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2 | Proton Exchange Membranes (PEMs)

-

lon-selective membranes Electron Flow (1)
typically in water '

Hydrogen

- ; 5 €~
« water purification s %ﬂ} i 1 E LYo ; E -
o : . Hydrogen lons L
fuel cels i by | LG | g
% h%l 1 - . I 1 > ai @
" e il 1 I § 3
. I 1 1 1
State of the art: Nafion™ L - S k
ydrogen Water

Anode Eledgirolyte Cathode

m=5-13
CF CF
CF, CF
| n = ca. 1000
. 0
o

_‘ F‘/ ‘@)f(; ?"@r‘@,ﬂ@“ _ polymer membrane
o/CF“‘“CV > ¥ ..o f“é_‘._ = /
L .-".JHJ}p . & %3-\:
FQ(;/CF2 \\R ’ng | . é%
_ TRI2TZ
0=—s5=—0 o A 0.9.\,.! 9
L:LH-I:ng:J:Lﬂ_13 ;.'.j.{’%-: -.: " :_d.-r);/g.
Shag W Sisns,




3 I Nanophase Morphology in PEMs -

hydrated: get hydrophilic domains “ionomer peak” in x-ray scattering
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+ I Proton Transport Mechanisms
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Sulfonated Diels-Alder Poly(phenylene) (SDAPP)

high T,
high modulus

high conductivity

Fujimoto, C., Hickner, M., Cornelius, C. & Loy, D. Macromolecules 38, 5010-
5016 (2005); Tang, Z. et al., J Electrochem Soc 161, A1860-A1868 (2014)

S = # sulfonic acids/monomer
A = # waters/sulfonic acid

high thermomechanical stability
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atomistic MD simulations
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« comparison to X-ray scattering
DPD model and simulations
local hydrogen-bond environment
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SDAPP Atomistic Simulations
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short SDAPP chain /0 chains
©e 3 monomers/chain
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s | Simulation Details |

pressure annealing
initial configurations: Monte Carlo simulation Y
5 boxes with different initial conditions/system 13f

= 10,000 atm

max

1.2% p
Simulation details:

- Final box sizes of 66 to 91 A

» OPLS force field with updates for biaryl and
sulfonate

» TIP4P /2005 water model, flexible hydronium ion
model

* MD simulations in LAMMPS, 1 fs timestep o |

plgem®

« Nosé-Hoover thermostat and barostat
« 12 A short range cutoff, long range with PPPM

final densities match experiment: = 1.2 g/cm3




9 I lon/Water Aggregates Formed
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1 | Density-based clustering

Algorithm:
1.Each atom is assighed parameter p: the BHEy
local density of atoms within a given cutoff B : T
distance r i ‘J:?‘*%*‘{?e pR
2.Each atom is assigned parameter J: the g mEaeT
minimum distance from an atom of higher
density o————
3. Cluster centers are chosen as atoms with sof o ]
highest density (0; > 0,,,)
4.Remaining atoms assigned to the same 40 | .
cluster as their nearest neighbor of higher P Centers: ;> d,
density s WL e o }
20 + . e ’o' ® _
; g 0, 08 -
Rodriguez, A., & Laio, A. (2014). Clustering by fast 0 ool & &
search and find of density peaks. Science, 344(6191), 0 L e laattatl e R e 5o 5 S
1492-1496.




| SDAPP Clusters

density-based algorithm resolves differences in percolated systems

§=1,A=3 S=1,A4=

Distance-based
algorithm

Density-based
algorithm

Increasing hydration level Increasing sulfonation level

Abbott and Frischknecht, Macromolecules 50, 1184 (2017)



13 | Cluster size and shape
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S(q) (arbitrary units)

X-Ray Scattering from SDAPP
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s I VWhy Does the lonomer Peak Disappear!?

total S(q)
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6 | Further Understanding S(q)

Stotal = Spolymer + Ssulfonic + Swater +

water-poly + Ssulf-poly + Swater-sulf
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water-polymer cross-correlations cancel other peaks

what if SDAPP was fluorinated?
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in hydrocarbon PEMs, loss of scattering contrast leads to loss of ionomer peak

still have nanoscale phase separation!



