SANDIA REPORT

SAND2019-14177 Sandia
Printed November 2019 National _
Laboratories

Workshop on Advanced Computing for
Connected and Automated Vehicles

C. Mailhiot

W. M. Severa

C. D. Moen

T. B. Jones (Draper)

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550




Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.
Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-Mail: reports(@osti.gov

Online ordering:  http://www.osti.gov/scitech

Auvailable to the public from
U.S. Department of Commerce
National Technical Information Setrvice
5301 Shawnee Rd
Alexandtia, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@atis.gov

Online order: https://classic.ntis.cov/help/order-methods

JINNSE

National Nuclear Security Administration




ABSTRACT

To safely and reliably operate without a human driver, connected and automated vehicles (CAVs)
require more advanced computing hardware and software solutions than are implemented today in
vehicles that provide driver-assistance features. A workshop was held to discuss advanced
microelectronics and computing approaches that can help meet future energy and computational
requirements for CAVs. Workshop questions were posed as follows: will highly automated vehicles
be viable with conventional computing approaches or will they require a step-change in computing;
what are the energy requirements to support on-board sensing and computing; and what advanced
computing approaches could reduce the energy requirements while meeting their computational
requirements? At present, there is no clear convergence in the computing architecture for highly
automated vehicles. However, workshop participants generally agreed that there is a need to
improve the computing performance per watt by at least 10x to advance the degree of automation.
Participants suggested that DOE and the national laboratories could play a near-term role by
developing benchmarks for determining and comparing CAV computing performance, developing
public data sets to support algorithm and software development, and contributing precompetitive
advancements in energy efficient computing.
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EXECUTIVE SUMMARY

To safely and reliably operate without a human driver, connected and automated vehicles (CAVs)
require more advanced computing hardware and software solutions than are implemented today in
vehicles that provide driver-assistance features. But the energy cost of these advanced solutions
might not meet vehicle size, weight, and power constraints unless computing power consumption
and cooling loads are reduced. The mobility industry is searching for approaches in automotive
architectures, advanced computing, and microelectronics that will meet the technical demands of
highly automated driving in an energy efficient manner.

The Workshop on Advanced Computing for Connected and Automated Vehicles invited
representatives from industry, academia, national laboratories, and the federal government to discuss
connected and automated vehicle (CAV) computing challenges in a precompetitive forum. The main
goal of the workshop was to help identify an early stage research role for the Department of Energy
(DOE) that would propel the development of energy efficient CAVs forward. The workshop
supports the DOE Vehicle Technologies Office’s (VTO) Energy Efficient Mobility Systems
Program vision for an affordable, efficient, safe, and accessible transportation future.

The workshop held cross-disciplinary panel discussions on advanced microelectronics and
computing approaches that can help meet future energy and computational requirements for
connected and automated vehicles. Workshop questions were posed as follows: will highly
automated vehicles be viable with conventional computing approaches or will they require a step-
change in computing; what are the energy requirements to support on-board sensing and
computing; and what advanced computing approaches could reduce the energy requirements while
meeting their computational requirements?

An observation from the workshop was that industry is currently focused on solving the algorithmic
and software problems of perception and inference, setting aside optimization of computing
hardware and power consumption to be addressed later. Participants largely agreed that a “step-
change” in computing technology will be necessary to enable commercially viable highly automated
driving. They agreed that a more energy efficient alternative to current computing approaches may
be required to efficiently process the machine learning algorithmic calculations that CAV's will
perform. Participants suggested that CAV platforms and hardware should remain flexible to
implement evolving algorithms and workloads.

To overcome these computing challenges, a broader dialogue is necessary about long-term research
needs and the role for DOE and its national laboratories. It was suggested that DOE could play a
near-term role in developing benchmarks and standards (in partnership with industry) for
determining and comparing “computing performance” per watt. DOE could develop public data
sets to support algorithm and software development. Analogous to the VTO battery program, DOE
could co-create a roadmap with industry to help drive and quantify precompetitive advancements in
computing performance.



ACRONYMS AND DEFINITIONS

Abbreviation Definition
ADAS advanced driver assistance system
Al artificial intelligence
AV automated vehicle
CAN controller area network
CAV connected and automated vehicle
CMOS complementary metal-oxide semiconductor
CPU central processing unit
DARPA Defense Advanced Research Projects Agency
DOE U.S. Department of Energy
EEMS Energy Efficient Mobility Systems
FPGA field-programmable gate array
GPS global positioning system
GPU graphics processing unit
IMU inertial measurement unit
LIDAR light detection and ranging
MOSFET metal-oxide-semiconductor field-effect transistor
OEM original equipment manufacturer
PC personal computer
SWaP size, weight, and, power
TOPS trillion operations per second
VTO Vehicle Technologies Office
V2X vehicle-to-infrastructure




1. WORKSHOP INTRODUCTION

To safely and reliably operate without a human driver, connected and automated vehicles (CAVs)
require more advanced computing hardware and software solutions than are implemented today in
vehicles that provide driver-assistance features. But the energy cost of these advanced solutions may
negate anticipated system-level mobility efficiency benefits unless computing power consumption
and cooling loads are reduced. More specifically, today’s computing technology might not meet
future size, weight, and power constraints given the limited amount of energy stored on the vehicle.
The mobility industry is searching for approaches in automotive architectures, advanced computing,
and microelectronics that will meet the technical demands of highly automated driving in an energy
efficient manner.

