SAND2019- 0384PE

Local Failure Local Recovery:
Toward Scalable Resilient Parallel Programing Model

Keita Teranishi, Sandia National Laboratories, California, USA

U.8. DEPARTMENT OF UV YA =)
@ E"ERGY .v" Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
Ateint Wectinr Secelyy fulelitation subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

th

MOTIVATIONS AND BACKGROUND

KAID CONTROLLERS DONT
MAKE SENSE AT OUR SCALE;
EVERYTHING 15 REDUNDANT
AT HIGHER LEVELS, LJHEN A
DRIVE. FAILS, WE JUST THROW
AlJAY THE UHOLE. MACHINE.

MACHINE? WE THROW
AWAY LHOLE. RACKS
AT A TME.

YEAH, LIHO
REPLACES

i

WE JUST REPLACE
WHOLE ROOMS AT
ONCE. AT OUR S(ALE,
MESSING LITH RACKS
ISN'T ECONOMICAL.

) “"\““’mmﬁw

WE DONT HAVE SPRINKLERS
OR INERT GAS SYSTEMS.
WHEN A DATACENTER CATCHES
FIRE, LIE JUST ROFE IT OFF
AND REBUILD ONE TOLN ONER.
HHEE.SSEME

ILWIDER IF THE ROPE
l&REP-LL‘!’HECESS"iﬁr'

il

Courtesy: https://xkcd.com/1737

More frequent failures than advertised @&

3901s 1617s 1612s <«— Recovery+rollback overhead —— 4439s 1928s 6025s

—_— —_ P— —_— — —

] []]]] []]]
| |
| |

g B
i [i i [i i [i i
1 00(10 ‘ ZOOOF 31)000 40000 50000 ‘ 600F0 7F000 ‘ kOOOO 86400

Execution wall time (s)

24-hour tests using Titan (125k cores) Total cost

Expected MTBF: 9-12 hours Checkpoint (per timestep) 55 s 1.72 %
9 process/node failures over 24 hours

Restarting processes 470 s 5.67 %

Failures are promoted to job failures, causing
all 125k processes to exit

Checkpoint (5.2 MB/core) is done to the PFS

Burst buffer provides more BW than the
traditional file 10, but the major bottleneck is
the connection to the burst buffer nodes.

System reliability is hard to predict ®=-

That means many failures could happen all of sudden.

==Jaguar XT4="~Jaguar XT5+¢ Jaguar XK6-0-Eos=0=Titan t Not Like:
E 50 - I, Sao -
w 40 LL 1
m m I
= 30 - =]
=20 =| 1

= o y

c 10 - ot !
< 0 d

1 >
© el O Q N O % X o) :
Q Q N N N N N N Time
G & &S S S S
Courtesy to Gupta et al, “Failures in large scale systems: long-term
measurement, analysis, and implications,” SC17
= Reliability of large scale HPC systems has been the major concern
= Exascale Goal: 1 Week MTBF with C/R
= No clear reliability improvement (in scaled MTBF)
= No effective predictable model of reliability derived from observations (Gupta
et al and Ferreira et al.)
4

Resilience is essential for performance ..,
variability

il Compute
P1 Compute

=4 Compute
P3 Compute MPI

= Performance variability is a new type of system

failure.
= Trinity at LANL experienced a 25x slowdown of a single

compute node
= Static load balancing based on data size won’t work

= Errors in a single DRAM module
= MPI did not report any errors
= Resulted in 25x application delays i

Resilience is essential for System Co-
Design

* Programming model (APIs) that
embraces/controls failures and unconventional
errors permits a greater flexibility in system co-
design.

= Probabilistic CMOS (PCMOQOS) for efficiency and low
power

= Palem at RICE U. (Performance and accuracy
modeling)

* Rinard at MIT (Programming language for unreliable
computing, and ideas for fault oblivious computing)
= Memory subsystems with selective reliability

= HBM (high bandwidth, less reliable SEC-DED) and DDR
(low bandwidth, reliable Chipkill)

— Gupta, UCSD and AMD

6

Checkpoint/Restart evolves toward -
Exascale Computing, but....

