
Local Failure Local Recovery:
Toward Scalable Resilient Parallel Programing Model

Keita Teranishi, Sandia National Laboratories, California, USA

U.S. DEPARTMENT OF II& M ACW,5

ENERGY Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2019-0384PE

MOTIVATIONS AND BACKGROUND

RA9 CoNtf-RCuER5 Po MT
IlAKE 5a5C AT OUR SCALE:
EVERYTHING 15 REDUNIPANT

FIFGHO< LEVELS_
AVE FAILS, UE SUSI THROU
RJR(THE ti-ML MACHINE.

litACHINE? THRDU
NAY WHOLE WS5
AT A iirlEr

Sandia
National
Laboratories

LJE VONT HAVE 5PRINKLER5
OR INERFGAS 5Y5T8la
UHEN A YTACEPSFER CATCHE5
FIRE, LIE 105r RODE 11- oFF
ANE) REDOLD ONE TbOst OVER
) rioAgth 5E1%6E,

1 1-.10CER IF THE FEPE
' IS FrFla NECF-551KY

Courtesy: https://xkcd.com/1737

2

More frequent failures than advertised

3901s 1617s 1612s Recovery+rollback overhead — 4439s
e—s

1928s 6025s

Sandia
National
Laboratories

H
H

H H
H 1

H
H

M
II

1
1

H
1

1
H

fl
fl

1
H

H H N
N H H H H N

1
1

H
N

IH
IH I IIH

H
I-11 I I I I I I
f II I 1 I I I

D 10000 20000 3 000 40000 50000 60000 70000 30000 86z

C N., est, l+irso, sainll +iron," In\

• 24-hour tests using Titan (125k cores)

• Expected MTBF: 9-12 hours

• 9 process/node failures over 24 hours

• Failures are promoted to job failures, causing
all 125k processes to exit

• Checkpoint (5.2 MB/core) is done to the PFS

• Burst buffer provides more BW than the
traditional file 10, but the major bottleneck is
the connection to the burst buffer nodes.

Checkpoint (per timestep)

Restarting processes

Total cost

55 s 1.72 %

5.67 %470 s

"Exploring Automatic, Online Failure
R Recovery for Scientific Applications at

T Extreme Scales", SC14 Marc Gamell,
Daniel S. Katz, Hemanth Kolla, Jacqueline
Chen, Scott Klasky, Manish Parashar

System reliability is hard to predict
That means many failures could happen all of sudden.

-c-Jaguar XT4-JoL-Jaguar XT5- 0- Jaguar XIK6-0-Eos-o-Titan

1

N tice i\Q• ,\(). ,,n N
rl/Q' f ri,\ 9, ri%' rP

et • • ' '

Sandia
National
Laboratories

A Not Like:

t""•...,
/ •••

u_ /
co /
H i
2 I

i
I
I

Time

• Reliability of large scale HPC systems has been the major concern
• Exascale Goal: 1 Week MTBF with C/R

• No clear reliability improvement (in scaled MTBF)
• No effective predictable model of reliability derived from observations (Gupta

et al and Ferreira et al.)
4

• Courtesy to Gupta et al, --/-anures in large scale systems: long-term
l measurement, analysis, and implications," SC17

Resilience is essential for performance
variability

PO Compute

P1 1

P2

P3

Compute

Compute

1
i

• Performance variability is a new type of system
failure.
• Trinity at LANL experienced a 25x slowdown of a single
compute node

Static load balancing based on data size won't work

Errors in a single DRAM module
MPI did not report any errors

• Resulted in 25x application delays

Sandia
National
Laboratories

5

Resilience is essential for System Co-
Design

■ Programming model (APIs) that
embraces/controls failures and unconventional
errors permits a greater flexibility in system co-
design.