The U.S. Department of Energy’s (IDOE) Vehicles Technologies Office (VTO) held a one-day
workshop on May 7, 2019, in Berkeley, California, focused on advanced microelectronics and
computing approaches that can help meet future energy and computational requirements for
connected and automated vehicles (CAVs). The workshop addressed these questions:

e Will highly automated vehicles be viable with conventional computing approaches or will
they require a step-change in computing?

e What are the energy requirements to support on-board sensing and computing for highly
automated vehicles?

e  What advanced computing approaches could reduce the energy requirements for highly
automated vehicles while meeting their computational requirements?

While the workshop scope was originally intended to address computing challenges for both the
connected and automated trends in vehicles, the discussion throughout the day gravitated towards
the topic of vehicle automation. The computing challenges associated with vehicle connectivity were
not the focus of the workshop participants, and their overall sentiment was that the infrastructure
required to support connectivity would evolve slower than automated vehicle technologies.

We use both automated vehicle (AV) and connected and automated vehicle (CAV) acronyms in this

report. When the discussion involves broader vehicle-to-X communication implications, we use the
term CAV; otherwise, AV is used.



1.1. Workshop Goals

The workshop supports the VIO Energy Efficient Mobility Systems (EEMS) Program’s vision for
an affordable, efficient, safe, and accessible transportation future. The EEMS Program conducts
eatly-stage research and development at the vehicle, traveler, and system levels, creating new
knowledge, tools, and technology solutions that increase mobility energy productivity for individuals
and businesses.

There were two goals for the workshop:

e Identify the highest priority avenues of precompetitive research in energy-efficient sensing
and computing that would augment industry’s current research plans.

e Determine if there is a role for the federal government to advance energy-efficient
computing hardware and software for highly automated vehicle technology.

The workshop brought together experts from industry, national laboratories, and academia in a
precompetitive forum to discuss three topics that would inform the goals:

e Vehicle System Requirements: system sensing and computing architectures in highly
automated vehicles and the power those technologies may consume

e Computing and Algorithms: algorithmic designs and software that, when integrated with
advanced materials and devices, may reduce CAV power demand

e Microelectronics Hardware: advances in microelectronic materials and devices and how their
integration may enable more energy-efficient computing in CAVs.

The program consisted of panel discussions on the three topics as well as keynote presenters from
DOE and the computing industry who provided their observations on the current state of CAV
technology and its trajectory in the short and long term. The panelists were selected to provide a
diverse set of institutional perspectives for each of the three topics. Panelists were given the
opportunity to provide their perspective individually, address pre-selected questions, and enter
dialogue introduced by the audience’s questions. Additionally, workshop organizers invited audience
members to initiate follow-on discussions with the panelists and national laboratory research staff
outside of the workshop.

The 79 registered participants included researchers, executives, and representatives from the
following areas:

e The automotive industry

e The microelectronics industry

e Automated technology subsystem developers

e National laboratories, U.S. DOE, and other federal agencies

o Universities
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1.2. Computing Energy Efficiency -- Background

The evolution of silicon metal-oxide-semiconductor field-effect transistors (MOSFETS) laid the
foundation for the modern information age of digital processing and consumer electronics. The
most important benefit to emerge from that evolution was the improved energy efficiency of
information processing (approximately a 1.4x improvement per year over 40 years) that enabled ever
increasing computing power for the same energy consumption and spatial footprint. Virtually all
information processing occurs in a network and can loosely be divided into two categories: “core”
functions (e.g., high-performance computing on centralized supercomputers or cloud computing in
today’s vast server farms) and “edge” functions (e.g., point-of-sensing or point-of-actuation
interactions with the physical world).

Core information processing has benefitted from energy efficiency improvements. A computing
system’s performance (operations per second) is determined by its ability to scale and densely pack
computational elements. Computing performance is limited, in part, by heat dissipation. Energy
efficiency improvements reduce the amount of heat dissipated, allowing for performance increases.

