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Introduction
Many mechanical properties of metals are the result of
the motion of microscale defects called dislocations. In
particular, the interaction of dislocations with solute
atoms leads to dynamic strain aging (DSA), a phenomena
in which material strength depends on the amount of time

Rate of Atmosphere Formation

Simulations of atmosphere
formation allow for accurate
predictions of the timescale of
dislocation-solute interactions.
Our model agrees with the

-solutes have  to travc1 to p+R-Fied dislocations'. cross corchodc+3--in
equilibrium, solute atoms congregate beneath the
dislocation lines, forming so-called Cottrell atmospheres.'
Understanding the properties of alloys requires knowing
how quickly these atmospheres form and the amount of
solute drag the atmospheres exert on the dislocations.
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In our model, solute atoms are described by a continuous
concentration field c(x). The concentration field evolves in
time according to the diffusion equation.2

Diffusion Equation for Solutes

Diffusion constant

kBT 
V • (c (x)V ju + c (x)v (t))

Chemical Velocity of
Temperature potential dislocation

c (x)

t
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faster rates of formation than
classical theories.

Predicting Dynamic Strain Aging

Our model can be used
to predict the increase
in material strength do
to dynamic strain aging.
Our calculations agree
with existing literature
models for high strain
rates.

Mobile Dislocations

0.35 

(MO

0.25

0.20

0.15

0.10

0.05

0.00o

S = 60.0

= 100.0

S = 150.0

S = 200.0

1000
tD b2

Atmosphere concentration )1 versus
time for different atmosphere

strengths S

)00 15( )0

cross-core

TD = 0.5

TD = 1.0

TD = 5.0

TD = 00

1( n 101 102 103
(sec-1)

104 to' to'

2000

Predictions of dynamic strain aging for
different values of the tunable "diffusivity

radius" parameter rD

Our model also allows for the study of the interactions of
mobile dislocations with their atmospheres. In particular,
we are able to simulate dislocations breaking away from
and being re-arrested by their atmospheres
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Dislocation velocity jumps
after breaking free of

atmosphere and plummets
after being rearrested.

Future Work
• Extending model to explain DSA at low strain rates
• More detailed simulations of effect of dislocation

mobility and dislocation networks on DSA
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