PO

= o 3

= VeloC (ECP: https://veloc.readthedocs.io/en/latest/)
accommodates efficient checkpointing/restart

= Multi-level checkpointing
= Leverage the latest I/O technology.
Disproportionate use of computing resources is inevitable

= Majority (50-85%) of failures happen at single node/process.
= Cost of global tear-down and global restart (redo).

Is it designed to handle soft-errors and online recovery?

P1
P2
Px

7

Local Failure and Local Recovery
Enables Scalable Recoverv

.~

Run as P,

N o
.. N
= Software framework to augment existing apps with resilience
capability

= The remaining processes stay alive with isolated process/node failure

= Multiple implementation options for recovery
= Roll-back, roll-forward, asynchronous, algorithm specific, etc.

= Hot Spare Process for recovery

RESILIENT PROGRAMMING MODEL
FOR MPI PROGRAMMING

MPI-ULFM (User Level Fault Mitigation)® ==.

= Proposed for future MPI standard

= MPI calls (recv, irecv, wait, collectives) notify errors when the
peer process(es) dies

= Survived processes continue to run

= New MPI functions for fixing MPI communicator
= MPI_Comm_agree --- Sanity check (resilient collective)
= MPI_Comm_revoke --- Invalidate MPI Communicator
= MPI_Comm_shrink --- Fix MPI Communicator removing dead process

= User is responsible for the recovery after MPI_Comm_shrink
Prototype code is available at http://fault-tolerance.org

= Developed by U of Tennessee

10

MPI-ULFM does not prescribe how {g..
recovery

= MPI-ULFM only provides “minimum” set of low-level APIs for

application recovery

= Users are responsible for fixing MPI communicator

= Shrunk Communicator is no longer the same as the original MPI

Communicator

= Rank-Process mapping changes after comm_shrink

= Typical MPI applications are not designed for the shrinking recovery
= Users are responsible for recovering the application state

= Writing an error handler is cumbersome

= No data recovery

= No rollback

= QOur Solution: Fenix

11

Fenix 1.0 Specification (SAND2016-917 1} E=.

= Fault Tolerant Programming Framework for
MPI Applications W

Specification of Fenix MPI Fault Tolerance
library

= Separation between process and data recovery

Marc Gamell, Rob F. Van der Wiingaart, Keita Teranishi and Manish Parashar

Progarsd
‘Sancia NatonalLaboraiories
Abuqueraue, New Merico 87185 and Livermare, Calloria 4550

= Allows third party software for data recovery

Approved o i elease; ther dissomsnation uriied.

= Multiple Execution Models

= Process recovery
= Extend MPI-ULFM
" Process recovery through hot spare process pool

() sancia NatonalLaboratories

= Process failure is checked at PMPI layer and recovery
happens automatically under the cover

= Datarecovery Application
" In-memory data redundancy
= Multi-versioning (similar to GVR by U Chicago &ANL) Fenix

MPI-ULFM

ﬁ
I
T
T

Original

REAL :: stime
REAL, ALLOCATABLE, DIMENSION(:,:,:, :) :: yspc

! Other initializations

! Setup MPI, Cartesian MPI grid, etc.
call initialize topology(6, nx, ny, nz, &
npx, npy, npz, &
iorder, iforder)

! Setup grid - scale arrays for stretched grid
! used in derivatives, coordinates useful for
! generating test data
call initialize grid(6)

! Allocate derivative arrays
call initialize derivative(6)

allocate(T(nx,ny,nz))
allocate(P(nx,ny,nz))
allocate(deriv_result(nx,ny,nz,nslvs,3))
allocate(deriv_sum(nx,ny,nz,nslvs))
allocate(yspc(nx,ny,nz, nslvs))
allocate(wdot(nx,ny,nz, nslvs))
allocate(rho(nx.nv.nz)) THK

! Setup test data

xshift = (xmax - xmin)*0.1

yshift = (ymax - ymin)*0.1

zshift = (zmax - zmin)*@.1

do k =1, nz
do j
do i
!HK in Kelvin
T(i,j,k) = 1000.0*(sin(x(i)-xshift)*sin(y(j)-yshift)*sin(z(k)-
zshift)) + 1500.0

yspc(i,j,k,:) = 0.01
yspc(i,j,k, 1) = 6.1
yspc(i,j,k, 2) = 0.7
yspc(i,j,k,3) = 0.05
yspc(i,j,k,4) = 0.05

