

Optimization Under Uncertainty for Predicting Properties and Performance

Jim Stewart

Senior Manager, *Comp. Sciences and Math*
Sandia National Laboratories

Uncertainty Quantification in Computational Solid and Structural Materials Modeling

January 17, 2019
Baltimore, MD

Acknowledgements

Miguel Aquilo

Stephen Bond

Brett Clark

Drew Kouri

Jon Madison

John Mitchell

Steve Plimpton

Josh Robbins

Theron Rodgers

Jason Sanchez

Aidan Thompson

Veena Tikare

Tom Voth

Context: Topology Optimization

Design Tools to Leverage Additive Manufacturing

Objective: Provide a *design environment* that can leverage existing simulation tools and emerging HPC architectures.

Forward Problem:

Inverse Problem:

Approach: Use *topology optimization* to let performance objectives dictate the design

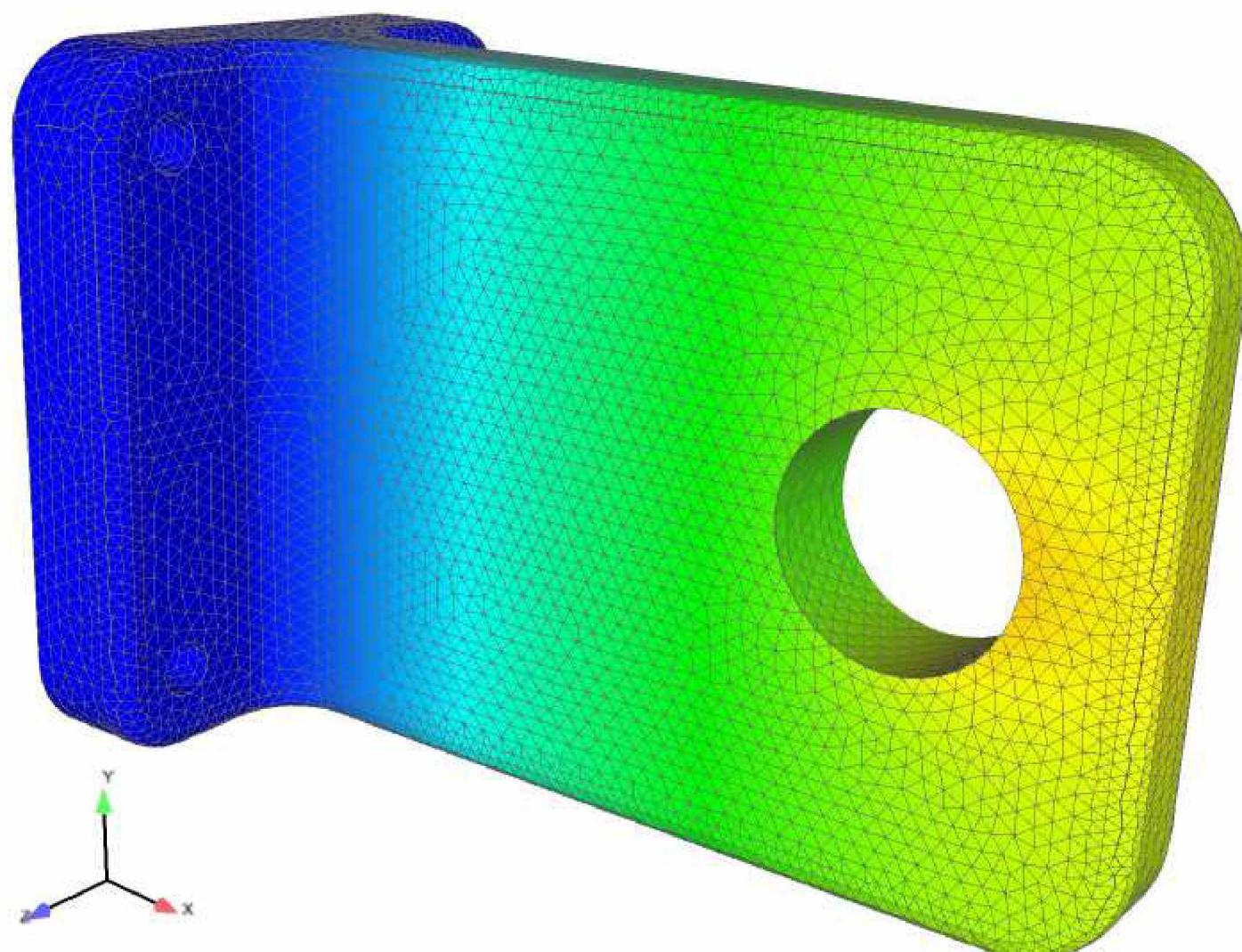
$$\text{Objective: } \min_{\mathbf{z}, \mathbf{x}} \sum_i \alpha_i f_i(\mathbf{u}_i, \mathbf{z}, \mathbf{x})$$

$$\text{PDE Constraint: } \mathbf{g}_i(\mathbf{u}_i, \mathbf{z}, \mathbf{x}) = \mathbf{0}$$

$$\text{Inequality Constraint: } h(\mathbf{u}, \mathbf{z}, \mathbf{x}) \leq 0$$

WATCHING DESIGNS EVOLVE THROUGH SIMULATION

Real time multi-physics design

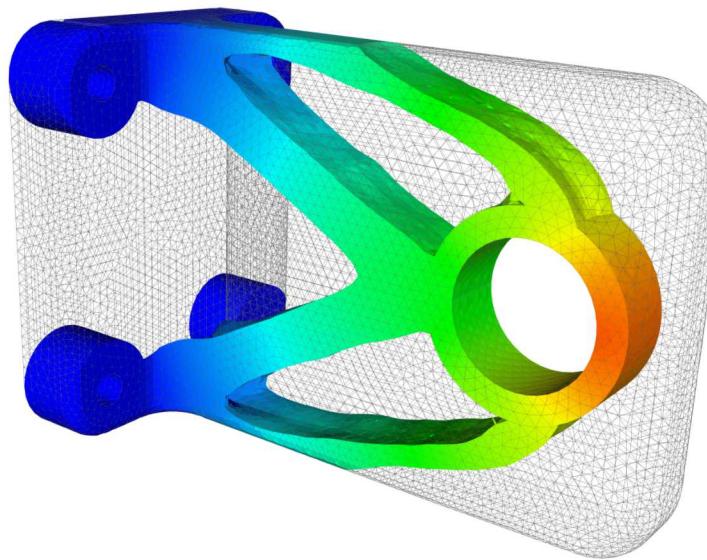


- GPU enabled solver package
- Optimized for stiffness and thermal conductivity
- Video is time is the real time to optimize the design

DIFFERENT PERFORMANCE OBJECTIVES LEADS TO DIFFERENT DESIGNS

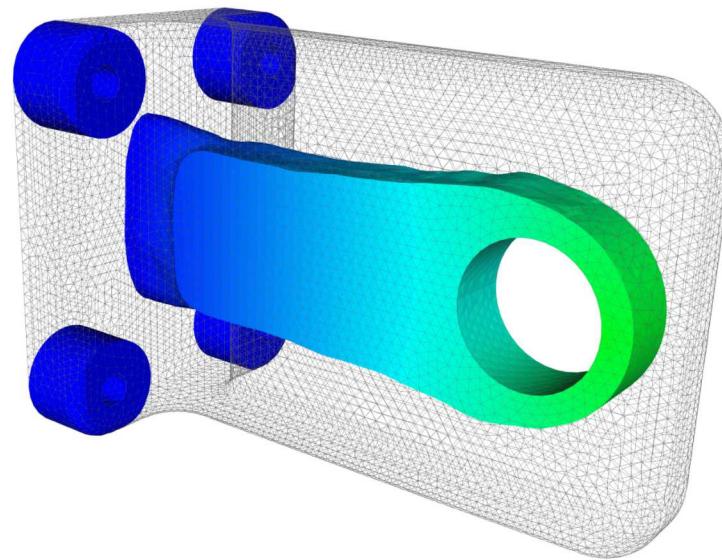
Important to incorporate as much of the relevant physics as possible

Mechanical compliance minimization

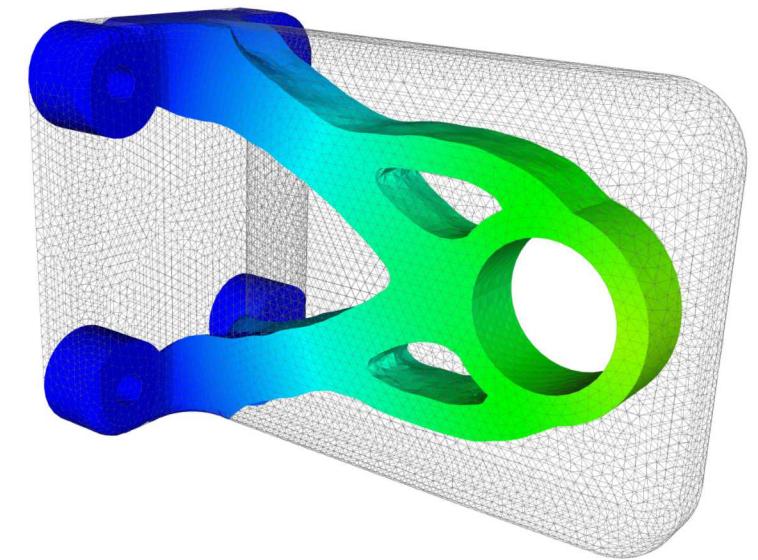


Constraint: Equal mass in each design

Thermal compliance minimization



Mechanical and thermal compliance minimization

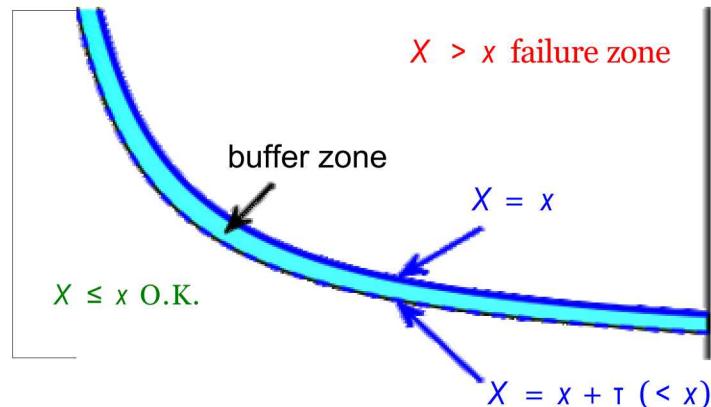


Note: Structure is disconnected from the mounts – no consideration was given to mechanical stiffness!