Energy efficiency is key to information processing in general, but it plays a more influential role at
the edge than at the core. At the edge, information processing is embedded and must function in a
highly constrained physical world. Limits to size, weight, and power (SWaP) can degrade
performance. Cooling and waste heat removal energy loads and system footprint should be
minimized to meet SWaP constraints, so SWaP is determined in large part by energy efficiency

Designers of highly automated vehicles need to develop information processing systems that meet
both SWaP and latency constraints, and the computing demands on these systems are expected to
increase exponentially to petaflop levels in the coming decade. At the same time, the energy
efficiency of computing technology is not expected to increase to meet these power requirements
but will instead plateau because the microelectronics scaling technologies are approaching their
physical and economic limits?. It will be difficult to achieve low-energy processing for decision-
making at the point-of-need in these SWaP-constrained vehicles.

CAV developers must address these energy efficiency challenges to realize the potential of highly
automated mobility. On-board sensors and data processing consume a large portion of the energy
stored on the vehicle for early CAV implementations. For highly automated vehicles to be viable—
with their heightened computing demands—the CAV development field will need to apply low-
energy processing beyond what is achievable with today’s complementary metal-oxide
semiconductor (CMOS) technology. Consequently, energy-efficient computing will be needed for
reducing CAV power demand. It is likely that both novel materials, devices, and computing
architecture innovation will be needed in the future.

2 For more information, see “THE INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS: 2018”, IEEE
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1.3. A Decade of Automated Driving -- Background

Commercial interest in the development of AVs for public use began in 2009, just after the
completion of the Defense Advanced Research Projects Agency (DARPA) Urban Challenge race
event in 2007. As seen in Figure 1.1, Google was an eatly innovator in the field. Google hired the
leadership from the top Urban Challenge teams and quickly began an aggressive program to mature
automated vehicles with testing on public roads.

In the early period from 2009 to 2012, the Google team followed a computing architecture paradigm
that began in the DARPA Challenge: install as much commercially available personal computing
(PC) in the trunk of the vehicle as can be fit within the space available. This approach prioritized
flexibility in software development and algorithmic capability over computing power consumption.
Standard PC processing allowed for straightforward software development on open-source
operating systems (primarily GNU/Linux) using the languages and compilers popular with the
developers.

Waymo
Testing ~ 600 vehicle
fleet in 6 States, Limited
L4 autonomy taxi
service starts

Tesla

First generation Autopilot Hardware Second generation Autopilot

in Model S and X — limited highway Hardware in Model $,3,X — most
driving assistant, lacks strict highway driving, limited local
controls on use roads, slight limits on use

Google

S Moves into fleet testing
MIT/Draper  Google Self & custom sensor and Uber Fatal accident in Arizona and
DARPA Urban Driving Car R&D vehicle design Begins small fleet concerns about performance
Pittsburgh stall efforts
Challenge (2007) Leaders from the winning ops in g
Demonstrated fully DARPA teams are hired 5 " :
autonomous driving into Google, begin SDC OEM's & Suppliers GM, Nissan, Volvo Deploy
under strictly controlled program with lessons Start to consider automated Automated Highway Driving
conditions learned driving as viable for future All limitusage and monitor driver to

vehicles, begin internal R&D.

avoid over-trust by consumers
Public road testing by Delphi

Figure 1.1 Timeline of AV commercial development. Google's early entry into the market showed
other companies a path to maturing the technologies, and today automotive companies are
generally pursuing two parallel technology paths: assisting human drivers in limited driving
conditions (e.g., highway driving) and automated driving with no human intervention.

12



The DARPA race vehicles varied widely in computing power. Some teams completed the race using
little more than a single desktop-class PC (a few hundred watts), while others employed a rack of
servers consuming thousands of watts of power. The large disparity in computing designs mostly
derived from the complexity of the perception algorithms developed at the time. The DARPA races
simplified real world urban traffic down to limited scenarios on a closed course. These controls
allowed a vehicle with a very limited understanding of the wotld to race successfully, but that limited
understanding would not scale to the real world of driving in traffic. Some teams developed
sophisticated methods of processing LIDAR, camera, and radar data to create detailed dynamic
models of the world around the car. These algorithms required far more computational power and
formed the basis for the eatly efforts in automated driving.

Companies like Ford and Delphi, who had both supported their own DARPA race teams, were
some of the first to declare their automated vehicle research efforts publicly. Other automotive
original equipment manufacturers (OEMs) and major suppliers followed, and today several OEMs
and Tier 1 suppliers, together with numerous startups leveraging innovative sensor and computing
processes, are developing highly automated systems for commercial use.

1.3.1.  Advanced driver assistance systems architecture

At the time of the DARPA Challenge, automotive companies had already invested many years on
improving “advanced driver assistance systems” (ADAS) technologies. These include limited
automated driving safety features—such as automatic emergency braking and lane keeping assist
systems—which have proven popular with consumers and profitable for sale in mass-market cars.
The driver has the ability to turn ADAS features on and off and is responsible for maintaining
control of the vehicle at all times, much the same as has been common practice since the
introduction of cruise control. These systems are effective under most highway driving conditions
but are designed for, and require, constant human supervision for safe operation.