) =

yspc(i,j,k,nslvs 1.0 - sum(yspc(i,j,k, 1:nslvs-1)

P(i,j,k) = 12.0*pres_atm !HK. 12 atm expressed in SI units

enddo

enddo

enddo

TIMESTEPHlldo itime = 1, ntsteps
! ITERATE AND UPDATE YSPC

enddo TIMESTEP

> €do

VS Fenix-enabled

€ #include "fenix f.h"

€ REAL, TARGET :: stime
REAL, ALLOCATABLE, DIMENSION(:,
INTEGER ckpt itime, ckpt yspc;
INTEGER, TARGET :: world;

1, :), TARGET :: yspc

€itime = 1
! Other initializations

€ allocate(T(nx,ny,nz))
allocate(P(nx,ny,nz))
allocate(deriv_result(nx,ny,nz,nslvs,3)) ®
allocate(deriv_sum(nx,ny,nz,nslvs))
allocate(yspc(nx,ny,nz, nslvs))
allocate(wdot(nx,ny,nz, nslvs))
allocate(rho(nx,ny,nz)) THK

PRI A S EYETY)

S3D Modifications

Only 35 new, changed, or
rearranged lines in S3D

Only 35 new,
changed, or

rearranged lines
in S3D code

call

omm_s1ze

s -
€ if(process status.eq.FENIX PROC_NEW) then ! Create communicator duplicate for global calls
call MPI_Comm dup(MPI_COMM WORLD,

yspc(i,j,k,:) = 0.01

yspe(i,j,k, 1) = 0.1
yspc(i,j. k, 2) = 0.7
yspe(i,j,k,3) = 5

0.0
yspc(i,j,k,4) = 0.05
yspc(i,j,k,nslvs) =
€ endif
P(i,j,k) = 12.0*pres_atm !HK. 12 atm expressed in SI units

1.0 - sum(yspc(i,j,k, 1:nslvs-1)

! Create communicators for the x,
call MPI_Comm split(gcomm, mypy+1000*mypz, myid, xcomm,ierr
call MPI_Comm split(gcomm, mypx+1000*mypz, myid, ycomm,ierr)
call MPI_Comm split(gcomm, mypx+1000*mypy, myid, zcomm,ierr)

inction

gy module

VS Fenix-enabled

=> € call MPI Comm rank(world, myid, ierr)

call MPI Comm size(world, npes, ierr

! Create communicator duplicate for global calls
=» <€ gcomm = world

. Npes, 1err

gcomm, ierr)

! Create communicators for the x, y, and z directions

call MPI_Comm split(gcomm, mypy+1000*mypz, myid, xcomm,ierr)

call MPI_Comm_split(gcomm, mypx+100@*mypz, myid, ycomm,ierr)

call MPI_Comm split(gcomm, mypx+1000*mypy, myid, zcomm,ierr)
€ call FT_Comm_add(xcomm);

y, and z directions

enddo | Create MPI Comminicators for boundary planes. This is call FT_Comm add(ycomm);
enddo used in the Boundary conditions call FT_Comm add(zcomm);
enddo call MPI Comm split(gcomm, xid, myid, yz comm, ierr

if(mod(itime-1,CHECKPOINT PERIOD).eq.0) then
call FT_Checkpoint(ckpt_yspc);
call FT_Checkpoint(ckpt itime);

endif

! ITERATE AND UPDATE YSPC

€ itime = itime + 1
if(itime .gt. ntsteps) exit
enddo

call MPI_Comm split(gcomm, yid, myid, xz_comm, ierr)
call MPI_Comm split(gcomm, zid, myid, xy comm, ierr)

! Create MPI Comminicators for boundary planes. This is
used in the Boundary conditions
call MPI_Comm split(gcomm, xid, myid, yz comm, ierr)
call MPI_Comm split(gcomm, yid, myid, xz_comm, ierr)
call MPI Comm split(gcomm, zid, myid, xy comm, ierr)

€ call FT Comm add(yz comm);
call FT_Comm add(xz_comm
call FT_Comm add(xy comm

hrBQ

86400
|
i
600

Sandia
National
Laboratories
RRRR
HH
HaHi

80000
I
i

th

6025s
|
i
I
i
I
i

|
i
I
i
500

1928s
70000
1111
8 |
iy
A
LI
HEniin

60000
I
i
1l
i
1M
i

Y
i
11
i
I

i

400

——> 4439s

Injecting node failures (16-core failures)