- **Probabilistic optimization**
 - Risk measures
 - Buffered probabilities
- **Material-aware optimization**
 - Continuum material anisotropy
 - Microstructure anisotropy due to additive manufacturing

Buffered Probabilities

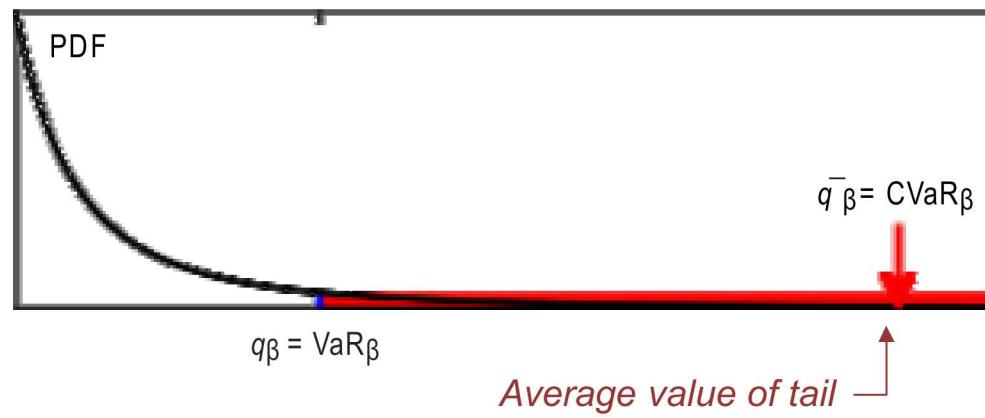
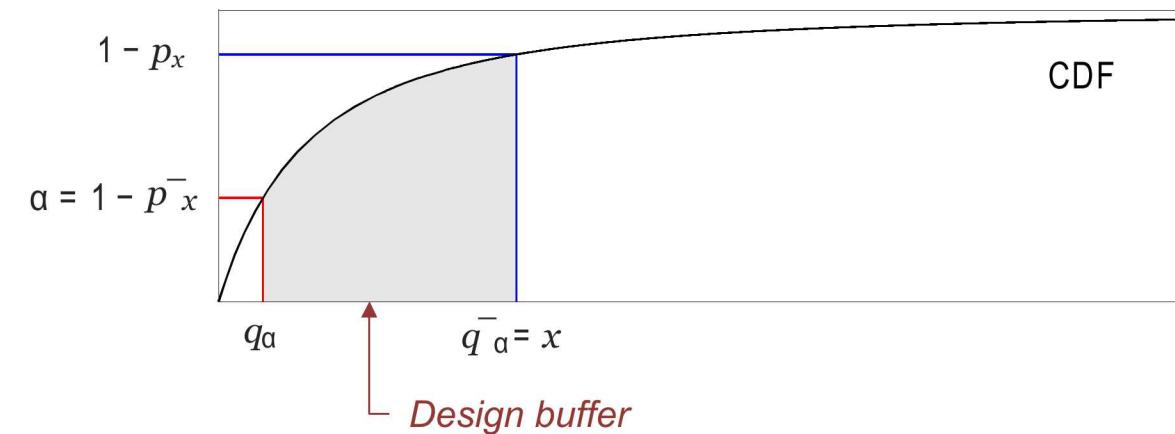
Incorporates conservatism due to large tail values



Buffered probability of exceedance: $R(X) = \bar{p}_x(X) = P(X > \tau(x))$
where $\tau(x)$ is determined by $\text{CVaR}_{(1-\bar{p}_x(X))}(X) = E[X | X > \tau(x)] = x$

$$\text{bPOE}_x[X] = 1 - \alpha \text{ where } \alpha \text{ solves } \text{CVaR}_\alpha[X] = x$$

Conditional Value-at-Risk



Example: 3D Topology Optimization with Buffered Probability

Given compliance tolerance c_o , probability $p_o \in (0, 1)$, order $q \geq 1$,

$$\min_{0 \leq z \leq 1} \int_D z \, dx =: \text{vol}(z) \quad \text{subject to} \quad \text{bPOE}_{q,co} \left(\int_D \mathbf{F} \cdot \mathbf{S}(z) \, dx \right) \leq 1 - p_o$$

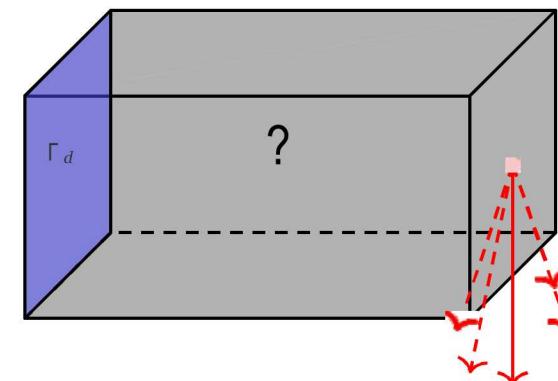
where $S(z) = u$ solves the **linear elasticity equations**

$$-\nabla \cdot (\mathbf{E}(z) : \boldsymbol{\varepsilon} u) = \mathbf{F}, \quad \text{in } D$$

$$\boldsymbol{\varepsilon} u = \frac{1}{2} (\nabla u + \nabla u^T), \quad \text{in } D$$

$$u = 0, \quad \text{on } \Gamma_D$$

$$\boldsymbol{\varepsilon} u : \mathbf{n} = 0, \quad \text{on } \partial D \setminus \Gamma_D$$



\mathbf{F} : Three uncertain parameters

- Magnitude
- Polar and azimuthal angles

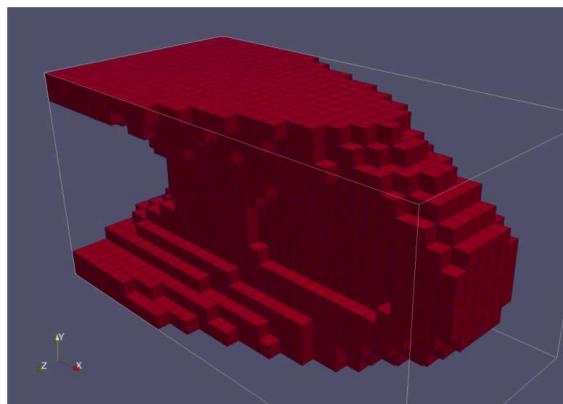
Numerical Results

Spatial Discretization: Q1 FEM on a uniform $32 \times 16 \times 16$ mesh

Stochastic Discretization: $Q = 120$ Monte Carlo samples

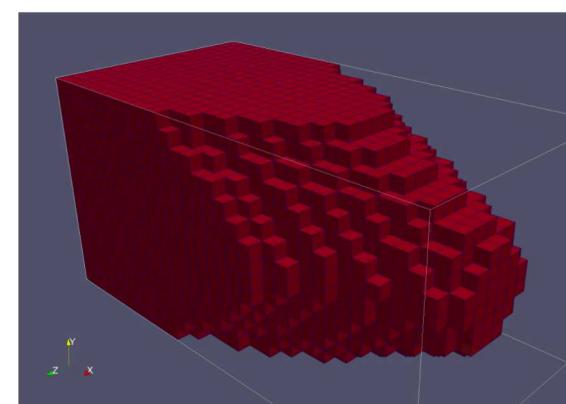
Problem Data: $p_0 = 0.75$ and $c_0 = 2E\left[\int_D \mathbf{F} \cdot \mathbf{S}(\mathbf{1}) dx\right]$

Mean Value



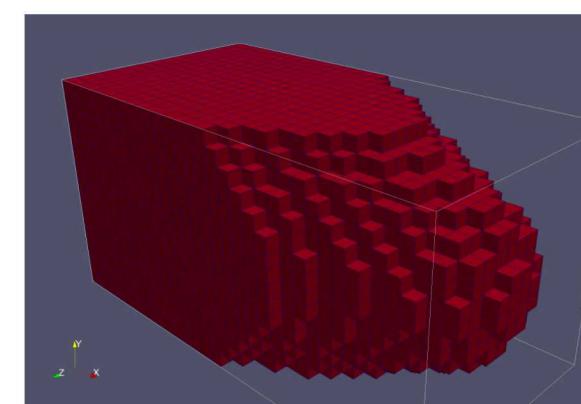
Deterministic

Risk Neutral



Constraint on average compliance

bPOE



Constraint on average of largest 25%

	Mean Value	Risk Neutral	bPOE
Volume Fraction	49.1%	47.6%	67.2%

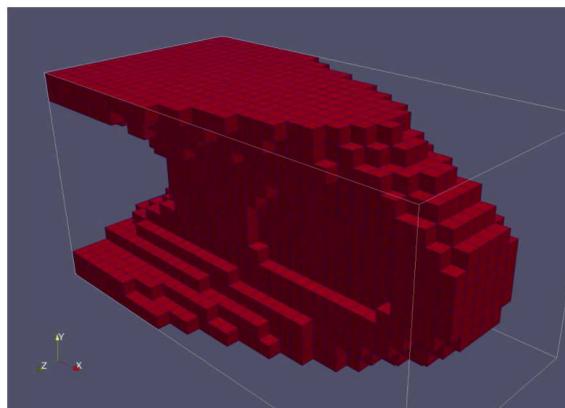
Numerical Results

Spatial Discretization: Q1 FEM on a uniform $32 \times 16 \times 16$ mesh

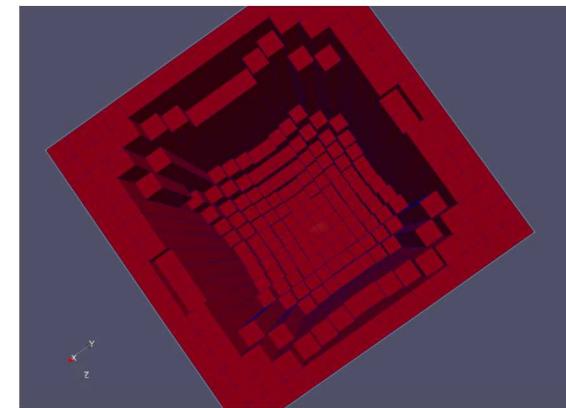
Stochastic Discretization: $Q = 120$ Monte Carlo samples