17 | Water Structure Factors

S = 1, water structure factor S =4, water structure factor (b) .
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« water peak increases in intensity with increasing A
 shifts slightly to the left (lower q, larger domains)

Sorte et al, submitted (2018)
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19 | DPD Model for Protons in Water

(a) (b)
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20

distribution

DPD Model of SDAPP

DPD forces
harmonic bonds, angles
smeared charges for electrostatics
Morse bond for protons
Use inverse Boltzmann inversion to fit bonds, angles
from atomistic simulations
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21 | DPD Captures Structure and Morphology
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23| Hydronium lon Coordination from MD
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24 | Local Hydrogen Bond Environment in SDAPP
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Todd M. Alam, J. Phys. Chem. A, 122, 3927-3938 (2018); Eric G. Sorte, et al Submitted(2018)



25 | Hydrogen Bond Network in SDAPP

a) Small SDAPP Cluster Large SDAPP Cluster
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» Hydrophilic domains from MD simulations predict a reduction in the average HB strength.

» Lower RH increase HB strength tend to reduce Grotthuss mechanism - but higher S/V of SDAPP
(vs. Nafion) increases cooperative effects in the energetics of CIP solvation.

Eric G. Sorte, et al, Submitted 2018




26

Rest of the Talk

atomistic MD simulations
 clustering
e comparison to X-ray scattering
DPD model and simulations
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DPD

27 | Water and Proton Diffusion
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22 I Conductivity from Impedance Spectroscopy

- SDAPP Conductivity SDAPP Conductivity at 80 °C
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excellent conductivity at high sulfonation



29 I Conductivity and Diffusion

2 Only involves H* F’c(D
Nernst-Einstein Fre(D,+D ) 00 o (D.)

Equation RT RT

, Surface Grotthuss Vehicular

_ Surf ~Surf Grott .~Grott Veh (~Veh
a——RT(DH+ C + DI CI + DO )
@ $ & DVeh
i 9 .’_\
<*‘ " “ o e oo, e T e
" ‘ 9 - 9 ‘: S a0 “) ¢ @ ':
rott 2 @ 9 L 2
D & o ¥ o,z * spsurf % .
, © o, 9% o s
- 3 & 2 e % e @ e
J )

If we can measure diffusion individually, we can evaluate different contributions.



30 | Conductivity
Connecting SDAPP Conductivity from Diffusivity

Nernst-Einstein Equation

2 2
O__F C(DH+) 5 :F c(DPFG)
RT @ NMR RT
Grotthuss _

F ? Grott (Grott Veh ~Veh g 10° 4

O :E(DH+ CH+ +DH+ CH+ ) a :

Vehicular S

TN

G O™ exp(—E™ | RT)+ D) exp| —E."' /| RT .

O'(T)—W 0 exp(— a )"‘ 0 exp(— a )] -§ |
¢ =i g,
L Ee g

= at low-moderate S: proton conductivity controlled by water =0 =2 >0 3'2_1 >
vehicular transport 1000/Temperature (K )

= increasing S: Grotthuss mechanism becomes significant

E. G. Sorte, B. A. Paren, C. G. Rodriquez, C. Fujimoto, C.Poirier, L. J.
Abbotte, N. A. Lynd, K. I. Winey, A. L. Frischknecht, and T. M. Alam,
submitted 2018




31 I Relate Conductivity to MD Morphology

Molar Conductivity (mS cm’ mol™)
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Relate Morphology/Hbond Network to Conductivity

SDAPP PEM Membrane Nanomorphology
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with increasing sulfonation and water content:

« percolated hydrophilic domains

« more bulk-like water domains

« weaker hydrogen bond network

 larger variety of proton coordination environments

mmmmmp  turn on of the Grotthuss mechanism and much higher conductivity



33 1 Summary -

SDAPP morphology with increasing sulfonation, hydration:
 increasingly percolated domains
« more bulk-like water domains
« weaker H-bond network
* more heterogeneous H-bond network and coordination

