

Materials / Nanotechnology

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2019-xxxx PE.

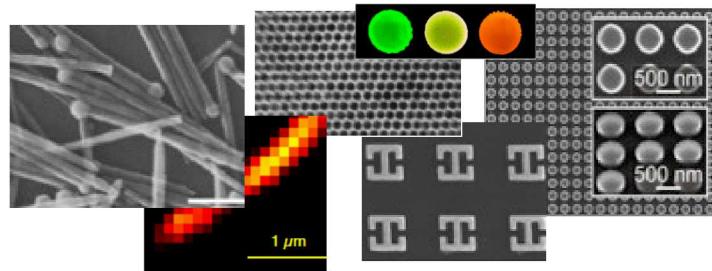
Presented by: Brian Swartzentruber – Manager, CINT

Center for Integrated Nanotechnologies (CINT)

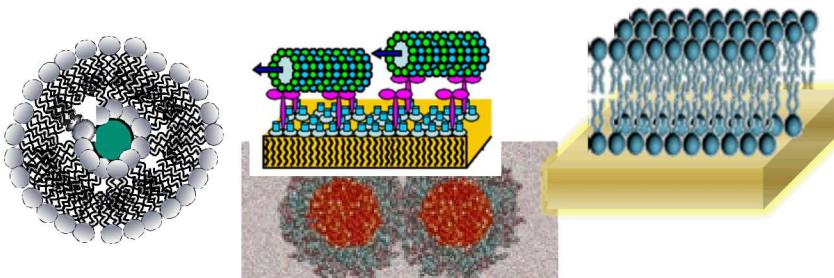
A DOE Office of Science National User Facility for Nanoscience Research

“A DOE/SC user facility has **unique world-class research capabilities and technologies** which are **available broadly to science community** worldwide from universities, industry, private laboratories, and other Federal laboratories for work that will be **published in the open literature.**”

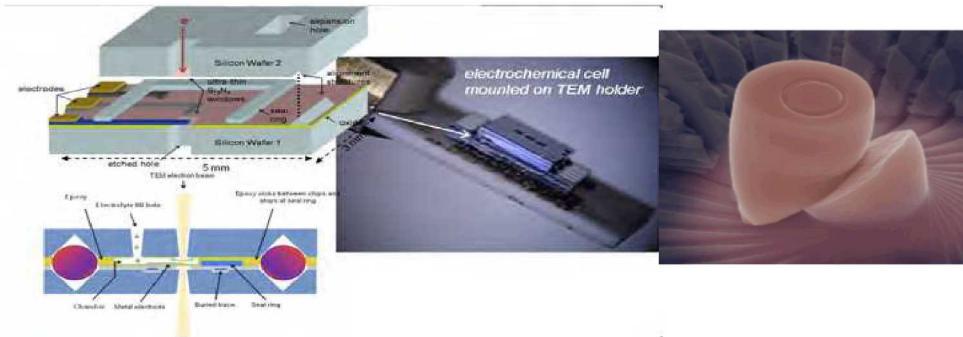
The DOE/SC nanoscience centers are different from traditional user facilities


- Defined by a scientific field, not specific instrumentation.
- NSRC staff support user projects and conduct original research.
- Capabilities involve research expertise, hardware, and software.
- Users access Synthesis, Fabrication, Characterization, and Theory capabilities.

Research: Opportunities for Collaboration – 4 Thrusts


Nanophotonics & Optical Nanomaterials

Synthesis, excitation, and energy transformations of optically active nanomaterials


Soft, Biological, & Composite Nanomaterials

Solution-based nanomaterials synthesis and assembly of soft, composite, and artificial biomimetic nanosystems

In-situ Characterization and Nanomechanics

Developing capabilities to study the dynamic response of materials and nanosystems to mechanical, electrical, or other stimuli

Quantum Materials Systems

Understanding and designing nanomaterials to create new functionalities based on quantum effects that span multiple length scales (from nm to mm)

Research: Opportunities for Collaboration

CINT is a LANL/SNL partnership to create a national resource for nanomaterials integration

CINT Today:

- 4 Science Thrusts, 1 leadership team
- 2 Facilities (total 130,000 sf)
- 51 scientists & technologists
- 32+ post-docs & students
- 500+ users engaged in 200+ projects
- 250+ publications annually
- Peer-reviewed user proposal process
- No-fee for pre-competitive research
- Full cost recovery for proprietary research

Core Facility - SNL

Gateway Facility - LANL

Existing/Recent Collaborations

Project Name	Georgia Tech PI	Sandia PI	Current Engagement Track Used (Academic Alliance LDRD, CINT, Summer Interns, Post-Doc)
Stability of nanoporous metal alloys under elevated temperatures	Antonia Antoniou	Nate Mara	CINT
In situ TEM liquid cell investigation of corrosion in Fe thin films	Joshua Kacher	Khalid Hattar	CINT
Quantitative in situ TEM investigation of grain boundary mediated deformation mechanisms in ultrafine-grained Au thin films	Olivier Pierron	Brad Boyce	CINT
Coherent transport in polymers: Establishing materials design criteria and predicting structure/property interrelations	Carlos Silva	Sergei Tretiak	CINT

6 Previous Collaborations

Delivery of nanomaterials across the blood-brain barrier: Three-dimensional tracking of transcytosis.

Christine Payne

Establishing the yield strength of polycrystalline nanoporous metals

Antonia Antoniou

Graphene based hall sensor for magnetic nano-sensing

Zhigang Jiang

Nonlinear optical properties of cyanine-type organic molecules

Thomas Koerzdoerfer

Structure property relationship of nanoporous metals

Antonia Antoniou

Quantum Dot - Fluorescent Protein FRET Biosensors

Gang Bao

In Situ TEM experiments of electrochemical lithiation and delithiation cycles of 1-D Si-C Nanomaterials

Gleb Yushin

Electrochemically Induced Degradation in Nanostructured Electrodes for Lithium Ion Batteries: In Situ TEM and Multiphysics Modeling

Ting Zhu

Mechanical behavior of hierarchical nanoporous metals

Antonia Antoniou

Utilizing giant-QDs for Highly Efficient Lasing Systems that Exhibit Novel Energy Transfer Phenomena

Vladimir Tsukruk

Evolution of nanoporous metal structure under applied temperature and stress

Antonia Antoniou

Heterogeneous three dimensional nanowire/nanoporous metal composites

Antonia Antoniou

Quantitative in situ TEM investigation of reverse plasticity in ultrafine-grained Au thin films

Olivier Pierron

In situ TEM liquid cell investigation of corrosion in PLD Fe thin films

Joshua Kacher