Problem Data: $p_0 = 0.75$ and $c_0 = 2E[\int_D \mathbf{F} \cdot \mathbf{S}(\mathbf{1})dx]$

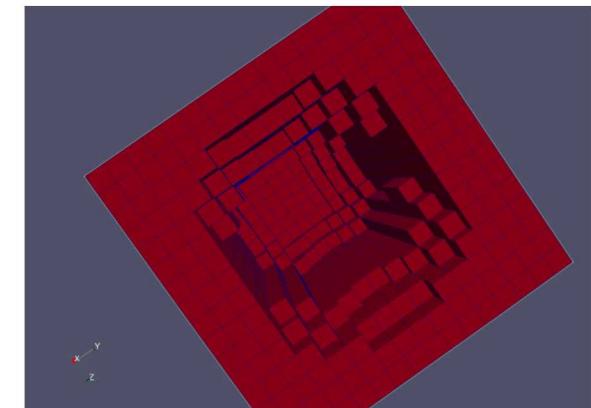
Mean Value



Risk Neutral



bPOE



Note: Topology changes from beam to shell!

	Mean Value	Risk Neutral	bPOE
Volume Fraction	49.1%	47.6%	67.2%

- **Probabilistic optimization**
 - Risk measures
 - Buffered probabilities
- **Material-aware optimization**
 - Continuum material anisotropy
 - Microstructure anisotropy due to additive manufacturing

Material-aware stress minimization

Example: Barlat model w/ anisotropic yield surface

Objective: $\min_{\mathbf{z}, \mathbf{x}} f(\mathbf{u}, \mathbf{z}, \mathbf{x})$

PDE Constraint: $\mathbf{g}(\mathbf{u}, \mathbf{z}, \mathbf{x}) = \mathbf{0}$

Inequality Constraint: $\mathbf{h}(\mathbf{u}, \mathbf{z}, \mathbf{x}) \leq \mathbf{0}$

$$f = \left[\frac{1}{V} \int_{\Omega} \left(\frac{\bar{\sigma}}{\sigma_y} \right)^p dV \right]^{1/p}$$

$$\bar{\sigma} = \left(\frac{\phi(\mathbf{S}', \mathbf{S}'')}{4} \right)^{1/a}$$

$$\mathbf{s}' = \mathbf{C}' \mathbf{s}$$
$$\mathbf{s}'' = \mathbf{C}'' \mathbf{s}$$

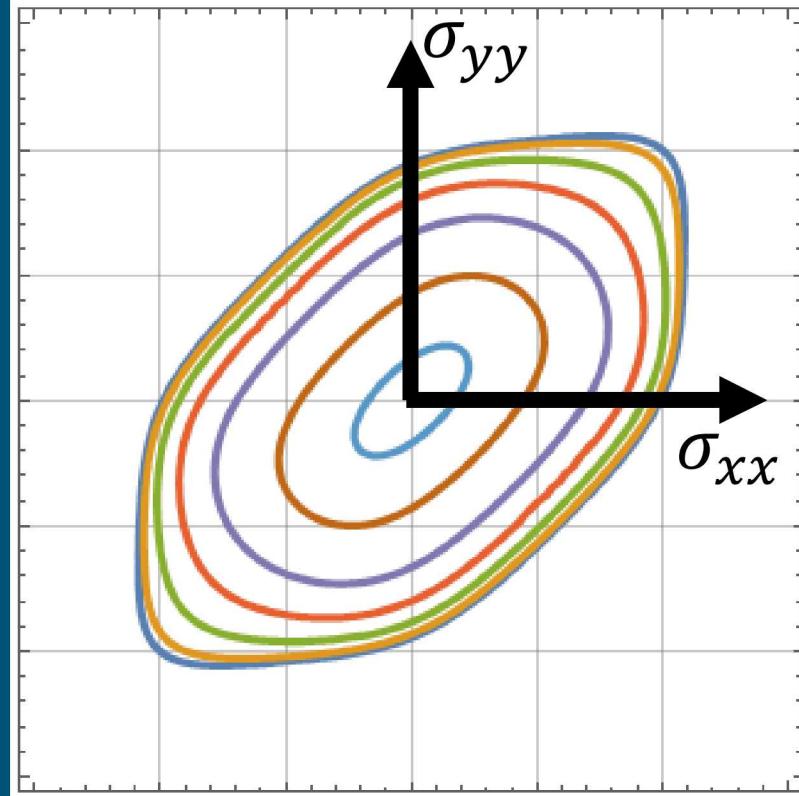
Yield function

$$\phi = \sum_{i=1}^3 \sum_{j=1}^3 \|\mathbf{S}'_i - \mathbf{S}''_j\|^a$$

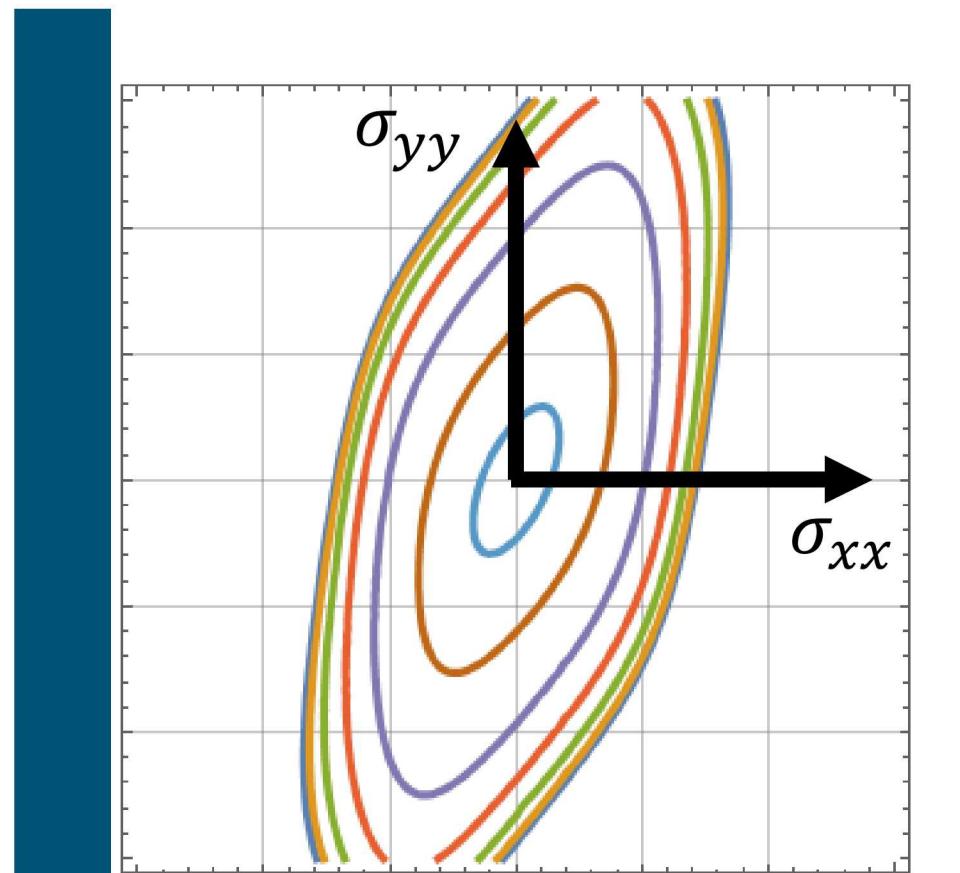
Material constants: $\mathbf{C}' \ \mathbf{C}'' \ a \ \sigma_y$

Barlat et al. (2005), Int. J. Plasticity

Yield Surfaces



6111-T4 (Barlat, IJP, 2005)



Hypothetical material

Superposed Shear

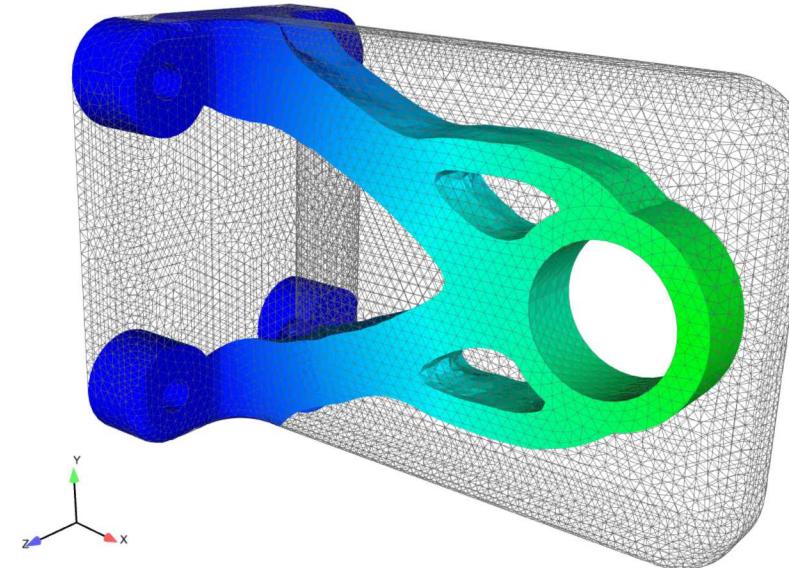
$\sigma_{xy} = 0.0$
$\sigma_{xy} = 0.1$
$\sigma_{xy} = 0.2$
$\sigma_{xy} = 0.3$
$\sigma_{xy} = 0.4$
$\sigma_{xy} = 0.5$
$\sigma_{xy} = 0.55$