MD simulation agrees with X-ray, NMR

50

SDAPP proton conductivity with increasing sulfonation, hydration: e j./'/ o 5=2.3
» Grotthuss mechanism turns on //
DPD simulations

« large increase in conductivity at highest S
ons i g
 qualitatively similar morphology T e e

Molar Conductivity (mS cm’ mol”")

* increase in proton motion with A 5 2 4+ & & 1w

SDAPP promising PEM material
multiple modeling & experimental tools needed to understand
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: | Quantum cluster calculations

DFT 6-311** ,‘ N
.‘ oLy’

A=1 A=2 A=3 A=5
Hydrogen Hydrogen Contact ion Solvated contact
bond bond pair ion pair

need A = 3 for deprotonation

Alam, T. M. Computational Study of Microhydration in Sulfonated Diels—Alder Poly(phenylene)
Polymers. J Phys Chem A 122, 3927-3938 (2018).




% I 'H NMR Spin Diffusion Experiments

H,0/SO,H
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I Simulating Spin Diffusion Experiments
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38 | Simulated Spin Diffusion from MD vs Experiment

e {:‘

S=2,A=3 §=2,1=5

109 e (A) 104wt | i (B)
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2 | A 2 | ¥
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© ©
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MD structure (morphology from simulation)

Spin diffusion constants (from line width), volume fractions, etc. are fixed.
No adjustable parameters in these fits!!!!

Deviations at higher hydration levels [finite simulation size? NMR relaxation?]

Sorte, E. G., Abbott, L. J., Frischknecht, A. L., Wilson, M. A. & Alam, T. M. J Polym Sci Pol Phys 56, 62—78 (2018)



39 | Diffusion from NMR ||

i SDAPP Water Difusion Temperature Variation of Water Diffusion
e-
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| S=3.6 KR 24.7 21.1 19.0 E. G. Sorte, B. A. Paren, C. G. Rodriquez, C. Fujimoto, C.Poirier, L. J. Abbotte, N. A.
I Lynd, K. I. Winey, A. L. Frischknecht, and T. M. Alam, submitted 2018



40 | Proton Transport Mechanisms Vehicular / Molecular
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s | Diels-Alder Polymerization
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12 | Sulfonate group more solvated at higher water contents

Increasing hydration level:
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» | Gas permeability
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Christina Rodriguez and Nate Lynd, UT Austin




Surface to volume of hydrophilic domains
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»s | Desired Properties of Fuel Cell Membranes

* high conductivity, c = 0.1 S/cm Shortcomings of perfluorosulfonic acid membranes:
» low cost  Low proton conductivity at high temperatures
» chemically stable  High methanol/gas diffusion
* mechanically stable * Poor recyclability
* mechanically strong (resist swelling)  High manufacturing costs
* low gas crossover
Nafion
Current industry standard: H&CF;’ “Fy (DuPont)
perfluorinated sulfonic acid ionomers (PFSA) C{
\
CFy_ 0 CF, /
F(‘: Z ScE /S%O X H,0
CE HO

Alternatives: hydrocarbon-based proton-conducting polymers

R syas e TNENLS Jasat taS I celica s mas omsy

sulfonated poly(ether ether ketone) sulfonated polysulfone $0;Na

sulfonated polyimides



s I Correlation Distance between Aggregates

d = 2n/q*, g* = ionomer peak location
S=1, A =3
34f -
3.2} ]
3.0} - :
28t o - -
26 o @ .- S ]
_24F - g A -
E 22 @ g pemmnt - -
o 20 "W goeemnc@TTT -
18- ® SDAPP7(S=23) 1
16} o S=2 . from real space snapshots, low A:
14 ® 14-48B(S=36) | S=2,d=23A
e P S=4,d=19A

A MD consistent with X-ray