Uses S3D (scientific application)
Titan Cray XK7 (#3 on top500.0rQg)

50000
I
i
I
i
1

|
I
11
I
|
|
Execution wall time (s)

40000
|
}
I
I
T
i

Recovery+rollback overhead
|
|
|
I
I
300

31 %
10 %
15 %
31 %

= = . ——

16125 «—
30000

H

11

I

1

i

200

26h
189 5
94 s
47 s

1617s
20000

MTBF Total overhead

100

3901s

10000

Global Online Recovery — Results

Global recovery
Global recovery
Global recovery

Production

o] < N~
uni o o <

—

uononpoid (S) 491N walsAs pajoalu|

Asynchronous Localized Online Recover{ &.

= Fenix-1.0is the first step toward local recovery
= Avoid global termination and restart
= All processes rollback to the Fenix_Init() call

= Natural for algorithms and applications that makes collective calls
frequently

= Some applications fit more scalable recovery model
= Stencil Computation
= Master-Worker execution model

= Solution: Local Online Recovery

Local Recovery Methodology)

1. Replace failed processes
2. Rollback to the last checkpoint (only replaced processes)
3. Other processes continue with the simulation

= How do we guarantee consistency?
= |mplicitly coordinated checkpoint
= | og messages since last checkpoint in local sender memory

= Message logging has been studied in MPI fault tolerance and Actor
Execution Model (Charm++)

= Performance may not be optimal for many parallel applications

= Stencil computation provides built-in message logging == Ghost
Points

= |mplemented in new framework: FenixLR

Target: Stencil-based Scientific Applicatiof8 -

Rank 75

| |
(I
Rank 74 Rank 7 Rank 79

LD, ‘%éhost from r;

Rank Ghost from 79
anx s Ghost from 73
| Ghost from r;

D Data transfer

Application domain is
partitioned using a block
decomposition across
processes

Typically, divided into
iterations (timesteps),
which include:

= Computation to advance
the local simulated data

= Communication with
immediate neighbors

Example: PDEs using
finite-difference
methods, S3D

Performance Model of Local Recovépyé-

Simulated execution of a 1D PDE

Wall time

Rank Rank

No failures One failure

Effect of Multiple Failures with Loca} ...
Recovery

Simulated execution of a 1D PDE

£ —_——
= ———t———
5 =
< /=
Rank Rank
No failures One failure

Experimental Evaluation with S3D

= Same experiment executed injecting different number of failures

= X axis is rank number, but more complex to see than 1D, because 3D domain is mapped to
core ranking in a linear fashion

= Note that total overhead is as if only one failure occurred (except in 4224c 8f)

inaann s s s s anes
ARV VAR A U e
AN e
Ao

| A

xnnnnnnnnn AN
A

i ie———

(a) 4224c 1f

(q) 64128¢ 1f

(b) 4224c 2f

(c) 4224c 4f

T A A A M — e Se s

(r) 64128c 2f

VLML A - AL

FYTRTYTRTY TNV VY PNSRRSNN VY YR VY TR VYN

I Y AR WAL LA LA A
[N A o' N Y T

1. X] _— X
M x

B e e e e

e S s e

(s) 64128c 3f

(d) 4224c 8f

(t) 64128¢c 5f

Performance of Fenix-LR) i,

= Using MTBF of 10s
= Core count from 4224 to 262272 (including 128 spare cores)
= Result shows the average recovery time for all failures injected.

s 005
(0]
£ 004
S 0.03]
>
3
g 002
@ 0.0H
S
£ 0-

4224 8128 13952 32896 64128 140736 262272
Core count (including 128 spare cores)
= Conclusion:
" Process recovery time is independent of system size
" Good scalability

