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2 Proton Exchange Membranes (PEMs)

ion-selective membranes
typically in water

• water purification
• fuel cells

State of the art: Nafion TM
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3 Nanophase Morphology in PEMs

hydrated: get hydrophilic domains
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4 Proton Transport Mechanisms
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5 I Sulfonated Diels-Alder Poly(phenylene) (SDAPP)

S = # sulfonic acids/monomer
2, = # waters/sulfonic acid

SO3H

H
.0.

H

• high Tg

• high modulus
• high thermomechanical stability
• high conductivity

Fujimoto, C., Hickner, M., Cornelius, C. Et Loy, D. Macromolecules 38, 5010-
5016 (2005); Tang, Z. et al., J Electrochem Soc 161, A1860-A1868 (2014)
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6 I Rest of the Talk

• atomistic MD simulations

• clustering

• comparison to X-ray scattering

• DPD model and simulations

• local hydrogen-bond environment

• conductivity
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7 SDAPP Atomistic Simulations

short SDAPP chain

s •

H3O+

yellow = sulfur
red = oxygen
cyan = carbon
white = hydrogen

f

70 chains
3 monomers/chain
box size about 60Å
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8 Simulation Details

initial configurations: Monte Carlo simulation
5 boxes with different initial conditions/system

Simulation details:

• Final box sizes of 66 to 91 A
• OPLS force field with updates for biaryl and
sulfonate

• TIP4P/2005 water model, flexible hydronium ion
model

• MD simulations in LAMMPS, 1 fs timestep
• Nosé-Hoover thermostat and barostat
• 12 A short range cutoff, long range with PPPM

final densities match experiment: z 1.2 g/cm3
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9 lon/Water Aggregates Formed
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11 Density-based clustering

Algorithm:

1. Each atom is assigned parameter p: the
local density of atoms within a given cutoff
distance rc

2. Each atom is assigned parameter (5: the
minimum distance from an atom of higher
density

3.Cluster centers are chosen as atoms with
highest density (51 > dmin)

4. Remaining atoms assigned to the same
cluster as their nearest neighbor of higher
density

Rodriguez, A., & Laio, A. (2014). Clustering by fast
search and find of density peaks. Science, 344(6191),
1492-1496.
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13 I Cluster size and shape

R9 = + A2 + A3 k2 = 1 — 3(A1A2 A1A3 A2A3)///
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14 I X-Ray Scattering from SDAPP

experiments S=3.6
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1 5 I Why Does the lonomer Peak Disappear?

total S(q)
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16 Further Understanding S(q)

Stotal = Spolymer + Ssulfonic + Swater +

Swater-poly + Ssulf-poly + Swater-sulf
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17 Water Structure Factors

S = 1, water structure factor
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1 8 I Rest of the Talk

• atomistic MD simulations

• clustering

• comparison to X-ray scattering

• DPD model and simulations

• local hydrogen-bond environment

• conductivity

S=2, A=3

3=9 8 (IMP) 0 S=2 3 (IMP)

PP3 (NUR) • S=2 (NMR)

* S.2.8 (IMP) ❑ .19 (IMP)
* S=2 8 (NMR) • S=1 8 (NUR)
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19 DPD Model for Protons in Water

based on work of Neimark et al

Morse bonds between protons and water

Unrd = Ku{1 — exp[ayfry — riN?
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2 0 I DPD Model of SDAPP
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21 DPD Captures Structure and Morphology

S = 1, W= 3 S = W = 9 2.5
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22 I Rest of the Talk

• atomistic MD simulations

• clustering

• comparison to X-ray scattering

• DPD model and simulations

• local hydrogen-bond environment

• conductivity

S= 2, A =3

S=9 8 (IMP) 0 S=2 3 (IMP)

PP3 (NUR) • SP2 (NMR)

* 3.2.8 (IMP) ❑ .19 (IMP)
* S=2 8 (NMR) • S=1 9 (NUR)
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„ I Hydronium lon Coordination from MD
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24 I Local Hydrogen Bond Environment in SDAPP
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Todd M. Alam, J. Phys. Chem. A, 122, 3927-3938 (2018); Eric G. Sorte, et al Submitted(2018)



25 I Hydrogen Bond Network in SDAPP

a)

b)

6

2

Small SDAPP Cluster

*It .•"...r-

ir 4. a,
al •

E .1 2 pp rek

16 14 12 10

H
C

• 0

1H Chemical Shift Wpm)

Large SDAPP Cluster

p
a

•-• gr. a,
, 44, ;*

12

6.32 ppm

111111111111111 1111 

2 14 12 10 2

1H Chemical Shift (pprrO

0

10 -

s •

O 6 .

