
Fast Linear Algebra-Based Triangle Analytics with Kokkos Kernels
L Sandia
TIL National

Laboratories

Abdurrahman Ya§ar1, Sivasankaran Rajamanickam2, Michael Wolf2, Jon Berry2, Omit V. Qatalpirek1

'Georgia lnstitute of Technology, 2Sandia National Labaratories TDAI a b Georgia
Tech

©©111:1@g@ cyR
©©PTID_RATng

= Computational Science and Engineering

Introduction

A Toy Graph Triangles

Triangle-based analytics are important in many

larger data-analytics based applications. Previ-

ously, a highly efficient linear algebra-based algo

rithm has been developped in Kokkos-Kernels

Primary contributions:

We improve upon that work by developing an

SpGEMM implementation that relies on a highly

efficient, work-stealing, multithreaded runtime.

We demonstrate that our implementation

results in improving the runtime up to 5x to
12x on different architectures

Ak

A triangle can be defined as a set of three mutually

adjacent vertices in a graph.

Triangle Counting Problem

Given a graphs G = V, VI, the triangle counting

problem is to find the number (T) of all set of three

vertices, u, v, w E V, such that:

T -1 fu, v, w 1 (u, v), (v, w), (w, u) E v11.

1

inear Algebra Formulatio

Two linear-algebra based formulations of triangle

counting that are based on the adjacency matrix

of the graph: L and U represent lower and upper

parts

LU algorithm; D = (L • U) . L
o (Pro): Low operation count,
o (Con): Poor scalability

LL algorithm; D = (L • L). L
o (Pro): Good scalability,
O (Con): More operations than LU

kkT i-Cilk Algorit

Parallelization strategy and the runtime are the main differences between KKTri-Cilk and KKTri.
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@ Rows are ordered for avoiding computation:
LL; in decreasing degree,

o LU; in increasing degree

• Balance number of non-zeros within each partition.

Each partition is spawned (in parallel) as a task.
A task runs matrix matrix multiplication within a partition.

WM, AIM

Letting dv be the degree of vertex v, the 4 3-moment is
defined as: E[d4,13] 1/n Tiv(c/4,13).
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Scale Graphs
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Non Scale Graphs

4/3 (Graph Challenge 2017 regression line) predicts
the trends effectively in the Scale graphs.

However, m4/3 does not model the runtime on real
graphs as effectively as the 4/3-moment does.

Time-per-vertex
4

Time-per-edge
Graph Type

F3 -moment
3

El Lmoment
3

Scale graphs 0.90 0.98 0.89 0.98
Non-scale graphs 0.26 0.95 0.02 0.76

Per-vertex/edge runtimes are highly correlated with the
4/3-moment, as predicted

■
Experiment • tron Scalin

Following figures show strong scaling experiments for OpenMP and
Cilk implementations of two algorithms.
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O KKTri-Cilk scales the best in all three problems

O uk-2005 achieves best rate: highly local computations.

O scale24 achieves worst rate: Poor cache usage.

O Friendster graph's distribution is in between (best scalability).

Experiments: e a we ee

Comparisons of KKTri Cilk with TCM, a state of the art graph library.
8

O
co

(r)

N
o
Ol
o
(r)

Skylake Haswell KNL

N

a3

o

0
0_

Li)

rn
N
a3

111

0:3

(f)

o

z

o 44 o

@ KKTri achieves up to 7x speedup on graphs that have a good natural ordering such as wb-edu, uk-2005,

and uk 2007. KKTri outperforms TCM in 23 of 27 cases.

x eriments: Dataset d Peak a

Times highlighted in green when KKTri-Cilk is the fastest.

CD 109 barrier is passed for the uk-2005 matrix and wb-edu graph.

@ A high correlation (0.91) between the conductance and the rate.

Data Set 1 Cd
Rates

Skylake Haswell KNL
Time (s)

cit-HepTh 0.141 0.003 1.20E+08 8.24E+07 1.54E+07
email-EuAll 0.112 0.003 1.16E+08 1.10E+08 2.16E+07
soc-Epinionsl 0.086 0.004 1.06E+08 6.72E+07 2.44E+07
cit-HepPh 0.091 0.004 1.11E+08 8.77E+07 2.47E+07
soc-Slashdot0811 0.067 0.004 1.18E+08 7.97E+07 2.71E+07
soc-Slashdot0902 0.069 0.003 1.57E+N 8.64E+07 2.77E+07
flickrEdges 0.098 0.013 1.85E+08 1.15E+08 2.99E+07
amazon0312 0.229 0.006 3.87E+08 2.51E+08 9.34E+07
amazon0505 0.233 0.006 3.79E+08 2.75E+08 9.36E+07
amazon0601 0.276 0.006 4.17E+08 2.87E+08 9.81E+07
scalel8 0.059 0.031 1.24E+08 1.07E+08 2.88E+07
scalel9 0.058 0.075 1.04E+08 8.06E+07 2.79E+07
as-Skitter 0.17 0.026 4.23E+08 3.23E+08 1.23E+08
scale20 0.059 0.184 8.53E+07 5.63E+07 2.50E+07
cit-Patents 0.027 0.028 5.82E+08 4.21E+08 1.22E+08
scale2l 0.059 0.511 6.21E+07 4.78E+07 2.O1E+07
soc-LiveJournall 0.242 0.137 3.14E+08 2.28E+08 1.07E+08
wb-edu 0.938 0.042 10..10E+0

4.05E+07
6.55E+08 1.48E+08

scale22 0.058 1.581 3.50E+07 1.71E+07
scale23 0.059 3.786 3.41E+07 2.62E+07 1.45E+07
scale24 0.059 10.282 2.53E+07 2.04E+07 1.21E+07
scale25 0.059 25.652 2.04E+07 1.88E+07 9.11E+06

uk-2005 0.925 0.684 9.35E+08 2.59E+08
it-2004 0.942 1.293 7.95E+08 5.86E+08 1.47E+08
twitter 0.126 28.359 4.24E+07 4.46E+07 N/A
friendster 0.182 18.552 9.74E+07 7.93E+07 N/A
uk-2007 0.968 3.545 7.49E+08 N/A

Conclusion

• KKTri-Cilk surpasses i09 for the rate measure.

KKTri-Cilk is faster on 63 of 78 instances

CD KKTri-Cilk is faster than state-of-the-art graph based
implementation (up to 7> )

CD We corroborate that the scalability of the triangle counting is
bounded by O(n) when the 4/3-moment is bounded

@We show correlation between the high rates achieved and the
conductance of the graph
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