■ Probabilistic CMOS (PCMOS) for efficiency and low
power

Palem at RICE U. (Performance and accuracy
modeling)
Rinard at MIT (Programming language for unreliable
computing, and ideas for fault oblivious computing)

■ Memory subsystems with selective reliability

HBM (high bandwidth, less reliable SEC-DED) and DDR
(low bandwidth, reliable Chipkill)
— Gupta, UCSD and AMD

Sandia
National
Laboratories

Checkpoint/Restart evolves toward
Exascale Computing, but....
PO

P1

P2

Px

Run A Kill

Run Ili k

Run AM

Run Crash
/1/\/

Kill

Kill

Notify the Failure to the rest of processes

Resta rt

Resta rt

Resta rt

Resta rt

Run

Run

Run

Run

• VeloC (ECP: https://veloc.readthedocsio/en/latest/)
accommodates efficient checkpointing/restart
• Multi-level checkpointing
• Leverage the latest I/0 technology.

• Disproportionate use of computing resources is inevitable
• Majority (50-85%) of failures happen at single node/process.
• Cost of global tear-down and global restart (redo).

• Is it designed to handle soft-errors and online recovery?

Sandia
National
Laboratories

7

Local Failure and Local Recovery
Enables Scalable Recoverv

Pil

:11

Sandia
National
Laboratories

Run

Run

m Wa 11

• Software framework to augment existing apps with resilience
capability
• The remaining processes stay alive with isolated process/node failure

• Multiple implementation options for recovery
Roll-back, roll-forward, asynchronous, algorithm specific, etc.

• Hot Spare Process for recovery
8

Sandia
National
Laboratories

RESILIENT PROGRAMMING MODEL

FOR MPI PROGRAMMING

MPI-ULFM (User Level Fault Mitigation)
Sandia
National
Laboratories

■ Proposed for future MPI standard

■ MPI calls (recv, irecv, wait, collectives) notify errors when the
peer process(es) dies

■ Survived processes continue to run

■ New MPI functions for fixing MPI communicator

■ MPI_Comm_agree --- Sanity check (resilient collective)

■ MPI_Comm_revoke --- Invalidate MPI Communicator

■ MPI_Comm_shrink --- Fix MPI Communicator removing dead process

■ User is responsible for the recovery after MPI_Comm_shrink

Prototype code is available at http://fault-tolerance.org

■ Developed by U of Tennessee

10

MPI-ULFM does not prescribe how t CO Sandia
National
Labolatories

recovery

N MPI-ULFM only provides "minimum" set of low-level APIs for

application recovery

• Users are responsible for fixing MPI communicator

Shrunk Communicator is no longer the same as the original MPI

Communicator

Rank-Process mapping changes after comm_shrink

Typical MPI applications are not designed for the shrinking recovery

• Users are responsible for recovering the application state

Writing an error handler is cumbersome

No data recovery

No rollback

• Our Solution: Fenix

11

Fenix 1.0 Specification (SAND2016-9171) raalbt5agnes

• Fault Tolerant Programming Framework for

MPI Applications

• Separation between process and data recovery

Allows third party software for data recovery

Multiple Execution Models

• Process recovery

Extend MPI-ULFM

Process recovery through hot spare process pool

Process failure is checked at PMPI layer and recovery

happens automatically under the cover

• Data recovery

In-memory data redundancy

Multi-versioning (similar to GVR by U Chicago &ANL)

SANDIA REPORT
SANDJS 71

Specification of Fenix MPI Fault Tolerance
library
version 1.0

AISIC Garn. F. Van dar.repart.rea

SeendearSeverry A.me.oF OE 0.0

0 Sandia National laboratories

Fenix

MPI-ULFM

Original
REAL stime
REAL, ALLOCATABLE, DIMENSION() yspc

1 Other initializations

! Setup MPI, Cartesian MPI grid, etc.
call initialize_topology(6, nx, ny, nz, &

npx, npy, npz, &
iorder, iforder)

vs Fenix-enabled
E-dinclude "-Fenix f.h"

