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2 1 Roberts research efforts

Multi-physics, multi-scale applied modeling & simulation

° Lead teams comprised of 14 PhD staff members, 3 post-docs,
2 graduate students, and numerous summer interns

$3.4M in FY19 research funding
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3 Motivation

Manufacturing Battery Performance

www.targray.com
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Coupled multi-physics effects at the mesoscale connect component manufacturing to performance
11/5/2018



4 I Outline

Computational representation of

electrode mesostructures

Electrochemical-mechanical

discharge simulations
11/5/2018

Representation and role of

conductive binder morphology

Thermal protection systems

Discrete element method

mesostructure generation

Future directions in

credible image-based simulation



Computational representation
of electrode mesostructures

11/5/2018



6 Imaging of cathode mesostructures

LCO with binder from FIB/SEM,

35 nm resolution,

20 pm domain.

Hutzenlaub (2012)

NMC from XRCT,

370 nm resolution,

757 pm domain.

Ebner (2013)

LCO from XRCT,

64 nm resolution,

22 pm domain.

Yan (2012)

Imaging reveals complex networks; binder can be difficult to detect at scale
11/5/2018



7 1 Mesoscale geometry from CT data using CDFEM

-M-

Detailed 3D reconstruction and image processing necessary to get usable mesostructure data
11/5/2018 Roberts JES (2014), Roberts JEECS (2016), Roberts JCP (2018)



8 1 Solution verification for
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Solution verification establishes simulation correctness and domain/mesh size requirements
11/5/2018 Roberts JCP (2018)



Representation and role of
conductive binder morphology
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10 I What about the conductive binder?

Resolving conductive binder in 3D imaging difficult
Binder often neglected, assuming non-active void space
is electrolyte

0 Limited imaging results can hint at binder location

Amorphous binder is significantly nanoporous

47% Zielke (2015); 45% Grillet (2016)

5% ionic conductivity of pure electrolyte

Graphite; Jaiser et al. (2017) LCO; Komini Babu et al (2015)
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11 I Binder bridge morphology approach
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12 1 Effect of including binder on effective properties
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13 I Effective electrode property calculations

Calculate effective transport properties for upscaling
o Particle specific surface area

O Electrical conductivity

o Tortuosity

NMC image data from Kbner (2013)
O 90, 92, 94, 96 wt% NMC (remainder 1:1 CB:PVDF)

O 0, 300, 600 & 2000 bar calendering

O 100Ium x 100 larn x 60 lam domain (20 realizations eac

O Binder bridge (porous) morphology approach

75

0_87

_8125

7

OA375

.37

03125

0_1 75

Effective properties are an important first step for upscaling mesoscale data
11/5/2018 Trembacki, in preparation



14 I Effective electrode property calculation results —Transport

7
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11/5/2018 Trernbacki, in preparation



1 5 What about other morphologies and numerical methods?
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• Unrefined results 10x different

Care must be taken when comparing results generated using different numerical methods; likely not converged!
11/5/2018 Trembacki JES (2018)



16 I Porous binder and morphology considerations
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Limiting cases of both morphology methods show similar (but not identical) behavior; nanoporosity is important!
11/5/2018 Trernbacki JES (2018)



Discrete Element Method
Mesostructure Generation

11/5/2018



18 I Challenges with using CT mesoscale data

3D CT image data:
O Expensive

o Time consuming

• Conductive binder not visible

pendular 4144-
ring

LCO; Zielke et al (2015)

Graphite; Jaiser et al. (2017)

■IIP 11111% ■111P

rir et _ 41 as • -

25 nm

Hypothesis: Use DEN= simulations to create AM+CBD mesostructures and CDFEM for physics predictions
11/5/2018 TrembackiJES (2018)



19 I Discrete Element Method (DEM) mesostructure

• fixed
dimension

• periodic
boundary

initial microstructure

porosity: 90%
height: 525 um

• width: 100 um

fixed
dimension

• periodic
boundary

uniaxial compression

• periodic boundary

compression
(drying)

94% AM electrode
• —1k AM particles (10

lum)
• —1M CBD coarse

grained particles (0.5 µm)

compression

(calendering

•

.