An important feature of sensors for ADAS application is that they are self-contained—they process
all their data locally and provide only a reduced information signal to the host vehicle. For example,
a typical ADAS visible light camera is a sensor that can identify people, cars, and street signs with its
on-board software and provides only this “object level” data to the rest of the car. This “distributed”
(or “edge”) model of computing is common in vehicle systems today. While it has critical
disadvantages, it does allow the central computing system to operate at relatively low power, both in
terms of processing and electrical load.

1.3.2. Automated driving system architecture

Unlike the ADAS components, automated vehicle sensing components such as LIDAR, high-
definition electro-optical and infrared cameras, and high-accuracy IMU coupled with a precision
GPS receiver are “dumb”—they typically have very little local computational processing capability.
Instead, their purpose is to stream the “raw” data from the sensor directly to a powerful central
computer. This centralized computing architecture affords a great deal of flexibility in software
development for automated driving. Controlling each level of sensor data processing is important
for many types of machine learning algorithm approaches, and since new machine learning
algorithms are constantly being researched, a centralized processing architecture allows for rapid
updating. Conversely, ADAS type distributed computing is often running “locked down” software
that only the vendor can modify, slowing development progress.

13



The major downside to centralized computing systems in today’s AVs is their high electrical power
needs, which results in more heat dissipation and high integration costs to actively cool the
computer. A representative centralized computer with GPU acceleration for machine learning may
have 1000 times more computing power than its 5-watt, air-cooled ADAS counterpart but also
consumes hundreds of watts of power. This computer requires active liquid cooling to operate in the

high temperature ranges in a typical automotive application and creates more opportunities for
component failures over time.
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2. WORKSHOP OBSERVATIONS AND DISCUSSION

The panel discussions and industry keynote addresses provided an overview of the state of
automated vehicle development and a sense for current industry focus. The panel and audience
participants freely shared the challenges that they find most important. Industry is currently focused
on solving the algorithmic and software problems of perception and inference, setting aside
optimization of computing hardware and power consumption to be addressed later. Participants
largely agreed that a “step-change” in computing technology will be necessary to enable
commercially viable highly automated driving. While participants did not directly discuss computing
and power consumption requirements, they agreed that a more energy efficient alternative to current
computing approaches may be required to efficiently process the machine learning algorithmic
calculations that CAVs will perform. Still, participants suggested that CAV platforms and hardware
should remain flexible to implement evolving algorithms and workloads.

The following analysis of the workshop discussions and findings is offered in three sub-sections.
First, the general themes that evolved in each of the three panel sessions are identified. Second, the
nine general observations that have common threads across the panels are discussed. Third, the
participants suggested several opportunities for the federal government to impact near-term AV
technology.

21. Panel Discussions

Each panel was provided a set of framing questions to prime the discussion, though panelists were
free to introduce any information they felt was relative to the overall workshop goals. The audience
provided additional content for thought through the question and answer periods.

The Vehicle System Requirements panelists represented automated driving system developers. The
framing questions to the panelists were:

* Thinking about achieving highly automated vehicles—on any road, any weather, with no
driver—does your team feel constrained by available mobile computing today to achieve that
goal? And are those constraints SWaP or are they more computational?

* In developing self-driving computing architecture, what does your team see as the right
balance between “edge” computing power—typically done right at a sensor head—and
centralized computing?

* If you are able to share, how much energy does your self-driving system use today
and how much computing power does it have?

The themes that emerged in the Vehicle System Requirements discussion were safety and reliability,
algorithmic approaches, and computing architecture and integration. Several key technology paths in
AV development are still being explored. Many computing architectures are in use with many
combinations of perceptual and decision-making algorithmic designs. Today these groups are
making continuous progress towards automated driving with the technology available. Due to the
tightly coupled nature of computing and algorithm design, it is not yet clear what approach, or
approaches, will ultimately be the most successful, but all groups agree on the goal of improving the
safety and convenience of mobility.

15



A significant insight from the panelists was the high variability in their own perceived needs for
advanced AV computing architectures. In general, AV developers are able to continually improve
system performance with the computing they have today. Panelists acknowledged, however, that the
limitations of today’s architectures will eventually impede them from making their highly automated
systems production ready, and that they would capitalize on more powerful computing systems if
such were available. Currently, AV developers are struggling with challenges related to corner-cases
(responding to rare situations and events) in perceptual reasoning and driving logic and are less
concerned with the absolute power efficiency of the computing solution.

The Computing and Algorithms panelists represented industries and academics that develop
algorithm and software design approaches with today’s computing architectures. The framing
questions to the panelists were:

* Are current algorithms sufficient for highly automated driving, or do you expect
revolutionary algorithm improvements to be necessary?