Example: Material-aware compliance minimization

Thermal and mechanical compliance minimization

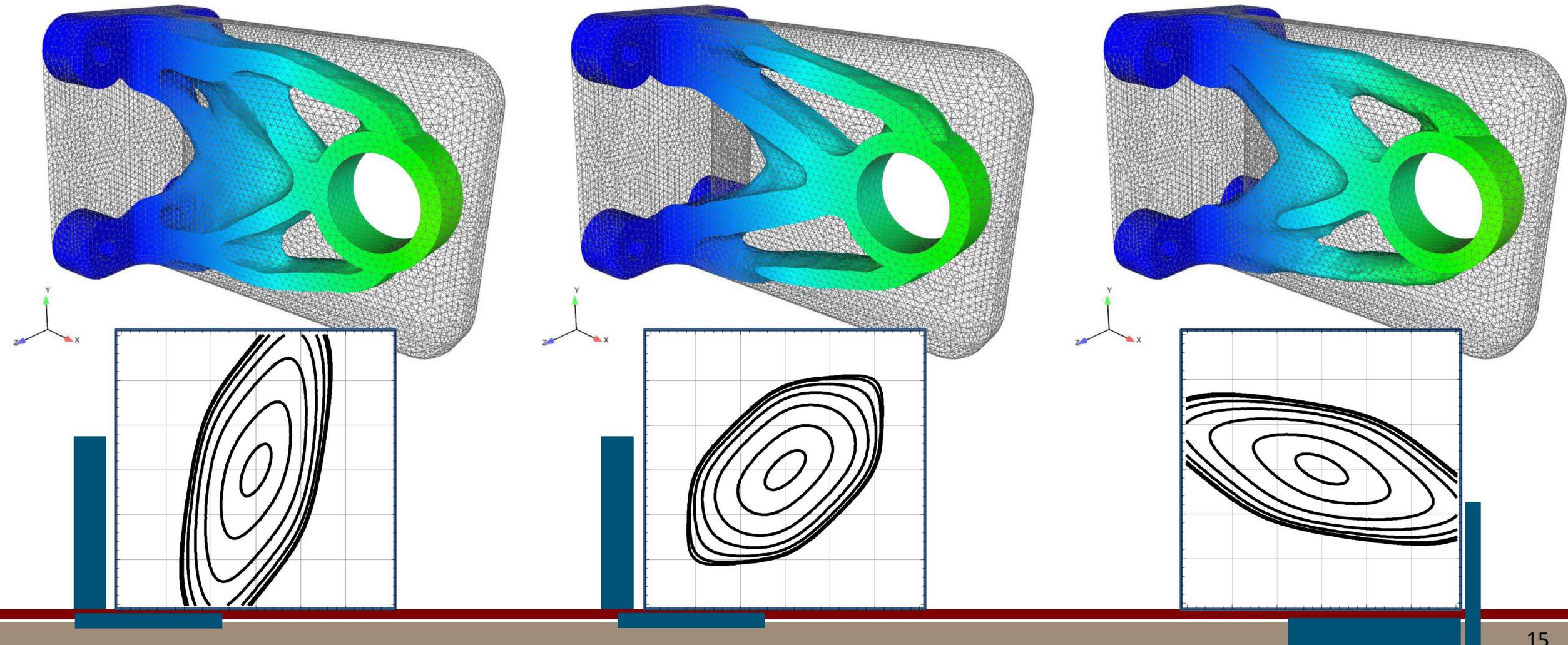
Mechanical and thermal load cases. 2 GPUs.

elements: 187k
dofs: 110k
iterations: 26
Run time: 28s



Example: Material-aware compliance minimization

$V_f: 0.25$

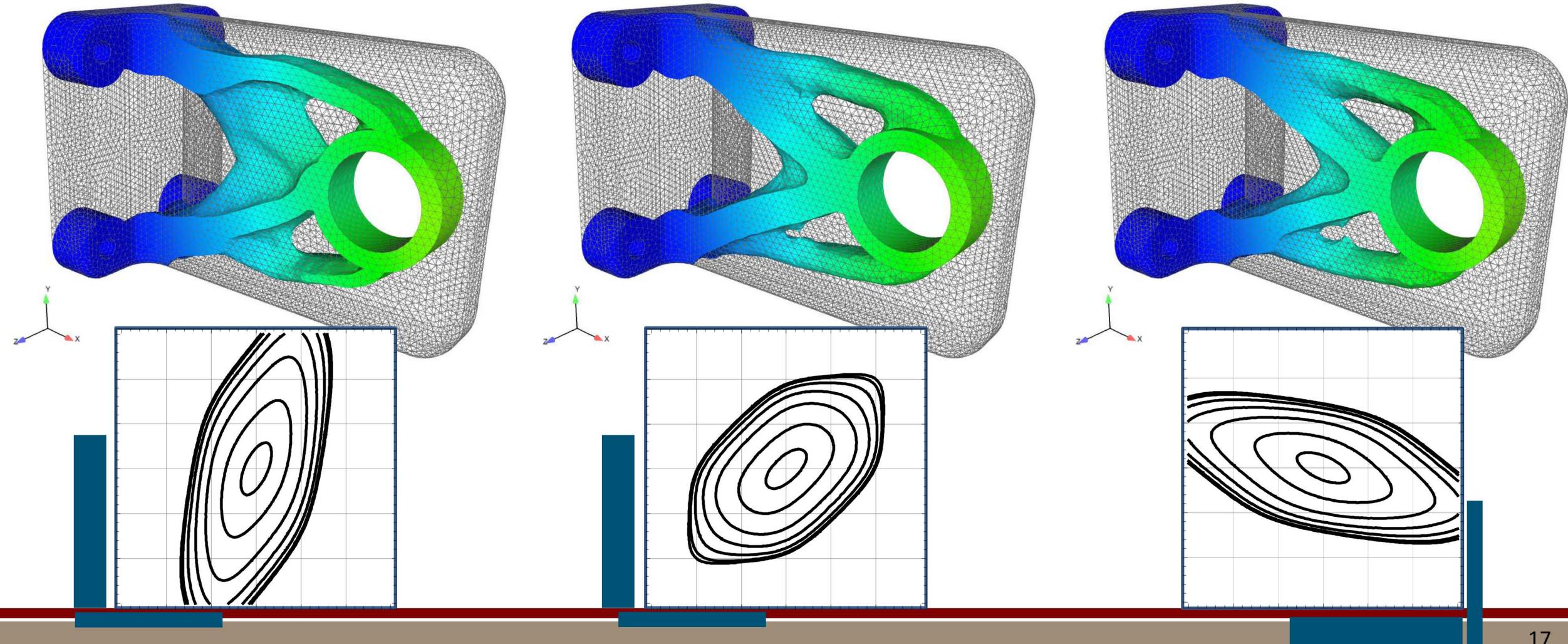


REMARK

In AM, it is common to see anisotropy in the build direction. Therefore, the desired bulk properties might influence choice of build direction.

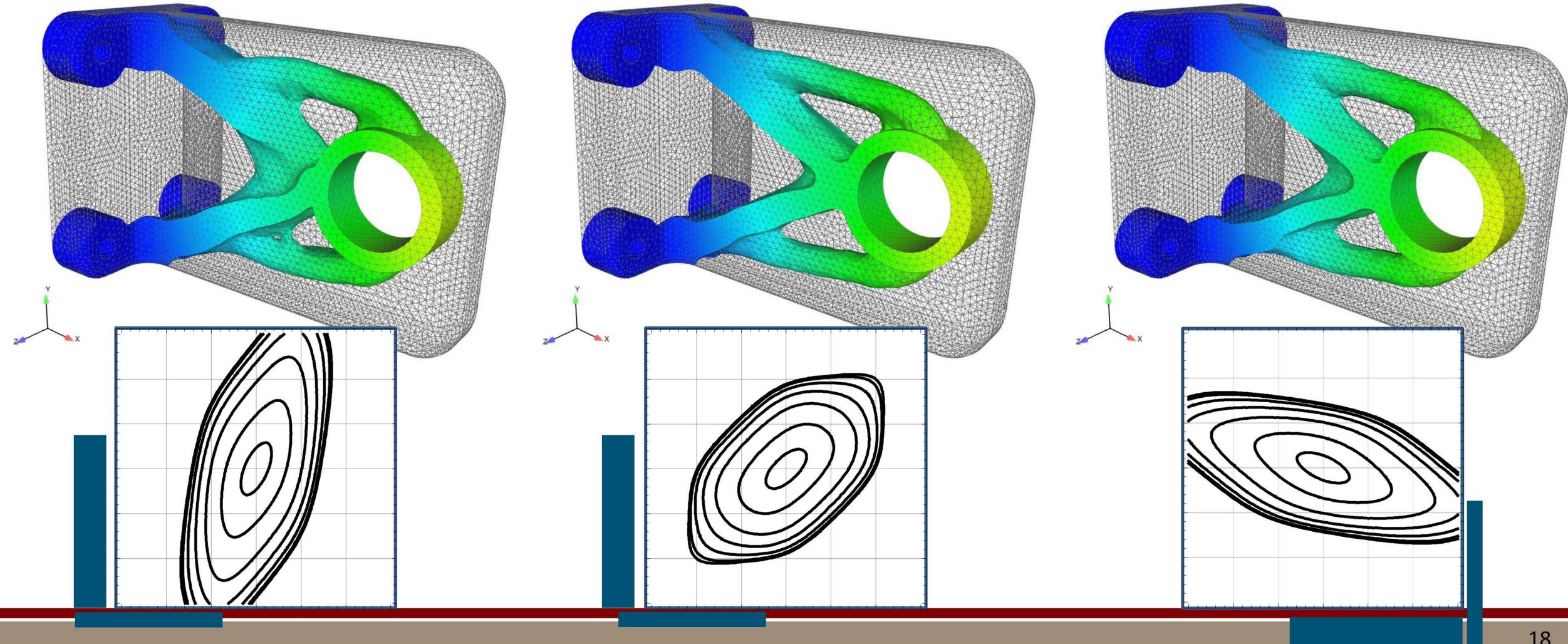
Example: Material-aware compliance minimization