.

intermediate 

microstructure

porosity: 50%
height: 100 um

width: 100 um

compressed

microstructure

porosity: 20%

height: 66 um

width: 100 um

Uniaxial compression with granular and Brownian forces enable study of AM consolidation and CBD aggregation
11/5/2018



20 I Role of cohesion in CBD morfology
2f1fIK

increased CBD diffusion results in a more uniform coating around AM particles

 ►

governing parameter

eYea
2

kT j

increased string-like fractal

microstructure of CBD particles
resulting in non-uniform coating

around AM particles. CBD

phase behaves like a sticky
fluid

Cohesive surface energy drastically alters CBD morphology
11/5/2018
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22 I Comparison of image- and DEM-based mesostructures
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Calendaring 4 lower porosity 4 more CBD connectivity 4 higher conductivity and tortuosity
11/5/2018



Electrochemical-mechanical
discharge simulations of NMC
half-cells

11/5/2018



24 Coupled electrochemical-mechanical half-cell discharge simulations

Particle Interface:
• Butler-Volmer reaction

• OCV from Smekens (2015)

Particles:

• Species — Li ti

• Chemica

• Stress pc

• Electrical — O

• Mechanics - F
• Li-induc(

Current collector: I(t)

Separator: V1 = 0

Mathematical formulation builds off of Mendoza (2016) LCO studies

•

Electrolyte:
• Species — Li' transport

• Nernst-Planck fluxes

• Electroneutrality for PF6-
• Current conservation

Conductive binder:

• Species — Porous Li+ transport

• Electrical

• Solid: Porous Ohm's law

• Strain-dependent

electrical conductivity
• Liquid: Ionic conservation

& electroneutrality

• Mechanics — Elastic

Predictions of discharge curves, effects of mechanics, rate effects, and spatial variations in performance
11/5/2018 Ferraro, in preparation



25 Demonstration of NMC half-cell discharge simulation at C/2
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oupled electrochemical-meTanical simulation yields detailed insight, predicts electrode-scale response
11/5/2018 Ferraro, in preparation



26 What can you learn from coupled half-cell simulations? LCO
General SOC = 0.3500 Ideal
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Details at the mesoscale influence cell performance ... and vice versa!
11/5/2018 Mendoza (2016)



Mesoscale modeling of TPS
materials: Effective property
calculations and sensitivity analysis

11/5/2018



28 I TPS materials are hierarchical, multi-scale composites

Macroscale

Typical performance assessments

and modeling.

Composite properties required.

Mesoscale

Woven fiber surrounded by
phenolic resin. Governed by

weave geometry, resin/tow

properties.

Microscale

Individual fiber filaments spun

into yarns, impregnated with

resin. Fiber arrangement affects

tow properties.

TPS performance governed at the mesoscale and microscale, modeling those scales gives flexibility to CMA e
11/5/2018



29 I Bulk properties

Constituents

Fiber properties

I Anisotropy

!

Resin properties
.1

Filler properties

o Size distribution

i o % mass

Void space

o % vol.

11/5/2018

depend on constituents

Microscale

Yarn model

o Filament packing

o Filament count

o Twist

o Shape/length

Matrix model

o Effective medium

o Bruggeman etc.

o Void/filler shape/size

Mesoscale

Fabric geometry

o Yarn Count

o Thickness

o Gaps in fabric

o "Waviness"

' Yarn properties

Matrix properties

RVE Model
+

FEM Model

I

I
Macroscale

Composite

Effective

Properties

Properties

o K

o Cp

o e
O h, G

o P

O CTI1

•

I
1
I



30 Trends in thermal conductivity and distributions

Proportional mixture rule (axial, upper bound):

E*
V

vf Ef + (1 — v f)E,

Inverse mixture rule (transverse, lower bound):
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Effect medium approximations are applicable only in certain situations
11/5/2018