4 •

2

(b) 11

1H
 C
h
e
m
i
c
a
l
 S
hi
ft
 (
p
p
m
)
 

•
10 • 

q1 = -035

9

8

7

6

5

• Combined all IEC

• Decreasing

Average Hydrogen
Bond Strength

fot:

114— q 1 = -0.45

0 2 4 6 8 10 12 14 16

• Hydrophilic domains from MD simulations predict a reduction in the average HB strength.

• Lower RH increase HB strength tend to reduce Grotthuss mechanism - but higher S/V of SDAPP
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Eric G. Sorte, et al, Submitted 2018



26 I Rest of the Talk

• atomistic MD simulations

• clustering

• comparison to X-ray scattering

• DPD model and simulations

• local hydrogen-bond environment

• conductivity

S=2, A =3

S=9 8 (IMP) 0 S=2 3 (IMP)

PP3 (NUR) • SP2 (NMR)

* 3.2.8 (IMP) ❑ .19 (IMP)
* S=2 8 (NMR) • S=1 9 (NUR)
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27 I Water and Proton Diffusion: DPD

DPD
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28 Conductivity from Impedance Spectroscopy

103

102
co

5
101

c.)
-o

io°

10-1

SDAPP Conductivity

Nafion SDAPP

-•-, 0 30 °C, 10% RH
-411- 80 °C, 95% RH

0.5 1.0 1.5 2.0 2.5

IEC (meq/g)

3.0 3.5

Co
nd

uc
ti

vi
ty

 (
m
S
/
c
m
)
 

SDAPP Conductivity at 80 °C

101 -

10-1

A  •

• •----
•

■
—o— Nafion 212
—0— S=1.3 (IEC = 1.5 meq/g)

S=1.9 (IEC = 2.1 meq/g)
—A— S=2.3 (IEC = 2.4 meq/g)
—v— S=2.8 (IEC = 2.9 meq/g)
—A— S=3.6 (IEC = 3.4 meq/g)

0 10 20 30 401

excellent conductivity at high sulfonation

501 60

RH (%)

70 80 901 100



29 I Conductivity and Diffusion

Nernst-Einstein
Equation
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1f we can measure diffusion individually, we can evaluate different contributions.



30  Conductivity
Connecting SDAPP Conductivity from Diffusivity

Nernst-Einstein Equation 

F2 c(D
= 

RT

)
UNMR

F2 c(DPF,G)

RT

Grotthuss
a = 2 (DGro tt cy Gro tt D Veh Veh

RT H+ H+ 
H+ H+

Vehicular  

F2C
UM= LDGvu exp(—E vit / RT) +4 ex (—Er7 1 RT)1R7, 0

• at low-moderate S: proton conductivity controlled by water
vehicular transport

• increasing S: Grotthuss mechanism becomes significant
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••••

••••

• S=3.6 (IMP)

A S=3.6 (NMR)

* S=2.8 (IMP)
* S=2.8 (NMR)

o S=2.3 (IMP)
• S=2.3 (NMR)

❑ S=1.9 (IMP)
▪ S=1.9 (NMR)

A - -

2.6 2.8 3.0 3.2

1000/Temperature (K-1)

3.4

E. G. Sorte, B. A. Paren, C. G. Rodriquez, C. Fujimoto, C.Poirier, L. J.
Abbotte, N. A. Lynd, K. I. Winey, A. L. Frischknecht, and T. M. Alam,
submitted 2018



31 I Relate Conductivity to M D Morphology
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32 Relate Morphology/Hbond Network to Conductivity
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SDAPP PEM Membrane Nanomorphology
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with increasing sulfonation and water content:
• percolated hydrophilic domains
• more bulk-like water domains
• weaker hydrogen bond network
• larger variety of proton coordination environments

