistic optimization

• Risk measures

• Buffered probabilities

• Material-aware optimization

• Continuum material anisotropy

• Microstructure anisotropy due to additive manufacturing
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Buffered Probabilities
Incorporates conservatism due to large tail values

buffer zone

X 5 x O.K.

qo = VaRo

X > x failure zone

X = x

= X + T ( < X)

Average value of taili

Seim

Buffered probability of exceedance: R (X) = Fx (X) = P (X > T (x))

where T(x) is determined by CVaR(i_iT(x))(X) = E[ X IX- > T (x) ] = x

bP0Ex[X] = 1 -a where a solves CVaRa[X] = x

1 - px

ct = 1 - P x

Conditional Value-at-Risk

CDF

qa q a= x

— Design buffer



Example: 3D Topology Optimization with Buffered Probability

Given compliance tolerance co, probabilitypo E(o, i), order q i,

minfzdx =: vol(z) subject to bP0Ecvo ( J-FS(z)dx )1 — po
() Z 1 D D

where S(z) = u solves the linear elasticity equations

— I7-(E(z) : Eu) = F,
E U = 1/2 ( FU + FU

U = 0 ,

E U : n = o,

/

in D

), in D

on rD

on OD IFD

 /

/
?

,

F: Three uncertain parameters
• Magnitude
• Polar and azimuthal angles
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Numerical Results

Spatial Discretization: Q1 FEM on a uniform 32 x 16 x 16 mesh
Stochastic Discretization: Q = 120 Monte Carlo samples
Problem Data: po= 0.75 and co= E[ JD F S(i)dx]

Mean Value

Deterministic

Risk Neutral

Constraint on average compliance

bPOE

Constraint on average of largest 25%

Risk Neutral

Volume Fraction 49.1% 47.6% 67.2%



Numerical Results

Spatial Discretization: Q1 FEM on a uniform 32 x 16 x 16 mesh

Stochastic Discretization: Q = 120 Monte Carlo samples

Problem Data: po= am and co= E[TD F S(i)dx]

Mean Value Risk Neutral

Note: Topology changes from beam to shell!

bPOE

Risk Neutral bPOE

Volume Fraction 49.1% 47.6% 67.2%
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Incorporating Uncertainty

• Probabilistic optimization

• Risk measures

• Buffered probabilities

• Material-aware optimization

• Continuum material anisotropy

• Microstructure anisotropy due to additive manufacturing
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Material-aware stress minimization
Example: Burlat ii,odel w/ unisotropic yield surface

t
Yield function

Objective: min f (u, z, x)
z,x

PDE Constraint: g (u, z , x) = 0

Inequality Constraint: h(u, z, x) < 0

[17 J0 ay)

1/

Material constants:

Cs

Barlat et al. (2005), Int. J. Plasticity



Yield Surfaces
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Superposed Shear

axy 0.0

axy = 0.1

axy = 0.2

axy = 0.3

axy = 0.4

axy = 0.5

axy = 0.55



Example: Material-aware compliance minimization
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Thermal and mechanical compliance minimization

Mechanical and
thermal load
cases. 2 GPUs.

# elements: 187k
# dofs: 110k
# iterations: 26
Run time: 28s



Example: Material-aware compliance minimization
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REMARK

In AM, it is common to see anisotropy in the build direction. Therefore, the
desired bulk properties might influence choice of build direction.
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Example: Material-aware compliance minimization

y
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Example: Material-aware compliance minimization
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V f' • 0' I 5
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Example: Material-aware compliance minimization
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V f' •O' 10
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What ifYield Stress is Uncertain?

95% Confidence: 0.884 95% Confidence: 0.826 95% Confidence: 0.767
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Incorporating Uncertainty

• Probabilistic optimization

• Risk measures

• Buffered probabilities

• Material-aware optimization

• Continuum material anisotropy

• Microstructure anisotropy due to additive manufacturing
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Additive Manufacturing for Metals
What are the issues?