31 • Ablation is a transient process
Mesoscale is not static during ablation
- Surfaces recede

o Phases evolve (resin4 char)

o Phases melt

Phases deposit (coking)

Evolving geometries are necessary

Analytic
background

• System of sinusoid
fabric descriptions

Moving resin
interface • Transient level set

Macroscopic illustration

"--3111"

Cis)

-) 2 CO

Non•yiscous

l flow

I

6000 K

' 
3 C,H,

Heat

1+3Fla

CG,Ho+ HA)

coking rft

, Phenolic polymer

Boundary

layer

3000 K

Ablation
zone

' = 1400 K

'Chemistry mechanisms
(simplified illustration)

Coking
zone

si 1200 l(

Microscopic illustration

Gas/surface
interactions in porous
fibrous media (3):

- in-depth ablation

- erosion

- in-depth
recombination

- coupled heat

t ransport (diffusion,
convection, radiation)

acanmnigcm.tutm
Microscopy (SEM) :
Carbon preform

Pyr 
, 3D simulation of the ablation of a

carbon/phenolic composite [Lachaud, 2010]
zone

400 K

Virgin
material

SEM: carbon/phenolic
(virgin) Istackpoole, 20081

3D reconstitution of a
carbon/phenolic composite

(Lachaud, 2014)

Dynamic geometry is necessary to model ablation
11/5/2018



32 I Transient thermochemical-mechanical demonstration

• •
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Coupled thermal and mechanical effects can identify failure mechanisms
11/5/2018



Credible Automated Meshing
of Images

11/5/2018



34 Problem statement

Desire to perform FEM simulations
directly from 3D tomographic imaging

Enables "digital-twins"

Recent state-of-the-art processes are:

• Manual, SME-dependent

Time-consuming

• Unknown credibility

(-) Don't capture all geometric features
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Automated, credible CT-to-mesh would revolutionize engineering analysis workflows!
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35 Project overview

Hypothesis: We can develop an automated and credible image-to-mesh technology that can
demonstrate the physics impact of per-unit variability on
material, component, or system performance

Objective: We seek to develop a methodology for
automatically, efficiently, and reproducibly creating
conformal finite element meshes from 3D tomography
with quantified uncertainty.

Research thrusts — primary science questions:

• Deep machine learning algorithms (ML)

• Automatic conformal tetrahedral mesh creation (ATM)

• Uncertainty quantification and propagation (UQ)

• Application exemplar: Thermal protection system materials (TPS)

11/5/2018

Uncertainty quantification and propagation

Deep learning algorithms

• Image segmentation

• Part identification

Automatic tetrahedral meshing

• Conformal interfaces

• Feature-governed mesh resolution

Physics solve

• Finite element method predictions

• Exemplar: TPS material mesostructures
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3 6 I Early demonstration of DL and UQ on graphite electrodes

DL trained with human labels to segment
with > 99.9% accuracy

Developing methodology to continuously assess
per-voxel confidence in assessment and propagate
through mesh

Upcoming challenges:

Instance segmentation (particle labeling)

Feature identification (edges / corners)

Part orientation

Mesh quality

0 Verification of uncertainties (ground truth)

A

r Cr

Deep learning shows huge promise in increasing throughput, repeatability, and credibility
11/5/2018



37 I Large deformation multi-physics formulation

Concept:
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Demonstrated two-way coupling between mechanics and transport codes; developing robust particle contact
11/5/2018 Brunini, unpublished



38 I Summary

We have developed a unique image-to-mesh capability to enable rapid analysis of as-
manufactured parts

We have carefully verified this approach, identifying potential pitfalls and domain/mesh
requirements

We have applied this technique to lithium-ion battery cathode mesostructures and have:

o Created and characterized the impact of conductive binder morphology

. Calculated and correlated effective properties

. Predicted coupled electrochemical-mechanicals effects during charge/discharge

We are developing particle simulations to carefully manufacture realistic mesostructures

We are applying these techniques to woven composites for thermal protection systems

We are beginning to improve the credibility, reproducibility, and time required to create high-
quality meshed from 3D image data

11/5/2018
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