4-REAL, TARGET stime
REAL, ALLOCATABLE, DIMENSION(: , , , TARGET yspc

4 INTEGER ckptitime, ckptyspc;
INTEGER, TARGET world;

4-itime
! Other initializations

4-allocate(T(nx,ny,n2))
-6 allocate(P(nx,ny,n2))

allocate(deriv_result(nx,ny,nz,nslvs,3))
allocate(deriv_sum(nx,ny,nz,nslvs))
allocate(yspc(nx,ny,nz, nslvs))
allocate(wdot(nx,ny,nz, nslvs))
allocate(rho(nx,ny,nz)) !HK

I Setup grid - scale arrays for stretched grid
I used in derivatives, coordinates useful for
1 generating test data
call initialize grid(6)

! Allocate derivative arrays
call initialize_derivative(6)

allocate(T(nx,nyolZ))
allocate(P(nx,ny,nz))
allocate(deriv_result(nx,ny,nz,nslvs,3))
allocate(deriv_sum(nx,ny,nz,nslvs))
allocate(yspc(nx,ny,nz, nslvs))
allocate(wdot(nx,ny,nz, nslvs))
allocatelrho(nx.nv.nz)) !HK

Setup test data
xshift = (xmax - xmin)4.1
yshift = (ymax - ymin)*0.1
zshift = (zmax - zmin)*8.1

do k 1, nz
do j 1, ny
do i 1, nx
!HK in Kelvin
T(i,j,k) = 1008.0.(sin(x(i)-xshift)nsin(y(j)-yshift).sin(2(k)-

zshift)) * 1560.0

yspc(i,j,k,:) = 8.81
yspc(id,k, 1) = 8.1
yspc(i,j,k, 2) = 8.7
yspc(i,j,k,3) = 8.85
yspc(i,j,k,4) = 8.85
yspc(i,j,k,nsIvs) = 1.0 - sum(yspc(i,j,k, 1:nslvs-1))

P(i,j,k) = 12.0*pres_atm !HK. 12 atm expressed in SI units
enddo
enddo
enddo

i. ,Pe".1.^"tsteps

1 ITERATE AND UPDATE YSPC

endd

4.r.11 MDT Tnitliarrl

Sandia
National
Laboratories

S3D Modifications

• Only 35 new, changed, or
rearranged lines in S3D

Only 35 new,
changed, or

rearranged lines
in S3D code

4 4= if(process status.eg.FENIX PROC NEM) then
YsPc(i,l,k,:) = 0.81
yspc(i,j,k, 1) = 0.1
yspc(i,",k, 2) = 0.7
yspc(i„k,3) = 0.05
yspc(i,",k,4) = 6.65
iii(i„k,nslvs) = 1.8 - sum(yspc(i,j,k, 1:nslvs-1))

4 4:
P(i,j,k) = 12.0*pres_atm !HK. 12 atm expressed in SI units

enddo
enddo
enddo

4 4-do

if(mod(itime-1,CHECKPOINT_PERIOD).eg.8) then
call FTCheckpoint(ckptyspc).

-6 call FT_Checkpoint(ckpt_itime);
endif

nction

gy module

vs Fenix-enabled
Ecall MPI Comm rank(wurid, myid, ierr)

u,TZI Comm size(MPI COMMWORLD, npes, lerr) call MPI Comm size(world, npes, ierr)
e communicator duplIcate for global calls ! Create communicator duplicate for global calls

call MPICommdup(MPICOPTIWORLD, gcomm, ierr) 4 Egcomm world

! Create communicators for the x, y, and z directions ! Create communicators for the x, y, and z directions
call MPI_Comm_split(gcomm, mypyol000°MyPZ, myid, xcomierr) call MPI_Comm_split(gcomm, Mypy.l000=mypz, myid, xcomierr)
call mPlCommsplit(gcomm, mypxol000=mypZ, nyid, ycomm,ierr) call MPI Comm_split(gcomm, mypx.1.11100*mypz, myid, ycomm,ierr)
call MPI_Comm split(gcomm, mypxul000.mypy, nyid, zcomm,ierr) call MPI Comm split(gcomm, mypx.1.108a*mypy, myid, zcomierr)