Additive Manufacturing &
Engineering Design

Caveat: not exhaustive

Wrought 304L stainless AM 304L stainless steel
steel microstructure microstructure

AM materials exhibit spatial heterogeneity
• Heterogeneous textures and morphologies at various length scales
• Residual stresses
Measurements indicate higher variability than wrought materials
• Yield stress, ductility, ultimate stress, rate effects
Challenges traditional deterministic modeling and design approaches
• Spatial heterogeneity and length scales

Sandia
National
Laboratories
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WHY IS A MICROSTRUCTURE SIMULATOR IMPORTANT?
Microstructural variations within and between different components
control variation in engineering properties

Simulation of microstructural

evolution during fabrication

will inform:

• Design of process variables

• Uncertainty quantification in

final components produced

SPPARKS: Stochastic Parallel
PARticle Kinetic Simulator
spparks.sandia.gov

IfriP1
I Simulations r 0°-

4.
A

AI.* • BF'

ININ 111.1.11.1011111=

Scan
direction

11
1
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PROCESS PARAMETERS MICROSTRUCTURE PERFORMANCE
Process determines structure

Time: 0.00 s

Sierra FEA Thermal Model

SPPARKS
MC Model

Coupling with
SIERRA thermal

models



How to model this heterogeneity and variability?
Appi oacn: Upscale microstruLcural effects

Sample

r twin

CI Avoids vexing problem of meshing material details
IJ Systematically represents properties on coarse continuum model
CI Respects length scale and microstructure morphologies
CI Reflects microstructure heterogeneity and variability

Sandia
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Upscaling Approach
• Use synthetic microstructures via SPPARKS model of AM process

er 1

- 0
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• Compute spatial statistics for FE quadrature points
(for 150 SPPARKS simulations)

• Apply cluster algorithms from machine learning

Spatial probability surrounding locations are part of grain +

Comparison to current state-of-the-art

0
20

40

60

80

100

120

140

0

0 100 200 300 400

Sample

Microstructure

Global S2: Spatial

heterogeneity lost

AM 28



Computing spatial statistics
Identify FE quadrature points as fixed observation points

FE mesh

1

Generalize probabilities
for fixed observation points
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RESULT: Upscaled "mean" microstructure
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Example: Sandia's ALEGRA Shock Physics Code

Left Right

o
Vi

Window

•
Gas gun experiment schematic

Velocity
Record

Qol: Velocity
Upscaled mean micro-

structure of "Sample"

✓
2.1e+12

- 2e+12

1.7e+12

1.6e+12

1.5e+12

Distribution of bulk

modulus

Simplified computational model represents gas gun experiment Ti
0 Two materials (Left & Right) just touching at impact
0 Left has initial velocity, Right at rest

Challenge: How do we generalize these ideas for enabling control of
the microstructure & performance prediction of the bulk material?

Sandia
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Bulk modulus: Assign
each grain a random
value from assumed
uniform distribution

Velocity vs. Time

Colored lines:

Different moduli

samples

Dashed line:

Expected value

(no grains)

3

time (microseconds)



Summary

• Context: New designs and materials enabled by qdditive manufacturing

• New risk measures for topology optimization
• Buffered probabilities

• Importance of accounting for AM-induced material anisotropy and variability in
design and analysis

• Introduced an approach for upscaling the heterogeneous and variable AM
microstructure
• Leverages SPPARKS stochastic simulator of microstructural evolution
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Discussion Topics
Broader challenges and potential new directions

1. New science of materials

a) Can we "discover" new materials with desired (and revolutionary) performance properties?

2. Reproducibility and certifiability

a) Can we reproduce such materials in a predictable and cost-effective way?

b) Can we confidently "certify" that a particular material will perform as intended in a given
application?

3. New models and algorithms

a) Beyond AM process control -- how do we model the extremely heterogeneous and variable
materials at all length scales?

b) How do we obtain and assimilate potentially voluminous, uncertain data into our models?

c) Digital twins?

4. How do we package our results for human decision-making?

a) Influencing engineering designs, risk and failure analyses, research funding, etc.
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