$V_f: 0.20$



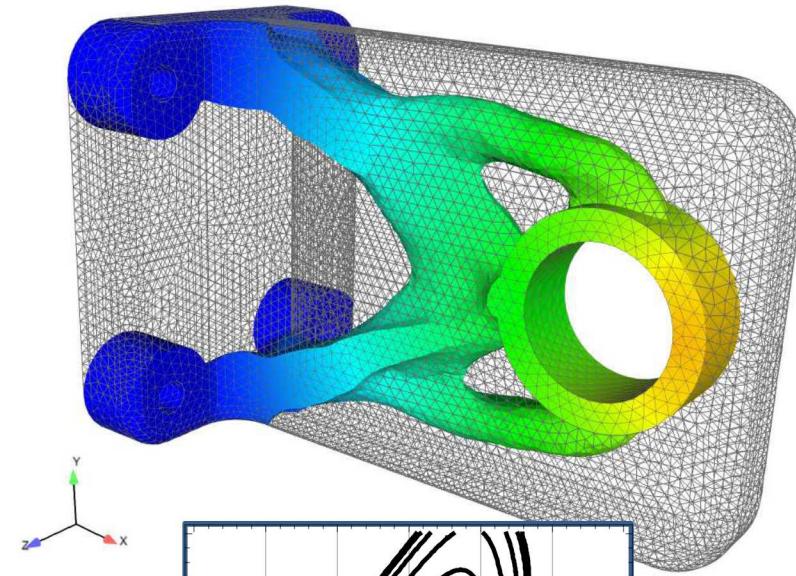
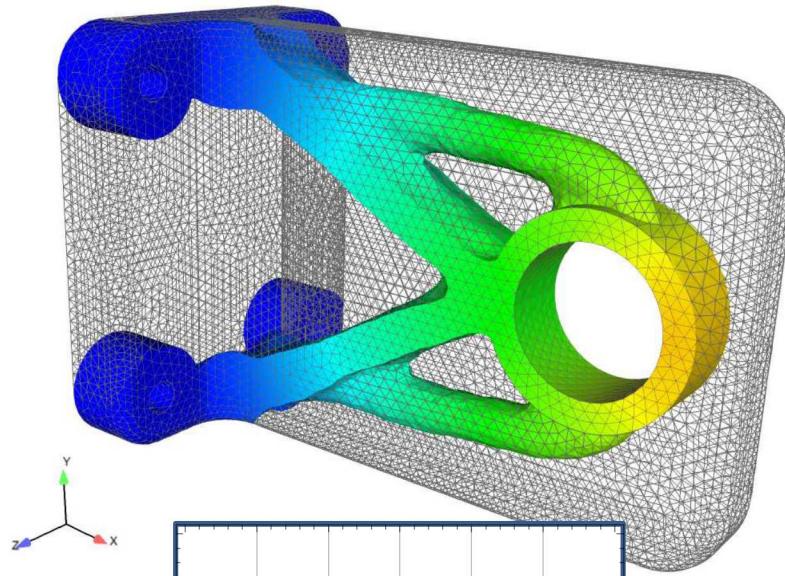
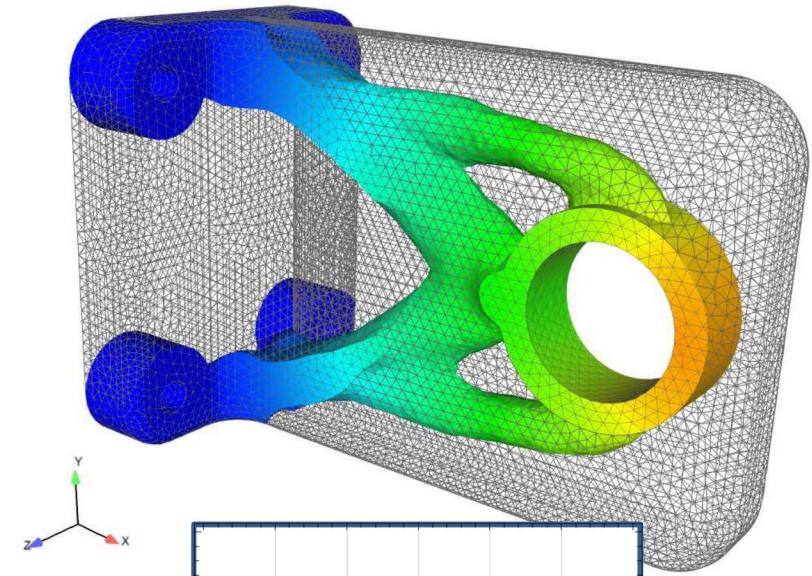
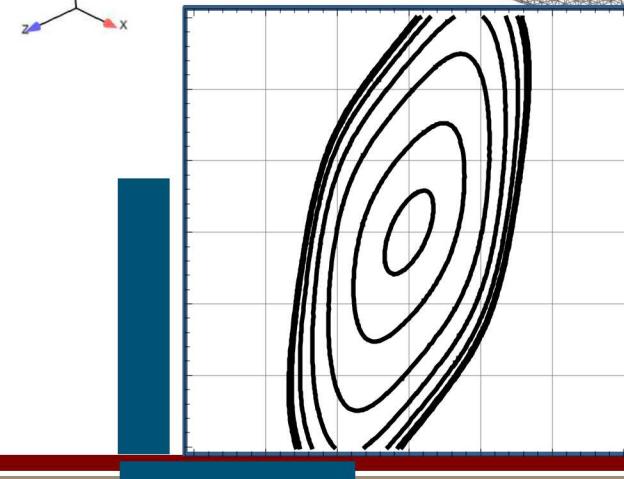
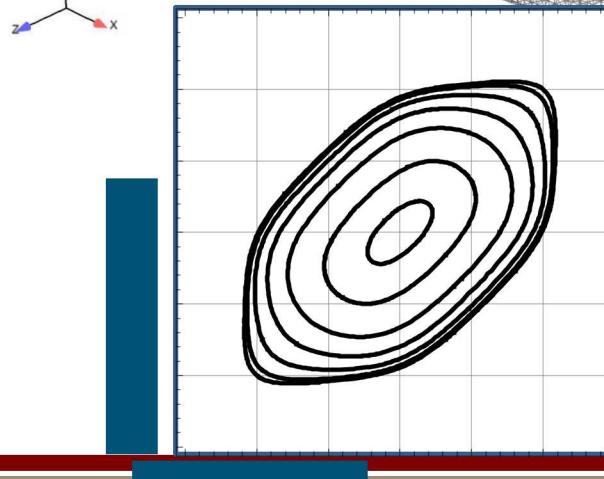
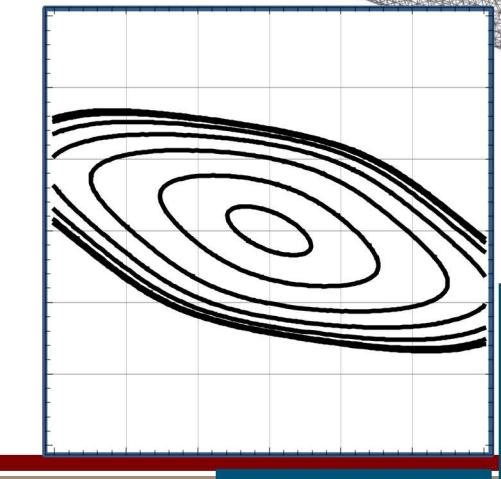
Example: Material-aware compliance minimization

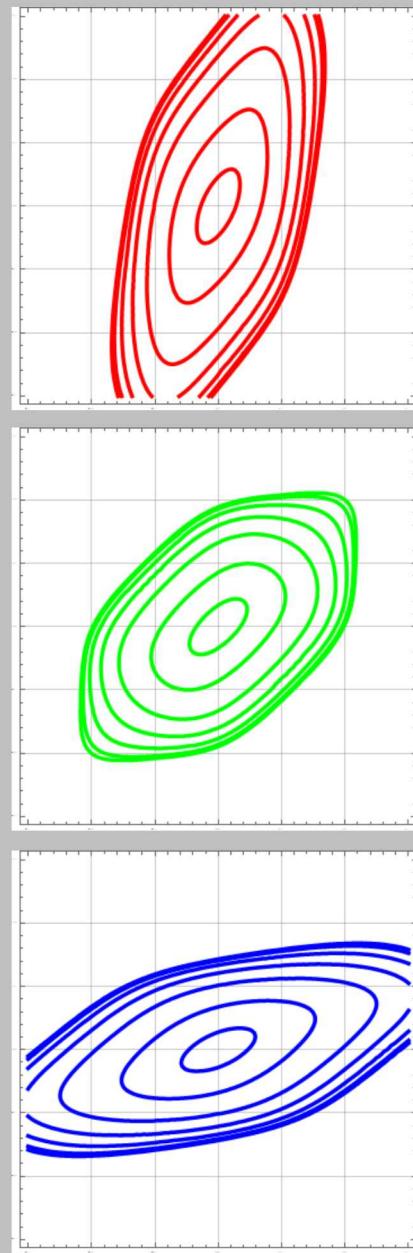
$V_f: 0.15$



Example: Material-aware compliance minimization

$V_f: 0.10$



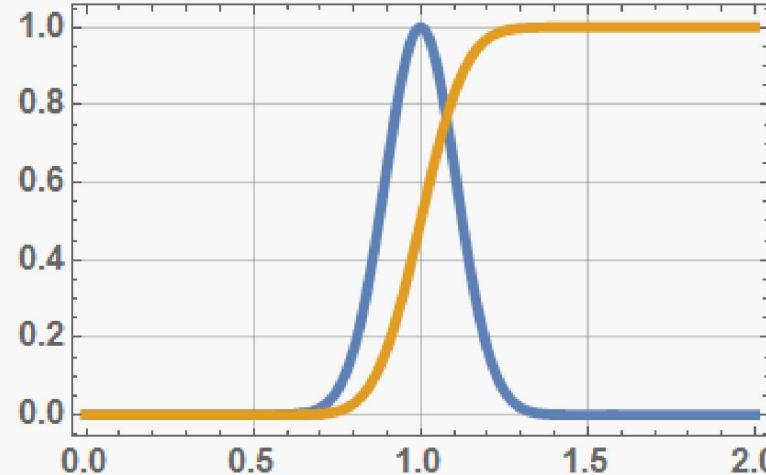


What if Yield Stress is Uncertain?