Total Overhead of Fault Toleranc

= End-to-end time vs

Local Query

1.6+
failure-free, - 508 recovery (process+data+rollback) total time
checkpoint-free time & 1 54 checkpoint total time mwmm
= Qverall overhead: @ _ 240 —
. “’ 180
= Checkpoint
Total h
= Process/da otal overhead 48
recovery Production (MTBF 2.6h) 31 % .
= Rollback Global recovery (MTBF 189s) 10 %
e 4096 cores + Global recovery (MTBF 47s) 31 %
spare cores Local recovery (MTBF 45s) 8%
* Right-most bar Local recovery (MTBF 20s) 25% i
global recover u7/GR
with MTBF of 4

= Local recovery has
scalability advantages
over global recovery

= - with MTBF 47/GR (31%) |

— Local recovery is superior to global recovery in this
scenario:

« compare MTBF 45s (8%)

Resilient Asynchronous Many Task (AMT) = e
Parallel Execution Model

5 o B O

= AMT allows

= Concurrent task execution
= Qverlap of communication and computation
= Qver-decomposition of Data
= Abstraction of data objects and tasks allows failure containment and transparent
application recovery with ease.
= Node/Process Failure is manifested as loss of task and data
= Generic model for online local recovery

= Recovery is done through task replay, replication and ABFT task (special task for

recovery)
23

Resilient AMT Prototype) =,

Original Task Launch
hclib::async await (lambda,
hclib future t *f1, ..,

= Resilience Extension of

Habanero C++ hclib future t *f4);
= AMT programming
Interface by Vivek Sarkar Task Launch with Replication
n Simp|e extension allows diamond: :async_await_ check<N> (

th to introd 3 lambda, heclib: :promise<int> out,
e user to Introduce hclib future t *f1l, ..,

major resilient program hclib future t *f4);
execution patterns

Task Launch with Replay

= Task Replication Interface replay::async_await_check<N> (

= Task Replay Interface lambda, heclib::promise<int> out,
= ABFT Interface std::function<1nt(Y01d*)>

error check fn, void * params,
helib future £ #fl, .. ,

hclib future t *f4);

24
-

Habanero-C++ Library (HClib) UL

= Project led by Vivek Sarkar (GaTech/Rice U)

= Library-based tasking runtime and API
= Semantically derived from X10

= Focused on: lightweight, minimal overheads; flexible
synchronization; locality control; composability with other libraries;

= Simplified deployment: no custom compiler, entirely library-based,
only requires C++11 compliant compiler

= Uses runtime-managed call stacks to avoid blocking
= https://github.com/habanero-rice/hclib

25
-

Three major constructs for AMT
programming with HClib

* Use Lambda to describe tasks. (async and async_await)

= Express data dependencies using promises and futures.

= hclib::promise

= Store a value using single assighment semantics : promise.put(value)

= hclib::future
= Retrieve the value stored in a promise : value = future.get()
* Can be used as dependency for tasks
= Relation between promise and future
* future = promise.get_future()

= |f accessed from different threads put() and get() are synchronized
thus enabling a way for synchronization.

26

HClib Code Example

int main (int argc, char *x argv) {
hclib::launch ([1() {
hclib::promise_t<int> *prom = new hclib::promise_t<int>();
// T1: Producer Task
| hclib::async([=]1() { prom->put(42); }); |
// T2: Consumer Task (async + explicit wait)
hclib::async ([=]1() {
// explicity waiting on prom->put (42);
int value = prom->get_future()->wait ();
assert(value == 42);
&
// T3: Consumer Task (async + implicit wait)
hclib::async_await ([=]1 () {
// implicitly waiting on prom->put (42);
assert(value == 42);
}, prom->get_future());
3);

Task Replication . =
or
! Replicate
. ﬂ Compute
Join

" diamond::async await check<N> (lambda,
hclib: :promise<int> out, hclib future t *fl,
., hclib future t *£f4);

= Preventive failure mitigation

= N-plicates the task and checks for equality of put operations at the end of
the task

= |f error checking succeeds, actual puts are done

= |f error checking fails, puts are ignored and the error is reported using an

output promise
28
————

Replication (Continued) S,

diamond::async_await check<2> (.. diamond::async_await check<3>(..