* What is the state of real-time, adaptive algorithms?

*  What are the opportunities for co-design and heterogeneous integration?

*  What would form a pathway towards improving trust in Al systems?

*  What are the implications of deep machine learning and Al on computing and sensing?

* How can hardware (computing or sensing) impact or limit algorithm development?

The panelists examined the impact of computing and sensing hardware on algorithm
implementation, and vice versa. They also discussed how automated driving systems currently
implement machine learning and how artificial intelligence (AI) might evolve to assist with AV
development. It can be particularly challenging to forecast what algorithmic innovations will emerge
for AV perception and decision-making, however participants put forth ideas to that end.

It is worth noting that although the issues of cybersecurity and trust in CAV systems do not seem to
implicate the workshop’s energy efficiency focus, participants raised those issues. Specifically, there
was clear agreement that CAV systems must be developed with integrated cybersecurity and trust,
but there was no consensus on the approach to ensure these qualities. This topic may be well served
by further discussion in a separate forum dedicated to cybersecurity in CAVs.

The Microelectronics Hardware panelists represented industries that develop computing and
information systems. The framing questions to the panelists were:

*  What performance improvements based on CMOS technology is the semiconductor
industry targeting for CAVs? What is the timeline to achieve these improvements?

*  What disruptive and non-conventional computing and sensing technologies are needed to
meet future requirements for highly automated vehicles?

* How should the key performance index be defined for future microelectronics and hardware
for CAVs: TOPS/watt or other measures?

¢ What is the performance/power target required for the widespread adoption of CAVs?

16



At present, there is no clear convergence in the computing architecture for highly automated
vehicles. What is currently unclear among AV developers is whether distributed edge computing or
central core computing will be the right path towards the low-energy solution. However, workshop
participants generally agreed that there is a need to improve the computing performance per watt by
at least 10x to advance the degree of automation. The field lacks consensus on what metrics should
be used for the computing power performance, and what new benchmarks should be used for
measuring the performance.

Three additional research themes emerged. A particularly promising area for optimizing energy
efficiency is in the early stages of data processing to enhance cognition at the point of sensing to
reduce computing demands on a centralized vehicle computing system. In the area of algorithm
development, AV developers can forge a better understanding of the difference between
reinforcement learning and conventional control theory, which should foster a better understanding
of how decision boundaries form. There is also a need for improved software stack maturity to
enable testing and benchmarking of new algorithms and hardware technologies.

2.2, General Workshop Observations

While each of three panels was focused on a different part of the CAV computing energy efficiency
question, there were nine observations that emerged across the panel and audience discussions.
None of the observations directly address computing energy efficiency, rather they reflect the near-
term issues of most importance to the workshop participants.

2.2.1.  Safety is the highest priority for AV developers

A major motivator for AV development is the potential reduction of injury and deaths on our roads.
In the United States each year, almost 40,000 people die in vehicle crashes and millions more are
injured. While these losses are tragic and large, it is important to put them in the context of how
much humans drive each year. Around 288 million drivers in the U.S. accumulate over 3 trillion
miles of driving each year in diverse environmental and road conditions, translating to one fatal
accident every 85 million miles driven. AV designers are searching for new approaches to verify
safety of their vehicles with a relatively small amount of experiential data. By comparison, the entire
Waymo fleet—a leader in on-road testing—has only just passed a total of 10 million miles over the
past 10 years in relatively uniform driving conditions.

Participants acknowledged that even the best machine learning systems today still cannot recognize
objects and understand their semantic context well enough to reliably allow for the removal humans
from driving. These methods are constantly improving, but it is an open question as to when the gap
between human and machine perception will close. Moreover, it is an open question as to how
systems will identify the failure to recognize objects and safely compensate for them.

2.2.2. Even today’s most advanced machine-learning systems cannot always
recognize objects and understand their semantic context

During the time of the DARPA races, techniques for processing sensor data into perceptual
understanding were primarily based on heuristics and modeling algorithms that required the
developers to explicitly encode how to interpret the incoming data. These techniques were time
consuming to develop and often not nimble to changing situations. But the past 10 years have seen
the rapid advance of machine learning-based sensor processing algorithms. Now most (if not all) AV
projects use machine learning at least for perceptual reasoning and some are even experimenting
with these methods to make path-planning and driving decisions.
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Machine learning algorithms are the focus of many industry computing development efforts. There
are two main phases to machine learning: training and inference. During the training phase, the
algorithms feed on thousands (or even millions) of example data sets that are “labeled” with truth
information (e.g. images of pedestrians in different settings and activities). This training phase is
primarily performed “in the cloud” as it requires massive data-center-scale computational resources
to perform and optimizing the results requires several steps. Once the machine learning “neural
network™ has been trained, that code can be loaded onto a much smaller computing system to
perform the task of “inference”—pedestrian recognition, for example—in real time.