,. Ecall FT Comm_add(xcomm);
call FT-Conn add(ycomm)(

'.... call FT Coes add(zcomm)(
! Create MPI Comminicators for boundary planes. This is
used in the Boundary conditions
call mnI_cooe_split(gcomm, xid, myid, yz_comm, ierr)
call mPlCommsplit(gcomm, yid, myid, xi_comm, ierr)
call MPI Comm split(gcomm, zid, myid, xy nom, ierr)

! Create MPI Comminicators for boundary planes. This is
— used in the Boundary conditions

call MPI_Comm_split(gcomm, xid, myid, yz_comm, ierr)
call MPI_Comm_split(gcomm, yid, myid, oz_comm, ierr)
call MPI_Comm_split(gcomm, zid, myid, xy comm, ierr)

Ecall FT Comm_add(yz_comM)(
call FT Commadd(ozcomm)(
call PTCommadd(xycomm);

1 ITERATE AND UPDATE YSPC

itime = itime 1
if(itime .gt. ntsteps) exit

enddo

o

-0 2
2

u_
Do 189
2
E

94tn.
cri"

t5 47
a)
•E'

Global Online Recovery Results

3901s 1617s 1612s Recovery+rollback overhead — 4439s
t•--1 r•-•

fl
1

1928s 6025s

i 1 u
i 1 u

Iii
Hi
1
1

Sandia
Mod
laboratories

0

1111111

111111
111111

11111111
11111111 1

10000 20000 30000 40000 50000 60000 70000 80000 86400

Lost Checkpoints Lost
ck ckpt
/

pt
111111 Mill 111

11-‘ 11111HH11111111 111
H Proc. recovery - H

Data recovery

Failures

111.11.,_)1111A111111111111111111111111111111 i_11111111111111.11111111111111 A11111 ,_,11111111

1-1 1
II •••141111111111111111111 111111111111111111111111 11111111111111111111 1111111111111111
II 1111111111111111111 111.1.1.111 1111111111111 111111111111111111111111 11111111111111111111 1111111111111111

1-1 1-1
1-1

•1 . 1
1

11 11H111111111 i_j1111111141jIllffilliI01 11111111111111,111111 11111111,11111111111111111111

I--11 1-1 ."% i--11 1--11

1-1
1-1 1-1

1 1
1 1

II 11111111111
IIHIIIIIIIIII

0 100 200 300
Execution wall time (s)

MTBF Total overhead

Production 2.6 h 31 %
•

Global recovery 189 s 10 % •

Global recovery 94 s 15 % •

Global recovery 47 s 31 %

400 500 600

Uses S3D (scientific application)

Titan Cray XK7 (#3 on top500.org)

Injecting node failures (16-core failures)

Sandia

Asynchronous Localized Online Recovery t=les

• Fenix-1.0 is the first step toward local recovery

• Avoid global termination and restart

• All processes rollback to the Fenixinit0 call

• Natural for algorithms and applications that makes collective calls
frequently

• Some applications fit more scalable recovery model

• Stencil Computation

• Master-Worker execution model

• Solution: Local Online Recovery

15

Local Recovery Methodology

1. Replace failed processes

2. Kolibao_ to the last checkpoint (only replaced processes)

3. Other processes continue with the simulation

• How do we guarantee consistency?

• Implicitly coordinated checkpoint

• Log messages since last checkpoint in local sender memory

• Message logging has been studied in MPI fault tolerance and Actor
Execution Model (Charm++)

Performance may not be optimal for many parallel applications

Stencil computation provides built-in message logging == Ghost
Points

• Implemented in new framework: FenixLR

Sandia
National
Laboratories

Target: Stencil-based Scientific Applications railnes

Rank r4

Rank r5

Rank r1 Rank r2

-,_____ 77-

Rank r

Ghost from r1
Ghost from r2
Ghost from r3

7- Ghost from r1

li Data transfer

• Application domain is

partitioned using a block

decomposition across

processes

• Typically, divided into

iterations (timesteps),

which include:

