
MANAGING MAGNESIUM ELECTROLYTE/ELECTRODE
INTERACTIONS AND REACTIONS
Connecting solvation and interlaces for high voltage Mg electrolytes
Nathan Hahn,1 Trevor Seguin,2 Vijay Muruganesan,3 Nidhi Rajput,2 Jinghua Guo,2
Kristin Persson,2 Kevin Zavadill
Sandia National Laboratories, 2Lawrence Berkeley National Laboratory, 3Pacific Northwest National Laboratory

-**fr

rrrrrrr 
11"1

BERKELEY LAB
Pacific Northwest

NATIONAL LABORATORY

HIGH VOLTAGE DIVALENT BATTERIES
• High voltage Mg batteries offer significant potential for energy storage

applications.

• Fundamental understanding concerning the roles of solvation and interface
environments is critical for driving key advancements in divalent electrolyte
desi n.

• Electrochemical stability is a critical electrolyte property supporting high
efficiency metal plating and high voltage cathode insertion.
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• What species are susceptible at potential
extremes?

• What interphases are formed through
electrochemical reaction?

• How can we rationally design new
electrolytes or interphases?

ANION STABILIZATION AT CATHODE INTERFACES1
• Oxidative stability/behavior of Mg(HCB11H11)2 electrolytes is not well understood

• Previous claims of extreme anion stability masked by unique C611 1-112- film
protection process
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• Integrated computational/experimental approach promises route to expansion of
anion stability

• Synthesis and electrochemical testing validates the predicted stability gain
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CONCLUSIONS
• Functionalization is a viable strategy for tuning

electrolyte stability and transport properties.

• Facile carborane anion oxidation could offer a
route to protective solid electrolyte interphases by
tuning film structure and composition.

• Displacement of TFSI from either Mg2+
coordination or from the electrode interface
decreases parasitic cathodic reaction.

• Mg-CI coordination structure varies dramatically
with ether - the key to zero parasitic charge is
creation of the µ3-CI face-shared dimer.
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SOLVENT LINKS COORDINATION TO EFFICIENCY2
• Theory points to TFSI:Mg2+ CIPs as precursors for TFSI decomposition.3

• Cyclic ethers allow significant TFSI:Mg2+ interactions whereas glymes do not.

• Solvent regulation of these interactions is critical to facilitate high coulombic
efficiency for Mg deposition.

Raman: Solvent controls CIP
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REGULATION OF MA NESIUM SPECIATION2
• Cationic chloride clusters in mixed salt systems (MgC12:MgTFSI2) are dictated by

solvent structure: longer glymes favor monomeric species
Favored Mg-CI sharing: THF > G1 > G2
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Face-shared dimers (p3-CI) energetically favored only in THF

MgCl•THF+ + MgC12•THF -> Mg2C13•THF+ (p,3)

MgCl.G1+ + MgCl2•G1 --> Mg2CI3.G1+ (µ,3)

MgCl.G2+ + MgCl2•G2 -> Mg2Cl3.G2+ (1-1,2)
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• Interfacial spectroscopy bridges the gap between bulk speciation and metal
deposition efficiency
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NEXT STEPS
• Design and characterization of boron cluster anion

derived surface films to establish Mg2+
transmission while sparing solvent oxidation

• Determination of competitive solvent/anion/cation
interactions across diverse weakly coordinating
anion and solvent space to link divalent cation
solvation environments to stability and transport

• Deeper understanding of how the solvation
environment is perturbed by the electrified interface
facilitating metal cation delivery vs. parasitic
pathways
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