Machine learning algorithms today are approaching human-level accuracy in certain tests for
recognizing many types of objects, but failures of these algorithms do occur, and in the context of
AVs, an algorithmic failure can be fatal. Failures in machine learning are currently difficult if not
impossible to diagnose; the parameters of a neural network were not designed by a person, but
rather they “evolved” in a sense based on their training. Humans cannot yet be safely removed from
all driving tasks and totally new algorithmic approaches may be required. Advancements in
explainable machine learning and Al would be beneficial.

2.2.3. It’s a software problem, first

Panelists emphasized that the algorithms for AV applications are still in development and that it is
difficult to forecast which ones will be implemented for highly automated driving. As such, having
excessive focus on computing operations per watt, or on hardware acceleration of a particular
algorithm unnecessarily, will mislead developers on which factors are actually helping or harming
AV computing performance and efficiency. Developers should resist the temptation to begin
developing specialized computing hardware according to current algorithms until it is proven those
algorithms provide a sufficient level of safe and reliable automation. Optimizing computing
hardware and power consumption is a problem that industry has largely been setting aside to address
later.

2.2.4. Designing automated vehicles is a “whole system” challenge

While it is difficult for any individual organization to achieve vertical integration in the multilayered
problem of AV energy efficiency, it was offered that good solutions will need to take a “whole
system” approach. No single improvement is by itself sufficient to enable highly automated vehicles.
The development field will need to consider the web of interdependencies connecting computers
and sensors, individual vehicles and collections of vehicles, inference (on-board) and training
(offline). In the domain of algorithms, there is necessary interplay among at least five tiers: recorded
data, simulated data, integrated algorithms and sensing, high-speed training, and low-power
inference.

18



2.2.5. A “step-change” in computing technology will be necessary to enable
highly automated driving

There was clear agreement that AVs will require significant computing improvements via a step-
change—both in on-board and data center operations. One estimate provided that a Level 5° CAV
would consume approximately 300-500 trillion operations per second (TOPS) for computing. GPU-
based systems are not expected to achieve this performance level within reasonable power
constraints of on-board energy storage. Panelists viewed step-change as necessary for long-term
computing solutions, but platforms must be flexible to changing algorithms.

Today, the AV industry is leveraging specialized computing to accelerate the execution of machine
learning training and inference. Perhaps the most popular system today is based on GPU chips.
These chips are capable of executing the large-scale matrix calculations that are required by machine
learning algorithms far more quickly than a general-purpose CPU. However, these chips are higher
cost than other processor types and still consume a significant fraction of energy stored on the
vehicle.

The selection of the computing architecture is also tightly coupled with the networking
infrastructure in the vehicle. For limited production highly automated vehicles, the sensors are
interconnected via high bandwidth networks—commonly Gigabit Ethernet. This network allows the
high-performance centralized computing approach to be viable because it enables the ingestion of
raw data from each sensor. The automotive industry, however, has been hesitant to move away from
the reliable and very cheap Controller Area Network (CAN) serial bus network. The very limited
bandwidth in a CAN bus is only compatible with a very distributed computing architecture, where
each sensor node performs almost all of its functions independently. For a truly mass-market AV,
the cost of every component is scrutinized, and new low-cost, high-speed networking solutions may
ultimately be required.

2.2.6. Computing advances within the datacenter will be required

A suggestion from the workshop was that the machine learning neural network models will need to
be updated regularly as low-probability events are encountered. However, this will become
prohibitive because increasingly large, power-hungry datacenter-scale systems are required for this
training operation. Hence, energy-efficient computing advances within the datacenter (not just on-
board) will be required as well.

2.2.7. Radar sensors are relatively underutilized

There is no “ideal” sensor for automated driving. The number and diversity of sensors is a choice
made by an OEM based on risk and cost. OEMs integrate multiple types of sensors partly to
minimize common-mode failures. Today, AV perception systems rely heavily on LIDAR and
camera sensors, but LIDAR solutions have severe limitations in certain lighting and moisture
environments. Several participants noted that radar was relatively underutilized, and compared to the
investment in LIDAR startups, radar startups currently receive very limited investment. Workshop
participants generally agreed, however, that fusing multiple modalities together—radar, LIDAR, and
cameras—is the best overall solution to make the safest and best performing perception systems.

3 SAE J3016 “Levels of Dtiving Automation”
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2.2.8. The optimal sensor suite will balance resolution, power, redundancy,
reliability, and cost

Even though there is no general consensus on the best low-energy approach to advance AV
computing, it is widely believed that it is essential to optimize every step of the information lifecycle,
from acquiring the data, to aggregating the data, analyzing the data, providing the insight, and acting
on the information.