• Computation to advance

the local simulated data

• Communication with

immediate neighbors

• Example: PDEs using

finite-difference

methods, S3D

Performance Model of Local Recoverftes

Simulated execution of a 1D PDE

i -1

••• •••••

EMEM•

Rank Rank

No failures One failure

Effect of Multiple Failures with Local
Recovery

Simulated execution of a 1D PDE

9
v

____$=1 1=1
 1=t

Rank Rank

No failures One failure

Sandia
National
Laboratories

Experimental Evaluation with S3D
Sandia
National
Laboratories

• Same experiment executed injecting different number of failures

• X axis is rank number, but more complex to see than 1D, because 3D domain is mapped to
core ranking in a linear fashion

• Note that total overhead is as if only one failure occurred (except in 4224c 8f)

(a) 4224c lf

 ni1J-Ljt_f

(b) 4224c 2f (c) 4224c 4f

rZS wIre."-* -
x

(d) 4224c 8f

(q) 64128c lf (r) 64128c 2f (s) 64128c 3f (t) 64128c 5f

Performance of Fenix-LR

■ Using MTBF of lOs

■ Core count from 4224 to 262272 (including 128 spare cores)

■ Result shows the average recovery time for all failures injected.

Pr
oc

es
s
re

co
ve

ry
 t
im
e
(s
)

0.0

0.0

0.0

0.0

0.0

0
4224 8128 13952 32896 64128 140736 262272

Core count (including 128 spare cores)

■ Conclusion:

■ Process recovery time is independent of system size

■ Good scalability

Sandia
National
Laboratories

Locai Recupary

Total Overhead of Fault Tolerance .—D2rtwies

• End-to-end time vs
failure-free,
checkpoint-free time

• Overall overhead:

• Checkpoint

• Process/da

recovery

• Rollback

• 4096 cores +

spare cores

• Right-most bar

global recovery

with MTBF of LI

• Local recovery has
scalability advantages
over global recovery

1.6-

1.5-
528 recovery (process+data+rollback) total time

checkpoint total time

240
1 an

Total overhead

Production (MTBF 2.6h) 31%

Global recovery (MTBF 189s) 10%

Global recovery (MTBF 47s) 31%

Local recovery (MTBF 45s) 30/0

Local recovery (MTBF 20s) 25%

48

II
48

lo

48

1

40 45 47/G 3

Local recovery is superior to global recovery in this
scenario:

• compare MTBF 45s (8%)

• with MTBF 47/GR (31%)

Resilient Asynchronous Many Task (AMT)

Parallel Execution Model

EN EN NE EN EN EN EN NE NE

Pending Running Done

■ AMT allows
• Concurrent task execution

• Overlap of communication and computation

• Over-decomposition of Data

• Abstraction of data objects and tasks allows failure containment and transparent
application recovery with ease.

• Node/Process Failure is manifested as loss of task and data
• Generic model for online local recovery

• Recovery is done through task replay, replication and ABFT task (special task for
recovery)

Sandia
National
Laboratories

23

Resilient AMT Prototype

■ Resilience Extension of
Habanero C++

■ AMT programming

Interface by Vivek Sarkar

■ Simple extension allows
the user to introduce 3
major resilient program
execution patterns

■ Task Replication Interface

■ Task Replay Interface

■ ABFT Interface

Sandia
National
Laboratories

Original Task Launch

hclib::async await (lambc

hclib future t *fl, ..,

hclib future t *f4);

a,

Task Launch with Replication

ciamonc::async awaitpheck<N> (

lambca, hclib::promise<int> out,

hclib future t *fl, ..,

hclib future t *f4);

Task Launch with Replay

replay::asyncawaitpheck<N>(

lambca, hclib::promise<int> out,

std::function<int(void*)>

error_check_fn, void * params,

hclib future t *fl, ..

hclib future t *f4);
.