11 turn on of the Grotthuss mechanism and much higher conductivity



33 I Summary

SDAPP morphology with increasing sulfonation, hydration:
• increasingly percolated domains
• more bulk-like water domains
• weaker H-bond network
• more heterogeneous H-bond network and coordination

MD simulation agrees with X-ray, NMR

SDAPP proton conductivity with increasing sulfonation, hydration:
• Grotthuss mechanism turns on
• large increase in conductivity at highest S

DPD simulations
• qualitatively similar morphology
• increase in proton motion with k
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SDAPP promising PEM material
multiple modeling Et experimental tools needed to understand
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35 I Quantum cluster calculations

DFT 6-311**

A = 1

Hydrogen
bond

J

A = 2

Hydrogen
bond

A = 3

Contact ion
pair

need = 3 for deprotonation

A = 5

Solvated contact
ion pair

Alam, T. M. Computational Study of Microhydration in Sulfonated Diels—Alder Poly(phenylene)
Polymers. J Phys Chem A 122, 3927-3938 (2018).



36 I IH NMR Spin Diffusion Experiments

H20/S0 H hO.
HO3S

Detection

1 p= re,e=2nr,
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strong 1H-1H dipolar coupling]
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37 Simulating Spin Diffusion Experiments

MD structure
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Sorte, E. G., Abbott, L. J., Frischknecht, A. L., Wilson, M. A. & Alam, T. M. J Polym Sci Pol Phys 56, 62-78 (2018)



38 I Simulated Spin Diffusion from MD vs Experiment
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MD structure (morphology from simulation)
▪ Spin diffusion constants (from line width), volume fractions, etc. are fixed.
• No adjustabia ',Ammeters in these fitoll

Deviations at higher hydration levels [finite simulation size? NMR relaxation?]

20 255

Sorte, E. G., Abbott, L. J., Frischknecht, A. L., Wilson, M. A. & Alam, T. M. J Polym Sci Pol Phys 56, 62-78 (2018)



39 I Diffusion from NMR

1e-9
SDAPP Water Difusion
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Decreasing water

• 98% RH
A 75% RH
■ 65% RH
✓ 33% RH
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Temperature Variation of VVater Diffusion
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(1000/Temperature) (e)

similar to other PEMs at higher hydration levels.
- At < 33% RH increasing Ea.
▪ PFG NMR not obtainable at very low RH%

E. G. Sorte, B. A. Paren, C. G. Rodriquez, C. Fujimoto, C.Poirier, L. J. Abbotte, N. A.
Lynd, K. I. Winey, A. L. Frischknecht, and T. M. Alam, submitted 2018



40 Proton Transport Mechanisms

—(CF)CF2 — Backbone
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41 I Diels-Alder Polymerization
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42 I Sulfonate group more solvated at higher water contents

Increasing hydration level:
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43 Gas permeability

A

AP- H2 -0 02 Nafion (IECr-0.91)
-A- H2 -‘5.- 02 S=0 {SDAPP
-III- H2 -0- 02 S=2.8 (SDAPP)
-0- H2 -0- 02 S=3.6 (SDAPP)
-*- H2 -tr - 02 SPP-QP (lEC=2.4)

 A 

=--=2,
• - CI

a

0

0 10 20 30 40 50 60 70 80 90 100

Relative Humidity (%)

Christina Rodriguez and Nate Lynd, UT Austin



44 Surface to volume of hydrophilic domains
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45 I Desired Properties of Fuel Cell Membranes

high conductivity, 6 z 0.1 S/cm
low cost
chemically stable
mechanically stable
mechanically strong (resist swelling)
low gas crossover

Current industry standard:
perfluorinated sulfonic acid ionomers (PFSA)

CF2

Shortcomings of perfluorosulfonic acid membranes:

• Low proton conductivity at high temperatures
• High methanol/gas diffusion
• Poor recyclability
• High manufacturing costs

x CF

CI

Alternatives: hydrocarbon-based proton-conducting polymers

+0
sulfonated poly(ether ether ketone)

(
I

sulfonated polysulfone

CF2
y

FC

CF3

z

Nafion
(DuPont)

o
//

CF2 x H20

HO

sulfonated polyimides

0

p

SO 3Na



46 Correlation Distance between Aggregates

d = 2TE/q*, q* = ionomer peak location
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