Participants suggested that current imaging sensor systems are inadequate for highly automated
vehicles, particularly in adverse weather conditions such as fog and snow. An opportunity for
improving this area, however, may lie in better models of light propagation/scattering and image
distortion, combined with machine learning to correct the image.

Participants agreed that an optimal sensor suite would balance resolution, power, redundancy,
reliability, and cost. Multi-modality sensors, radar beamforming, thermal imaging, radio frequency
lensing and imaging, long-range camera, and novel optical field sensing are among the areas that
would benefit from research investment.

Eatly processing and data fusion of the sensor data using neuromorphic non-Von-Neuman
computing (analog rather than digital) is another research area that deserves substantial attention.
The colocation of sensor material, computing memory, and logic can reduce the energy cost
associated with moving data.

2.2.9. Early CAV deployments will rely on limited external perception data

Connectivity is an area that was largely dismissed by many AV developers in attendance. The
standard example of this is the use of vehicle-to-everything (V2X) infrastructure and mobile radios
and newer concepts use available cellular networks and radios. Developers are not confident that the
time and investment will be put forth to develop next-generation infrastructure to support V2X
communication for CAVs. Still, it was proposed that connectivity should be included as a system
level consideration for the power argument and that any data from an external network would be
used when available.

U.S. roadways and other infrastructure already require significant investment to maintain their
current state. Participants found it improbable that local governments and other entities would bear
the cost of V2X-enabled infrastructure in the near term. As the availability and reliability of the
network and the data remain too much of an unknown factor, every AV must operate without it
safely, participants agreed. A partial exception to this, however, are the “high definition” digital
maps that most AV systems require for operation. These maps provide road geometry, speed limits,
and even navigation features to assist AV operation and are typically updated over a network
connection to the vehicle. These maps cannot be assumed to be 100% accurate, so the vehicle must
still be able to recognize the current roadway and special cases in real time, such as construction
zones or police officers modifying traffic flow.
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2.3. Roles for the federal government suggested by participants

Four suggestions for how the federal government could help develop advanced computing
technology were offered by the participants. The suggestions are largely focused on the near-term
needs of the industry. Additionally, advanced modeling and simulation technologies could play a key
role in any of the four ideas.

2.3.1.  Actas a third party to help establish reliable benchmarks and standards

A recurring theme was how to compare computing options, as the widely used metric of trillion
operations per second/watt (TOPS/watt) was not well suited to compate across processor types or
system configurations. The TOPS metric computed for a GPU (for example) cannot be easily
compared to the TOPS value for an FPGA or a general-purpose CPU since the metric only captures
the performance in one scenario of one function. For example, the TOPS/watt figures that
manufacturers often cite fail to account for data movement in an application; they tend to generate
the TOPS/watt using aggtressive batch settings—a condition that may be unrealistic for AVs.

The point was also raised, that the field needs to recognize the costs associated with communication.
Communication external to CAVs, across a CAV, and within a computing platform are all critical
components poorly represented by metrics today.

The participants see DOE as a trusted facilitator of diverse technology contributors. By convening
stakeholders to develop effective metrics and common benchmarking (for both hardware and
algorithms), DOE can support and extend the development of necessary, enabling CAV
technologies. The field’s current lack of uniform metrics and benchmarking hinders the ability of
system developers to make confident purchasing and development decisions in CAV technologies.
Industry has a vested interest in commercially compelling products today, and DOE leadership can
motivate long-term, high-impact technologies and help establish uniform standards across the field.

2.3.2. Co-create an energy-efficient computing roadmap with industry

Participants suggested a DOE contribution could be coordinating the development of computing
efficiency targets and a timeline to achieve these targets in partnership with OEMs, computer
platform developers, and sensor developers. Similar approaches have been valuable to the DOE
solar energy initiative and the automotive battery program.

2.3.3. Develop robust public datasets

While some public datasets for AVs exist (e.g., Berkeley DeepDrive dataset), participants suggested
that DOE could play a strong leadership role in developing the datasets to which AVs can be tested.
These data sets would comprise sensor signals over a broad range of driving locations and
environmental conditions. Currently, industry is not inclined to share its collected data as it
represents a competitive advantage in this data-driven field. By supporting or funding public
datasets, DOE could enable high-risk innovation from an expanded pool of research and
development partners. This recommendation aligns strongly with industry’s priority on safety.
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2.3.4. Develop the knowledge and tools to advance technology readiness

Participants suggested that DOE could serve to reduce technology development risk under a single
early stage research umbrella. The world of AV development, generally speaking, has long been
vigorously supported by private investment and largely focused on near-term products. But there are
viable technologies that are currently lacking attention from the private sector because they might
not hold immediate incentives or appeal for the private sector because of their immature technology
readiness level despite their potential impact on energy efficiency. Federal research investments
would be beneficial in areas that are not currently being widely developed for AV applications,
which include but are not limited to, advanced low-energy sensors, radar systems, and early-stage
data fusion.