24

Habanero-C++ Library (HClib)

■ Project led by Vivek Sarkar (GaTech/Rice U)

■ Library-based tasking runtime and API
■ Semantically derived from X10

Sandia
National
Laboratories

■ Focused on: lightweight, minimal overheads; flexible
synchronization; locality control; composability with other libraries;

■ Simplified deployment: no custom compiler, entirely library-based,
only requires C++11 compliant compiler

■ Uses runtime-managed call stacks to avoid blocking

■ https://github.com/habanero-rice/hclib

25

Three major constructs for AMT
programming with HClib

Sandia
NAmM
Wborataies

• Use Lambda to describe tasks. (async and async await)

• Express data dependencies using promises and futures.

• hclib: :promise

Store a value using single assignment semantics : promise.put(value)

• hclib::future

Retrieve the value stored in a promise : value = future.get()

Can be used as dependency for tasks

• Relation between promise and future

• future = promise.get_future()

• lf accessed from different threads put() and get() are synchronized
thus enabling a way for synchronization.

2 6

HClib Code Example

int main (int argc, char ** argv) {

hclib::launch(p()

hclib::promise_t<int> *prom = new hclib::promise_t<int>();

// Tl: Producer Task

}

hclib::async([=]() { prom->put(42); I);
// T2: Consumer Task (aslinc + emplicit wait)

hclib::async([=]() {

// emplicity waiting on prom->put(42);
int value = prom->get_future()->wait();
assert(value == 42);

I);
// T3: Consumer Task (async + implicit wait)

hclib::async_await([=]() {

// implicitly waiting on prom->put(42);
assert(value == 42);

}, prom->get_future());
;

Sandia
National
Laboratories

27

Task Replication

Replicate

Fork

Join

Compute

• diamond::async_await_check<N> (lambda,

hclib::promise<int> out, hclib_future t *fl,

hclib future t *f4);

Sandia
National

' =.7 Laboratories

• Preventive failure mitigation

• N-plicates the task and checks for equality of put operations at the end of
the task

• If error checking succeeds, actual puts are done

• If error checking fails, puts are ignored and the error is reported using an
output promise

28

Replication (Continued)
diamond::async awaitcheck<2>(_

Fork

Compute

Join
Detected '1"

Decide

Sandia
NAmM
Wborataies

diamond::async await check<3>(_

Compute

Fork

Join

• Duplicate (N=2) — Create two tasks and check for error in puts
• If error checking fails, a third task is created

• Triplicate and more (N=3 ore more) — Create three tasks and check for error in puts
• Two out of three outputs should match for success

29

Task Replay
Detected Up to N times

4111 (
..
\ (

.... \

.. • %,. •

Replay

re-olay::async await check<N>(lambda,
hclib::promise<int> out, std::function<int(void*)>
error check fn, void * params, hclib future t *fl,

.. , hclib future t *f4);

• Dynamic response to failure

• Executes the task and checks for error using the error checking function

• error check fn(params) returns true if there is no error

• The task is executed N times at most if there is any error
• If error checking fails, puts are ignored and the error is reported using an output

promise

Sande
Mond
laboratories

30

ABFT Tasks

DetectO

\AO AB FT

Sandia
National
Laboratories

abft::async await check (lambda, hclib::promise<int>
out, std::function<int(void*)> error_check void *
params, hclib future t *fl, .. , hclib future t *f4,
ABFTlambda);

• Executes the task and checks for error using the error checking function

• error check fn(params) returns true if there is no error

• If there is error then ABFT lambda is executed and checked for error again at its
end
• If error checking fails, puts are ignored and the error is reported using an output promise

31

Task Replication

Replicate

Fork

Join

Compute

• diamond::async_await_check<N> (lambda,

hclib::promise<int> out, hclib_future t *fl,

hclib future t *f4);

Sandia
National

' =.7 Laboratories

• Preventive failure mitigation

• N-plicates the task and checks for equality of put operations at the end of
the task

• If error checking succeeds, actual puts are done

• If error checking fails, puts are ignored and the error is reported using an
output promise

32

Replication (Continued)
diamond::async awaitcheck<2>(_

Fork

Compute

Join
Detected '1"

