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Context: Topology Optimization ()

Design Tools to Leverage Additive Manufacturing

Objective: Provide a design environment that can leverage existing simulation tools and
emerging HPC architectures.

Forward Problem: Inverse Problem:
Design + Materials —>| Response Design + Materials [ €— Response

\

Approach: Use topology optimization to let performance objectives dictate the design

Objective: min z a;fi(u;, z,x)

l

PDE Constraint: g;(u;,z,x) =0

Inequality Constraint: h(u,z,x) <0
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DIFFERENT PERFORMANCE OBJECTIVES LEADS TO DIFFERENT

» I\

Mechanical and thermal
compliance minimization

Mechanical compliance
minimization

Thermal compliance
minimization

Note: Structure is disconnected from
the mounts — no consideration was
given to mechanical stiffness!

Constraint: Equal
mass in each design
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Incorporating Uncertainty

= Probabilistic optimization
= Risk measures
= Buffered probabilities

= Material-aware optimization

= Continuum material anisotropy

= Microstructure anisotropy due to additive manufacturing




Buffered Probabilities )

Incorporates conservatism due to large tail values

X > x failure zone

Buffered probability of exceedance: R(X) = p, (X) = P(X > 1(x))
where T(x) is determined by CVaR;-5-(x))(X) = E[ XX > 1(x)] = x

buffer zone

bPOE,[X]= 1 —a where a solves CVaR[X] = x

[

X=x+1(<x) Conditional Value-at-Risk

CDF

g = VaRg j qa q a=x
Average value of tail Design buffer




Example: 3D Topology Optimization with Buffered Probability

Given compliance tolerance c,, probability p, €(0, 1), order g =1,

minfzdx=: vol(z) subjectto bPOE,, (JF Stz)dx 91 -p,

os

where S(z) = u solves the linear elasticity equations

- V{E(z): €u) = F, in D
eu=1(u+ ru), in D

u=o, onlp

Bl < L= 1D, on oD \Tp

F: Three uncertain parameters
Magnitude
Polar and azimuthal angles




Numerical Results (@)

Spatial Discretization: Q1 FEM on a uniform 32 X 16 X 16 mesh

Stochastic Discretization: Q = 120 Monte Carlo samples

Problem Data: p,= 0.75 and co= 2E[[ , F :S(1)dx]

Mean Value Risk Neutral bPOE

Deterministic Constraint on average compliance Constraint on average of largest 25%

| MeanValue | RiskNeutral | __bPOE___

Volume Fraction 49.1% 47 .6% 67.2%




Numerical Results (@)

Spatial Discretization: Q1 FEM on a uniform 32 X 16 X 16 mesh

Stochastic Discretization: Q = 120 Monte Carlo samples

Problem Data: p,= 0.75 and co= 2E[[ , F :S(1)dx]

Mean Value Risk Neutral bPOE

Note: Topology changes from beam to shell!

| MeanValue | RiskNeutral | __bPOE___

Volume Fraction 49.1% 47 .6% 67.2%




e
L

Incorporating Uncertainty

= Probabilistic optimization
= Risk measures
= Buffered probabilities

= Material-aware optimization

= Continuum material anisotropy

= Microstructure anisotropy due to additive manufacturing




Material-aware stress minimization @
Example: Barlat model w/ anisotropic yield surface

Objective:  min f (U, z, x)

Z X
PDE Constraint: gu,z,x)=0
Inequality Constraint:  h(u,z,x) <0

1 [/ a\F L/p  H(S!. S M s =C's
f — —/ (E) dV g = (ﬁﬁ)( : ))) W
v LV Ja gy / 4 STV E

Yield function

3 3
6=>Y Y |si— 5| Material constants: C' C”" a o,

/
=1 7=1

Barlat et al. (2005), Int. J. Plasticity
e




Yield Surfaces )

Superposed Shear

Oy = 0.0
oy = 0.1
Oy = 0.2
Oxy = 0.3
Oxy = 0.4
Oxy = 0.5
Oxy = 0.55

6111-T4 (Barlat. [JP. 2005 " Hypothetical material




Example: Material-aware compliance minimization

Thermal and mechanical compliance minimization

Mechanical and
thermal load
cases. 2 GPUs.

# elements: 187k
# dofs: 110k

# iterations: 26
Run time: 28s
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REMARK

In AM, it is common to see anisotropy in the build direction. Therefore, the
desired bulk properties might influence choice of build direction.
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Scaled Barlat Norm
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What if Yield Stress is Uncertain?