The low-energy electronics challenge is complex enough that the research community recommends
a co-design approach; an approach discussed at a recent DOE Office of Science workshop is
illustrated in Figure 2.1. The multiscale co-design framework refers to an approach that ultimately
enables both top-down coupling of application and architectural requirements to circuits and
devices, as well as bottom-up coupling of materials and device physics constraints to algorithms and
architectures. The co-design framework can eventually serve as the basis to deploy powerful
optimization and sensitivity analysis codes to evaluate design tradeoffs across many levels of
information processing and provide a means to quantify potential gains and measure progress.
Portions of a co-design framework exist in today’s industrial toolkit, but they are narrowly focused
on the current silicon CMOS technology stack.

Algorithms and programming paradigms
System architecture design and modeling
Interconnects and component integration

Devices and circuits

Physics of logic, memory, and transport

Fundamental materials science and chemistry

Figure 2.1 Co-design involves multi-disciplinary collaboration that considers the
interdependencies among materials discovery, device physics, architectures, and the software
stack for developing information processing systems of the future. (Figure reproduced from DOE
Office of Science “Basic Research Needs for Microelectronics” workshop summary, Oct. 2018)
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3. SUMMARY

Industry is currently focused on solving the algorithmic and software problems of perception and
inference, setting aside optimization of computing hardware and power consumption for later.
Participants largely agreed that a “step-change” in computing technology will be necessary to enable
commercially viable highly automated driving. While participants did not directly discuss computing
and power consumption requirements, they agreed that a more energy efficient alternative to current
computing approaches may be required to efficiently process the machine learning algorithmic
calculations that CAVs will perform. Participants suggested that CAV platforms and hardware
should remain flexible to implement evolving algorithms and workloads.

At present, there is no clear convergence in the computing architecture for highly automated
vehicles. What is currently unclear among AV developers is whether distributed edge computing or
central core computing will be the right path towards the low-energy solution. However, workshop
participants generally agreed that there is a need to improve the computing performance per watt by
at least 10x to advance the degree of automation.

The computing challenges associated with vehicle connectivity were not discussed much by
workshop participants and their overall sentiment was that the infrastructure required to support
connectivity would evolve slower than automated vehicle technologies.

Although the issues of cybersecurity and trust in CAV systems do not seem to implicate the
workshop’s energy efficiency focus, participants raised those issues. Specifically, there was clear
agreement that CAV systems must be developed with integrated cybersecurity and trust, but there
was no consensus on the approach to ensure these qualities. This topic may be well served by
further discussion in a separate forum dedicated to cybersecurity in CAVs.

There is no “ideal” sensor for automated driving. The number and diversity of sensors is a choice
made by an OEM based on risk and cost. OEMs integrate multiple types of sensors partly to
minimize common-mode failures. Today, AV perception systems rely heavily on LIDAR and
camera sensors, but LIDAR solutions have severe limitations in certain lighting and moisture
environments. Several participants noted that radar was relatively underutilized, and compared to the
investment in LIDAR startups, radar startups currently receive very limited investment. Workshop
participants generally agreed, however, that fusing multiple modalities together—radar, LIDAR, and
cameras—is the best overall solution for safety and perception.

Workshop participants recommended four ways a federal agency like DOE could help advance
computing technology for CAVs. In the near term, the DOE could support development of
benchmarks and standards (in partnership with industry) for determining and comparing
“computing performance”/watt. The DOE could develop public data sets to support algorithm and
software development. Analogous to the VTO battery program, the DOE could co-create a
roadmap with industry to help drive and quantify precompetitive advancements in computing
performance. To overcome computing challenges for highly automated vehicles, a broader dialogue
is necessary about long-term research needs and the role for DOE and its national laboratories. The
DOE could reduce risk by advancing the readiness of unproven computing and sensing
technologies given their potential impact on energy efficiency.
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APPENDIX A. AGENDA OUTLINE

8:00 — 9:00 Registration

9:00 — 9:15 Welcome, DOE Vehicle Technologies Office
9:15-10:00 Keynote: DOE Perspective

10:00 — 10:45 Keynote: Industry Perspective

10:45 - 11:00 Break

11:00 — 12:45 Vehicle System Requirements Panel
12:45 — 1:45 Lunch Break

1:45 — 2:30 Keynote: Industry Perspective

2:30 — 4:00 Computing and Algorithms Panel

4:00 — 4:15 Break

4:15 — 5:45 Microelectronics Hardware Panel

5:45 — 6:00 Observations and Close-out Discussion
6:00 Adjourn
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