Fork Fork

Compute Compute

Detected

Decide

Join

.
k. 4

= Duplicate (N=2) — Create two tasks and check for error in puts
= If error checking fails, a third task is created

= Triplicate and more (N=3 ore more) — Create three tasks and check for error in puts
= Two out of three outputs should match for success

29
-

Task Replay

l Detected

replay::async awalt check<N>(lambda,

Up to N times

Replay

("\('-\

-~ 7’

hclib::promise<int> out, std::function<int (void¥*)>
error check fn, void * params, hclib future t *f1,

, hclib future t *f4);

= Dynamic response to failure

= Executes the task and checks for error using the error checking function
= error_check_fn(params) returns true if there is no error

= The task is executed N times at most if there is any error
= |f error checking fails, puts are ignored and the error is reported using an output

promise

30

ABFT Tasks ==

l Detected

—

abft::async await check (lambda, hclib::promise<int>
out, std::function<int (void*)> error check fn, void *
params, hclib future t *fl, .. , hclib future t *f4,
ABFT lambda) ;

= Executes the task and checks for error using the error checking function
= error_check_fn(params) returns true if there is no error

= |fthereis error then ABFT _lambda is executed and checked for error again at its
end
= |f error checking fails, puts are ignored and the error is reported using an output promise

31
-

Task Replication . =
or
! Replicate
. ﬂ Compute
Join

" diamond::async await check<N> (lambda,
hclib: :promise<int> out, hclib future t *fl,
., hclib future t *£f4);

= Preventive failure mitigation

= N-plicates the task and checks for equality of put operations at the end of
the task

= |f error checking succeeds, actual puts are done

= |f error checking fails, puts are ignored and the error is reported using an

output promise
32
————

Replication (Continued) S,

diamond::async_await check<2> (.. diamond::async_await check<3>(..

Fork Fork

Compute Compute

Detected

Decide

Join

.
k. 4

= Duplicate (N=2) — Create two tasks and check for error in puts
= If error checking fails, a third task is created

= Triplicate and more (N=3 ore more) — Create three tasks and check for error in puts
= Two out of three outputs should match for success

33
-

Task Replay

l Detected

replay::async awalt check<N>(lambda,

Up to N times

Replay

("\('-\

-~ 7’

hclib::promise<int> out, std::function<int (void¥*)>
error check fn, void * params, hclib future t *f1,

, hclib future t *f4);

= Dynamic response to failure

= Executes the task and checks for error using the error checking function
= error_check_fn(params) returns true if there is no error

= The task is executed N times at most if there is any error
= |f error checking fails, puts are ignored and the error is reported using an output

promise

34

ABFT Tasks ==

l Detected

—

abft::async await check (lambda, hclib::promise<int>
out, std::function<int (void*)> error check fn, void *
params, hclib future t *fl, .. , hclib future t *f4,
ABFT lambda) ;

= Executes the task and checks for error using the error checking function
= error_check_fn(params) returns true if there is no error

= |fthereis error then ABFT _lambda is executed and checked for error again at its
end
= |f error checking fails, puts are ignored and the error is reported using an output promise

35
-

Resilience Overhead in the absence of ..
failure

Overhead of resilience in the absence of failures

- Replay iS |eSS eXpenSive Zam No resilience, checksums
E 7%_9% 1201 W Replay, checksums
1004 No r.esilifance, no checksums
[| |n the 1D Cases) R mm Replication, no checksums
replication doubles the *; 80 1
execution time. (+101%) £ e
=
= |n the 3D cases, the |
e e ° ,»4‘ ’:oﬁ '§
replication penaity IS o | % ‘
about 45%. N

= More L3 cache hits are Ap;:-lll:u}:;:t?;: e 10 case 8
observed

36

Resilience with synthetic failure ..
injection

= Test a range of task failure rate (0.01%-1%)

= Failure is detected as checksum error (replay) or different
results from the first two tasks (replication)

= We applied mixed mode so that the last X% of iterations are
replicated, and replay is applied to the first (100-X)% of
iterations.

= The performance numbers from replay-enabled code with

no-failure are fed to our resilient-AMT simulator to predict
the execution time with different task failure rate.

= Qverhead of replay and replication are based on the cost task.

Resilience with synthetic failure injection e
(1D Stencil, 128 tiles of 16000 doubles)

Resilience Overhead with Respect to Failure Rate, 1D Case A
1004 o * , Fo —

—e— Replication Only
801 —e— 30% Replication
—=— 20% Replication
—a— 10% Replication

601 | o Replay Only
4101 & v >— —&
[] = 5 ==
20 & e i —h
e = — —e
U T T T T
0 10—* 103 102

Overhead (% Normalized to Non-Resilient Case)

Failure Rate

= Slight increase in the wall time with the increase of task-
failure rate.