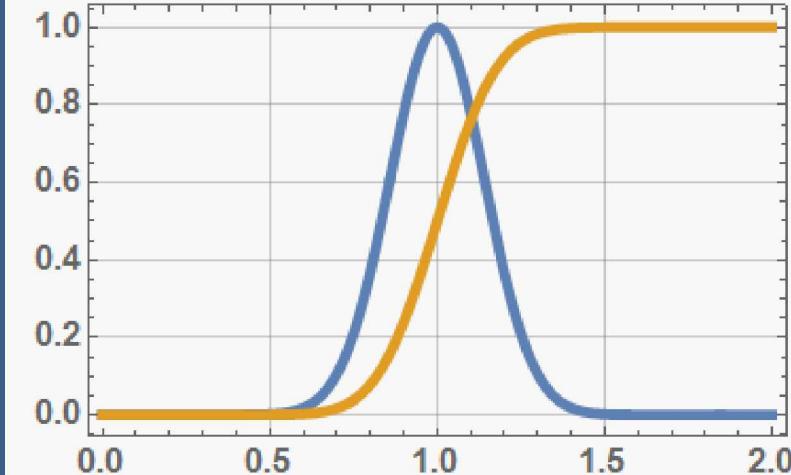
Standard Deviation: 0.1



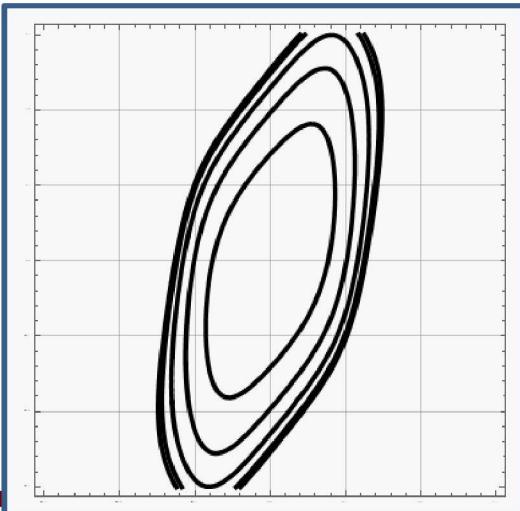
Standard Deviation: 0.15



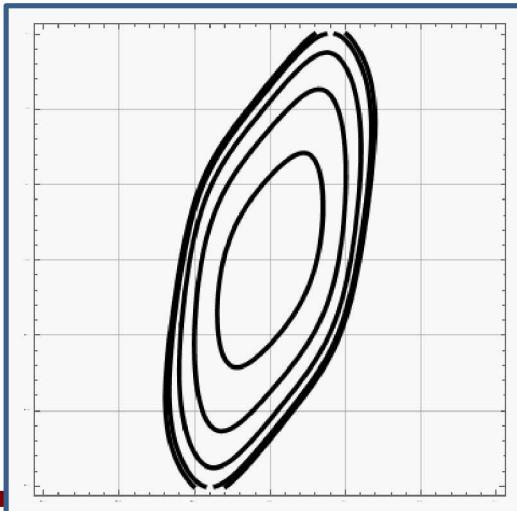
Standard Deviation: 0.2



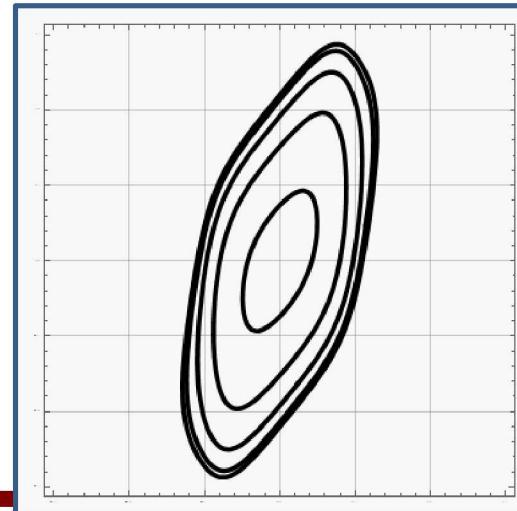
95% Confidence: 0.884

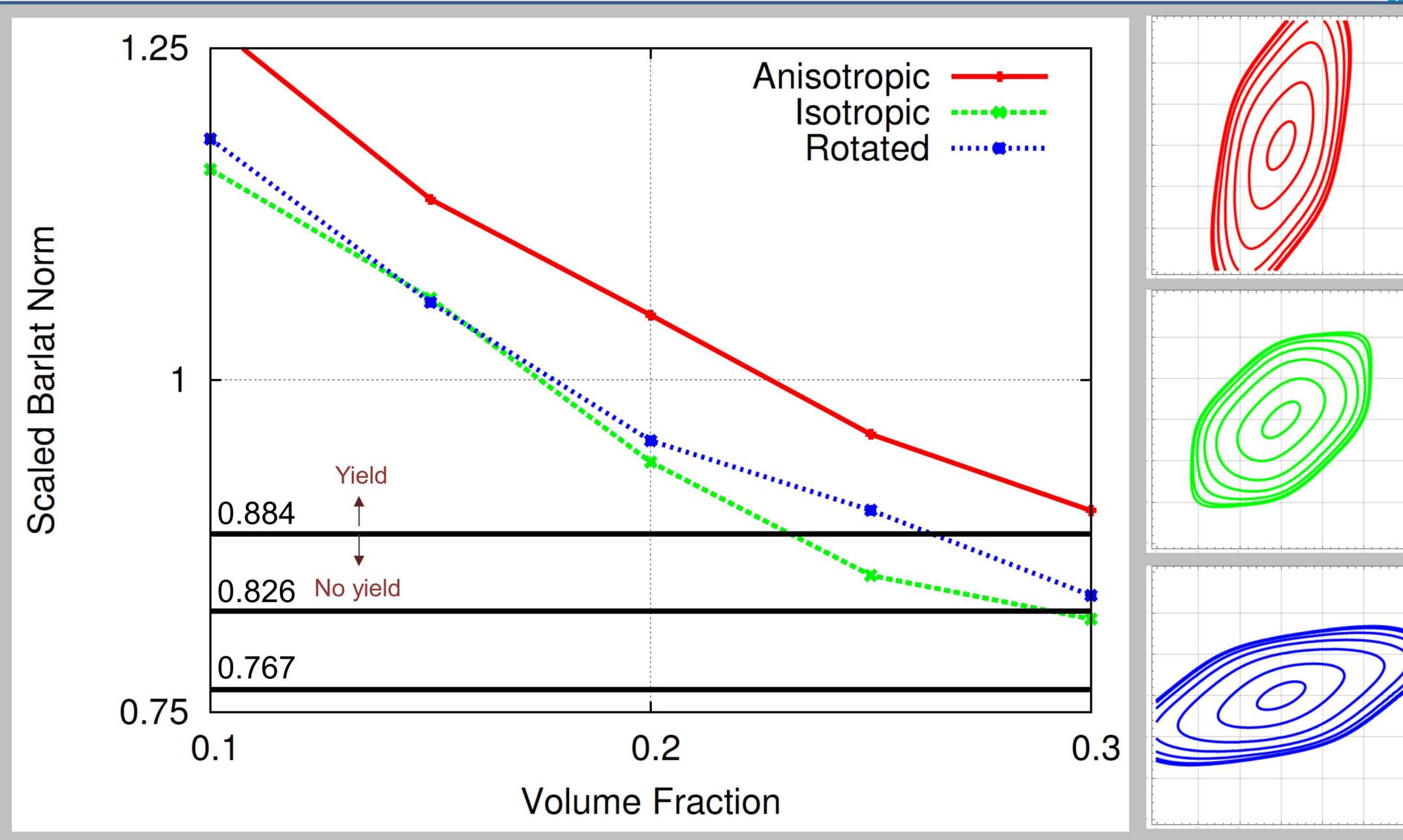


95% Confidence: 0.826



95% Confidence: 0.767





- **Probabilistic optimization**
 - Risk measures
 - Buffered probabilities
- **Material-aware optimization**
 - Continuum material anisotropy
 - Microstructure anisotropy due to additive manufacturing

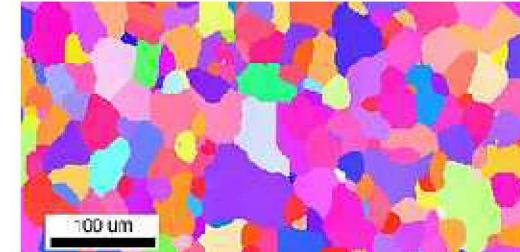
Additive Manufacturing for Metals

What are the issues?