Decide

Sandia
NAmM
Wborataies

diamond::async await check<3>(_

Compute

Fork

Join

• Duplicate (N=2) — Create two tasks and check for error in puts
• If error checking fails, a third task is created

• Triplicate and more (N=3 ore more) — Create three tasks and check for error in puts
• Two out of three outputs should match for success

33

Task Replay
Detected Up to N times

4111 (
..
\ (

.... \

.. • %,. •

Replay

re-olay::async await check<N>(lambda,
hclib::promise<int> out, std::function<int(void*)>
error check fn, void * params, hclib future t *fl,

.. , hclib future t *f4);

• Dynamic response to failure

• Executes the task and checks for error using the error checking function

• error check fn(params) returns true if there is no error

• The task is executed N times at most if there is any error
• If error checking fails, puts are ignored and the error is reported using an output

promise

Sande
Mond
laboratories

34

ABFT Tasks

DetectO

\AO AB FT

Sandia
National
Laboratories

abft::async await check (lambda, hclib::promise<int>
out, std::function<int(void*)> error_check void *
params, hclib future t *fl, .. , hclib future t *f4,
ABFTlambda);

• Executes the task and checks for error using the error checking function

• error check fn(params) returns true if there is no error

• If there is error then ABFT lambda is executed and checked for error again at its
end
• If error checking fails, puts are ignored and the error is reported using an output promise

35

Resilience Overhead in the absence of
failure

• Replay is less expensive
• 7%-9%

• In the 1D cases,
replication doubles the
execution time. (+101%)

• In the 3D cases, the
replication penalty is
about 45%.
• More L3 cache hits are

observed

W
a
l
l
t
i
m
e
 (
s
)

Sandia
National
Laboratories

Overhead of resilience in the absence of failures

120

100

80

60 -

40 -

20 -

OM No resilience, checksums

Replay, checksums

No resilience, no checksums

am Replication, ro checksums

ps
111:6A

1D Case A
Application type

P°
MA" ►
1D Case B

36

Resilience with synthetic failure
injection

Sandia
IT I National
 Laboratories

• Test a range of task failure rate (0.01%4%)

• Failure is detected as checksum error (replay) or different
results from the first two tasks (replication)

• We applied mixed mode so that the last X% of iterations are
replicated, and replay is applied to the first (100-X)% of
iterations.

• The performance numbers from replay-enabled code with
no-failure are fed to our resilient-AMT simulator to predict
the execution time with different task failure rate.
• Overhead of replay and replication are based on the cost task.

37

Resilience with synthetic failure injection
(1D Stencil, 128 tiles of 16000 doubles)

ai) Resilience Overhead with Respect to Failure Rate, 1D Case A

81 1 0 0 -

'6E

CU

1.7

a) 80 -
cc

o
z
o 60-+,

O
v
e
r
h
e
a
d
 (
%
 N
o
r
m
a

40-

20

o

- Replication Only

- 30% Replication

—N— 20% Replication

10% Replication

—s— Replay Only

•

a-

•

10-4 10-3

Failure Rate

• Slight increase in the wall time with the increase of task-
failure rate.

Sandia
Maori
laboratories

38

Explicit PDE Solver for Unstructured

Mesh

• Repetition of Task based
SPMV

• Evaluated crankseg_1 matrix
from SuiteSparse web site at
Texas A&M.