()

Standard Deviation: 0.1

1.0f
0.8]
0.6/
0.4}
0.2f

0.0}

Standard Deviation: 0.15

0.8}
0.6/
0.4]
0.2}

0.0}

Standard Deviation: 0.2

0.8}
0.6/
0.4]
0.2

0.0}
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Incorporating Uncertainty

= Probabilistic optimization
= Risk measures
= Buffered probabilities

= Material-aware optimization

= Continuum material anisotropy

= Microstructure anisotropy due to additive manufacturing




Additive Manufacturing for Metals @

What are the issues?

Wrought 304L stainless AM 304L stainless steel
steel microstructure microstructure

i | b {
¥ "‘ s ) | -
y i U r

Additive Manufacturing &

Engineering Design

Caveat: not exhaustive

AM materials exhibit spatial heterogeneity

 Heterogeneous textures and morphologies at various length scales
e Residual stresses

Measurements indicate higher variability than wrought materials

* Yield stress, ductility, ultimate stress, rate effects

Challenges traditional deterministic modeling and design approaches
* Spatial heterogeneity and length scales




WHY IS A MICROSTRUCTURE SIMULATOR IMPORTANT? -

Microstructural variations within and between different components
control variation in engineering properties

Scan

Simulation of microstructural direction

ents
4',& J / ».'_!":‘;4'% = A
§. sdf D3

evolution during fabrication
will inform:

" Design of process variables

" Uncertainty quantification in

final components produced

SPPARKS: Stochastic Parallel
PARticle Kinetic Simulator

spparks.sandia.gov




PROCESS PARAMETERS — MICROSTRUCTURE — PERFORMANCE ="

Process determines structure

Time: 0.00 s

SPPARKS
MC Model
Coupling with

SIERRA thermal
models

Sierra FEA Thermal Model




How to model this heterogeneity and variability? G 3!
Approach: Upscale microstructural effects

Sample
Jll.ﬁﬁ}ﬁ;m‘im

1 Avoids vexing problem of meshing material details
 Systematically represents properties on coarse continuum model
(1 Respects length scale and microstructure morphologies
 Reflects microstructure heterogeneity and variability




Upscaling Approach (7]

e Use synthetic microstructures via SPPARKS model of AM process

 Compute spatial statistics for FE quadrature points
(for 150 SPPARKS simulations)

* Apply cluster algorithms from machine learning

Comparison to current state-of-the-art

Sample
Microstructure

20
40
60
80
Spatial probability surrounding locations are part of grain + o

140

0 st

Global S2: Spatial
heterogeneity lost




Computing spatial statistics fonde,
Identify FE quadrature points as fixed observation points

FE mesh Generalize probabilities
H for fixed observation points

gt Bl
Bars J48

Eaee b

ML Clustering 'I-I p .ﬁ-.a!'.ﬁ'




Example: Sandia’s ALEGRA Shock Physics Code W=

Bulk modulus: Assign

Left Right / each grain a random

., | Window Velocity o value from assumed
2 Record — = | uniform distribution
3 -
6 1—1.7 12§
Gas gun experimenﬁschematic Velocity vs. Time
Qol: Velocity an
Upscaled mean micro- Distribution of bulk *
structure of “Sample” modulus

Colored lines:

Simplified computational model represents gas gun experiment :. Different moduli
. . . . . = I
d Two materials (Left & Right) just touching at impact Z samples
Q Left has initial velocity, Right at rest g Dashed line:
Expected value
(no grains)

Challenge: How do we generalize these ideas for enabling control of
the microstructure & performance prediction of the bulk material?

3 )
time (microseconds)




Summary G 3!

= Context: New designs and materials enabled by additive manufacturing

= New risk measures for topology optimization
= Buffered probabilities

= |Importance of accounting for AM-induced material anisotropy and variability in
design and analysis

= Introduced an approach for upscaling the heterogeneous and variable AM
microstructure

= Leverages SPPARKS stochastic simulator of microstructural evolution




Discussion Topics [T
Broader challenges and potential new directions

1. New science of materials
a) Can we “discover” new materials with desired (and revolutionary) performance properties?

2. Reproducibility and certifiability
a) Can we reproduce such materials in a predictable and cost-effective way?
b) Can we confidently “certify” that a particular material will perform as intended in a given
application?
3. New models and algorithms

a) Beyond AM process control -- how do we model the extremely heterogeneous and variable
materials at all length scales?

b) How do we obtain and assimilate potentially voluminous, uncertain data into our models?
c) Digital twins?
4. How do we package our results for human decision-making?

a) Influencing engineering designs, risk and failure analyses, research funding, etc.