Additive Manufacturing &
Engineering Design

Caveat: not exhaustive

Wrought 304L stainless
steel microstructure



AM 304L stainless steel
microstructure

AM materials exhibit spatial heterogeneity

- Heterogeneous textures and morphologies at various length scales
- Residual stresses

Measurements indicate higher variability than wrought materials

- Yield stress, ductility, ultimate stress, rate effects

Challenges traditional deterministic modeling and design approaches

- Spatial heterogeneity and length scales

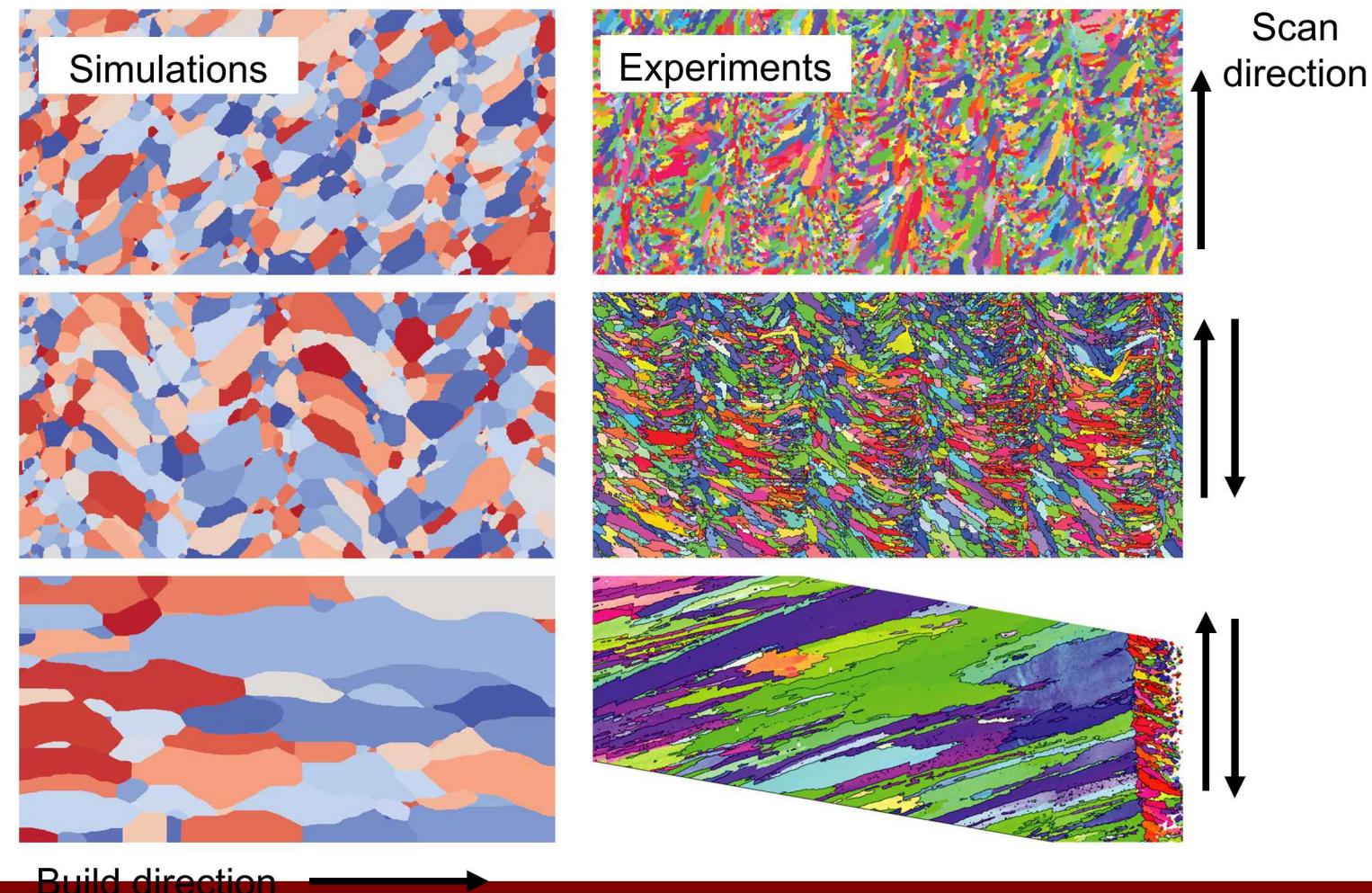
WHY IS A MICROSTRUCTURE SIMULATOR IMPORTANT?

Microstructural variations within and between different components control variation in engineering properties

Simulation of microstructural evolution during fabrication will inform:

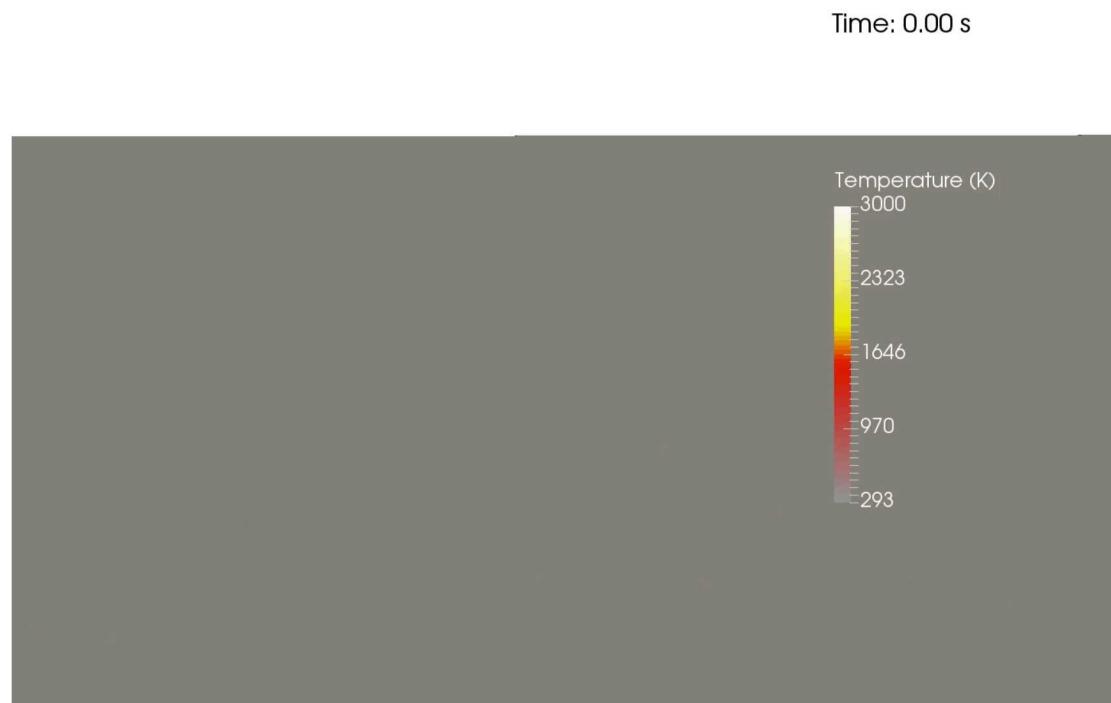
- Design of process variables
- Uncertainty quantification in final components produced

SPPARKS: Stochastic Parallel PARticle Kinetic Simulator
spparks.sandia.gov



PROCESS PARAMETERS – MICROSTRUCTURE – PERFORMANCE

Process determines structure



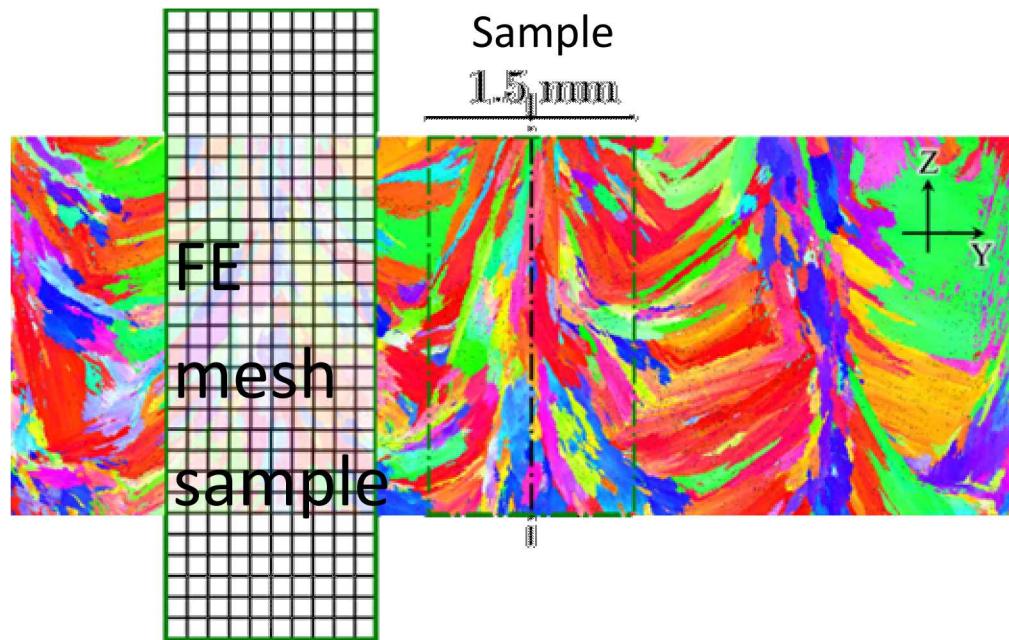
Sierra FEA Thermal Model

SPPARKS
MC Model

Coupling with
SIERRA thermal
models

How to model this heterogeneity and variability?