• Tried 32 and 128 tile cases

• No overdecomposition

• Overdecomposition by the

factor of 8

• 500 hundred iterations

Sandia
National
Laboratories

GHS_psdef@crankseg_1 52804 nodes., 5280703 edges

39

Irregular distribution of task
dependencies

crankseg_L 32 tiles

3C

25 -

2D -

15

1C:

5

0

dependencies

1C: 15 20

tile index

L _I 30

80

60

40

20

0

Sandia
National
Laboratories

crankseg_l, 128 tiles

dependencies

0 20 40 60 80

tile index

100 120

40

Irregular distribution of nonzero
entries per task

crankseg_l, 32 tiles crankseg _1, 128 tiles

600000 -

500000 -

4010000 -

300000 -

2010000 -

100000 -

D

Non-zeros 160000

140000

120000

100000

80000

60000

40000

20000

D

Non-zeros

0 5 10 15 20 25 30 D 2D 4D

tile index

60 80

tile index

100 120

Sandia
National
Laboratories

41

Overhead of Resilience Techniques inzido,„
the absence of Failures

Overhead of resilience in the absence of failures

10 -

8

4 -

2

0

I 4 PI
No Resilience Replay

Resilience Method
Replication

• Approximately 5% of overhead to enable replay.

• Replication doubles the execution time.

Laboratories

42

Execution Time under synthetic
failures

Resilience Overhead with Respect to Failure Rate, SPMV

10-

-A- Replication Only

—0— Replay Only

 -0

o 10-3

Failure Rate

10 - 2

Resilience

t.`7.) 100 -

a)

Sande
Mond
laboratories

Overhead with Respect to Failure Rate, SPMV

—a— Replication Only

—01— Replay Only

 •

0

• Slight increase in the execution time.

• Tasking can hide the delay due to failures.

10-3

Failure Rate

43

Ongoing Work: Resilient Kokkos

Kokkos::View< Data Type Execution Space, Memory Space, .. >

GPU Device
Memory

NVRAM
Data

Staging
System

• Kokkos provides abstraction of data and (on-node) parallel
program execution
• Kokkos::View provides an array with a variety of tunable parameters

through template
• Execution and Memory Spaces to provide performance portability over

multiple node architecture
• Exploit C++ Lambda to support parallel program execution

• Resilient Kokkos provides "resilient" data and execution spaces to
enable resilience/fault tolerance without major modification in
application program source.

Sandia
National
Laboratories

44

Resilient Kokkos enables resilient
data parallel computation

Kokkos::View <double*, ..., ResilientSpace > A(1
parallel_for (RangePolicy<>(0, 100),
KOKKOS LAMBDA (const int i)

A(i) = ;
Replication

});

1

Kokkos::View <double*, ..., ResilientSpace > A(1000);

parallel for ("loop_1", RangePolicy<>(0, 100),
KOKKOS LAMBDA (const int i)

L
A(i) = ;

Santla
Mond
laboratories

(RangePolicy<>(0, 100), KOKKOS LAMBDA (
const int i)

l Automatic Checkpointing

Checkpoint
"loop_l ,A"

45

CONCLUSION

Sandia
National
Laboratories

46

Conclusion

■ Discussed Resilient Programming Models for:
■ SPMD (MPI) Model

Online recovery

Fenix accommodates generalization of recovery using MPI-ULFM
capability

■ Localized Recovery (Fenix-LR)

Exploit application's (stencil) communication pattern to enable
redundancy

Failure-Masking to hide the major recovery overhead

■ Asynchronous Many Task Programming Model

Resilience is embedded to the programming model itself.

Simple extension of tasking API to enable resilient computation patterns

■ Kokkos

Extend Memory and Execution Space concept to enable reslience in
application data and computation

Sandia
National
Laboratories

47

Acknowledgement
Sandia
National
Laboratories

■ Robert Clay, Hemanth Kolla, Michael Heroux, David Hollman,

Jackson Mayo, Jeff Miles, Nicole Slattengren, Christian Trott,
Matthew Whitlock (Sandia National Labs)

■ Shaohua Duan, Mark Gamell (Ab-Initio LLC), Pradeep Subedi
and Manish Parashar (Rutgers U.)

■ George Bosilca, Aurélien Bouteiller and Thomas Herault (U of
Tennessee)

■ Seonmyeon Bak, Sri Raj Paul, Akihiro Hayashi, and Vivek

Sarkar (Georgia Tech and Rice U.)

■ Hartmut Kaiser and Adrian Serio (Louisiana State U.)

Q&A
Sandia
National
Laboratories

49