38
-

Explicit PDE Solver for Unstructured e
Mesh

= Repetition of Task based
SPMV

= Evaluated crankseg 1 matrix
from SuiteSparse web site at
Texas A&M.

= Tried 32 and 128 tile cases

= No overdecomposition

= Qverdecomposition by the
factor of 8

= 500 hundred iterations

39

Irregular distribution of task
dependencies

crankseg 1, 32 tiles

crankseg 1, 128 tiles

H dependencies H dependencies
30 1
80
251
_— 60
15 A
40
10
20 A
5
0 0
0 5 10 15 20 25 30 0 20
tile inde

100

120

Irregular distribution of nonzero)
entries per task

crankseg_1, 32 tiles crankseg_1, 128 tiles
600000 - BN Non-zeros 160000 - B Non-zeros
140000 -
500000 A
120000 -
400000 -
100000 1
300000 - 80000
60000
200000
40000 |
100000 A
20000 A
0 0 | - - . -
0 5 10 15 20 25 30 0 20 40 60 80 100 120

tile index tile index

Overhead of Resilience Techniques jp...
the absence of Failures

Overhead of resilience in the absence of failures

10 A

8 .
0
£ 6
=
™
= 4

2 u

0 - " -

Replay Replication

No Resilience
Resilience Method

= Approximately 5% of overhead to enable replay.
= Replication doubles the execution time.

Execution Time under synthetic
failures

10 -

8_

Walltime (s)

Resilience Overhead with Respect to Failure Rate, SPMV

& o 4

= —e ==K

—i— Replication Only

—ea— Replay Only

0 103 1072
Failure Rate

[=)]
o

Overhead (% Normalized to Non-Resilient Case)
o

Resilience Overhead with Respect to Failure Rate, SPMV

=
o
o

o]
o
1

£
o
!

N
o
1

& &
F L 3

—a— Replication Only

1 — Replay Only

= Slight increase in the execution time.

= Tasking can hide the delay due to failures.

s Ba ¢
0 103 102
Failure Rate
43

Ongoing Work: Resilient Kokkos @&

GPU Device MPI
Memory IO/HDF5

* Kokkos provides abstraction of data and (on-node) parallel

program execution
* Kokkos::View provides an array with a variety of tunable parameters
through template
* Execution and Memory Spaces to provide performance portability over
multiple node architecture
* Exploit C++ Lambda to support parallel program execution
* Resilient Kokkos provides “resilient” data and execution spaces to
enable resilience/fault tolerance without major modification in

application program source.

44
-

Resilient Kokkos enables resilient e
data parallel computation

Replication |

Checkpoint
"loop_1,A”

Automatic Checkpointing

CONCLUSION

46

Conclusion ()}

= Discussed Resilient Programming Models for:

= SPMD (MPI) Model
= Online recovery
= Fenix accommodates generalization of recovery using MPI-ULFM
capability
= Localized Recovery (Fenix-LR)

= Exploit application’s (stencil) communication pattern to enable
redundancy

* Failure-Masking to hide the major recovery overhead
= Asynchronous Many Task Programming Model

= Resilience is embedded to the programming model itself.

= Simple extension of tasking API to enable resilient computation patterns
= Kokkos

= Extend Memory and Execution Space concept to enable reslience in
application data and computation

47
-

Acknowledgement)

= Robert Clay, Hemanth Kolla, Michael Heroux, David Hollman,
Jackson Mayo, Jeff Miles, Nicole Slattengren, Christian Trott,
Matthew Whitlock (Sandia National Labs)

= Shaohua Duan, Mark Gamell (Ab-Initio LLC), Pradeep Subedi
and Manish Parashar (Rutgers U.)

= George Bosilca, Aurélien Bouteiller and Thomas Herault (U of
Tennessee)

= Seonmyeon Bak, Sri Raj Paul, Akihiro Hayashi, and Vivek
Sarkar (Georgia Tech and Rice U.)

= Hartmut Kaiser and Adrian Serio (Louisiana State U.)

Q&A () i,

49