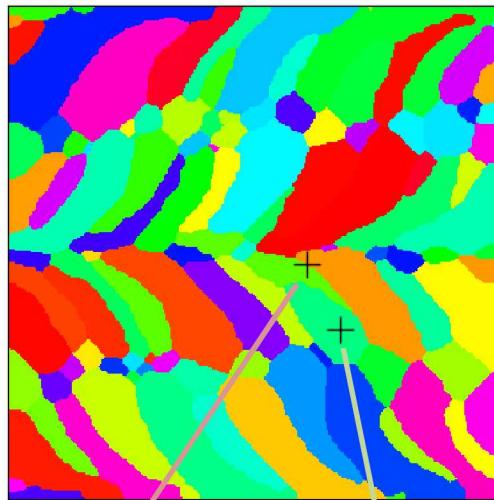
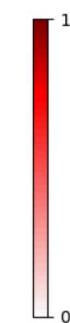
Approach: *Upscale microstructural effects*



- Avoids vexing problem of meshing material details
- Systematically represents properties on coarse continuum model*
- Respects length scale and microstructure morphologies
- Reflects microstructure heterogeneity and variability

Upscaling Approach

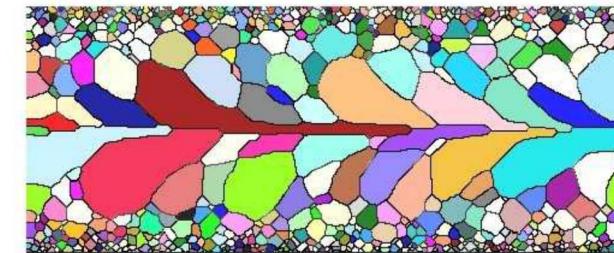
- Use synthetic microstructures via SPPARKS model of AM process



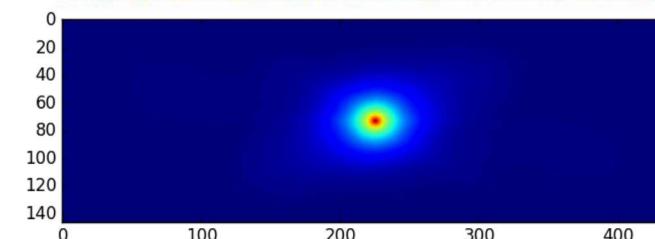
Spatial probability surrounding locations are part of grain +

- Compute spatial statistics for FE quadrature points
(for 150 SPPARKS simulations)
- Apply cluster algorithms from machine learning

Comparison to current state-of-the-art



Sample
Microstructure

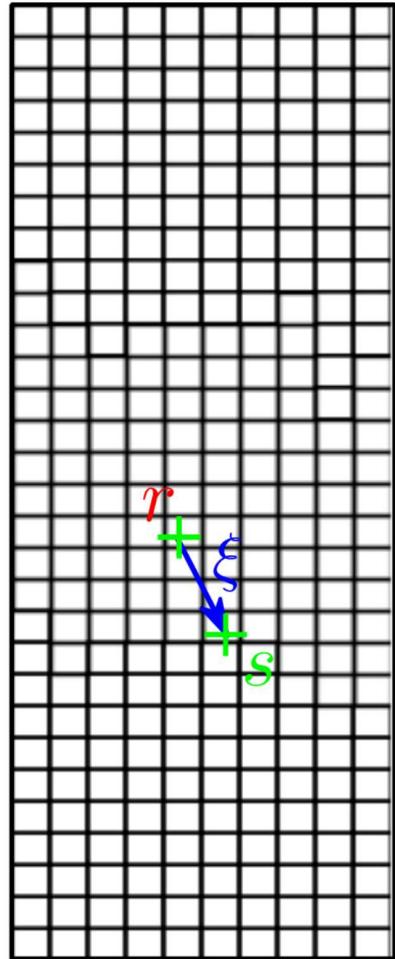


Global S2: Spatial
heterogeneity lost

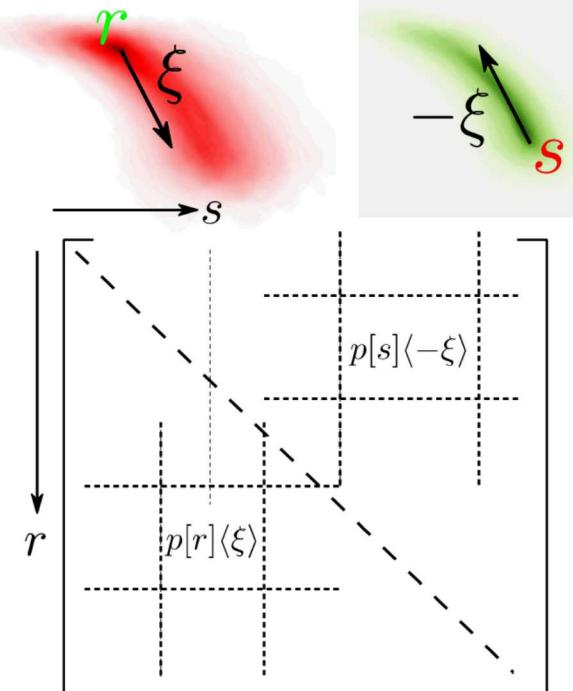
Computing spatial statistics

Identify FE quadrature points as fixed observation points

FE mesh

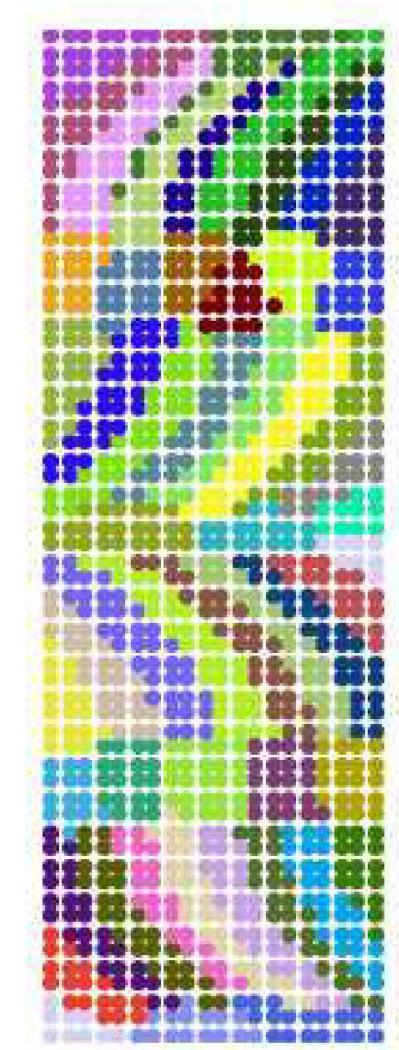


Generalize probabilities
for fixed observation points



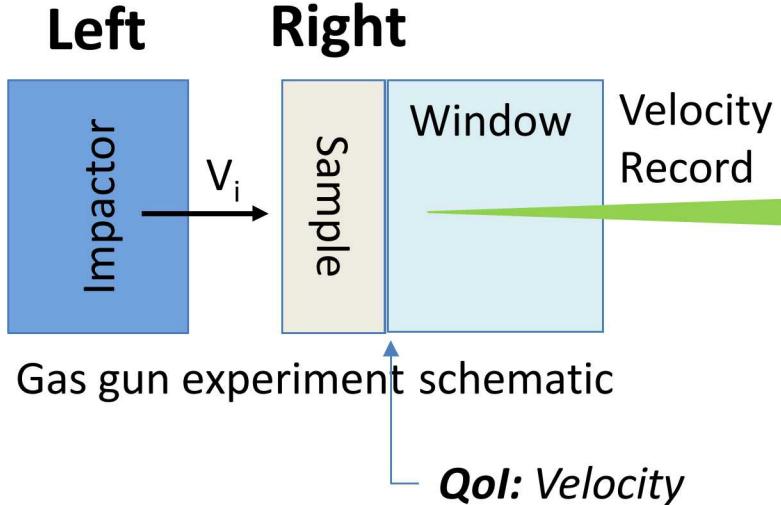
ML Clustering

Symmetric affinity matrix



RESULT: Upscaled “mean” microstructure

Example: Sandia's ALEGRA Shock Physics Code

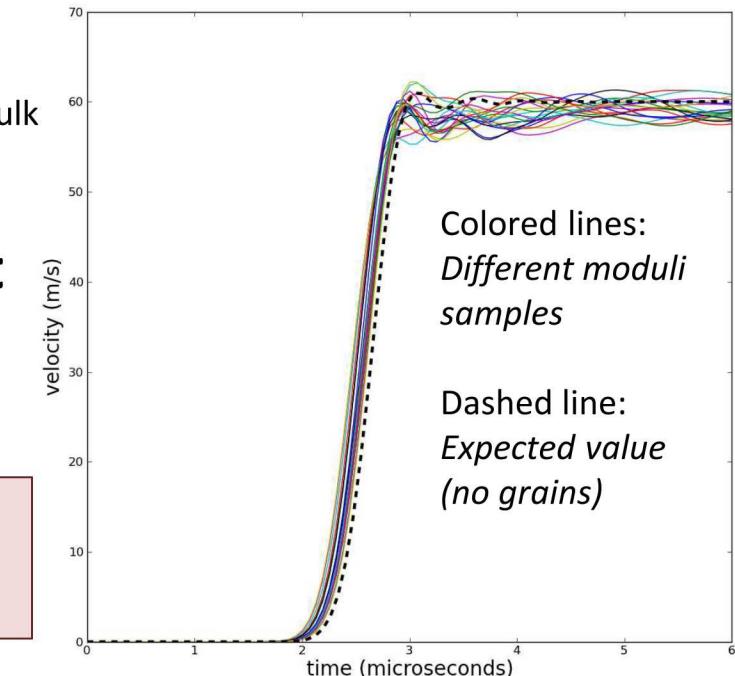


Upscaled mean micro-structure of "Sample"

Distribution of bulk modulus

Bulk modulus: Assign each grain a random value from assumed uniform distribution

Velocity vs. Time



Simplified computational model represents gas gun experiment

- Two materials (**Left & Right**) just touching at impact
- Left** has initial velocity, **Right** at rest

Challenge: How do we generalize these ideas for enabling *control of the microstructure & performance prediction* of the bulk material?

Summary

- **Context: New designs and materials enabled by *additive manufacturing***
- **New risk measures for topology optimization**
 - Buffered probabilities
- **Importance of accounting for *AM-induced material anisotropy and variability* in design and analysis**
- **Introduced an approach for upscaling the heterogeneous and variable AM microstructure**
 - Leverages SPPARKS stochastic simulator of microstructural evolution

Broader challenges and potential new directions

1. New science of materials

- a) Can we “discover” new materials with desired (and revolutionary) performance properties?

2. Reproducibility and certifiability

- a) Can we reproduce such materials in a predictable and cost-effective way?
- b) Can we confidently “certify” that a particular material will perform as intended in a given application?

3. New models and algorithms

- a) Beyond AM process control -- how do we model the extremely heterogeneous and variable materials at all length scales?
- b) How do we obtain and assimilate potentially *voluminous, uncertain data* into our models?
- c) Digital twins?

4. How do we package our results for human decision-making?

- a) Influencing engineering designs, risk and failure analyses, research funding, etc.