Some Perspectives on
Testing and Continuous Integration

for Open Source Software

William Hart and John Siirola
Sandia National Laboratories
wehart@sandia.gov

SAND2018- 12452PE

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International
Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration
under contract DE-NA0003525.

Some Perspectives on
Software Quality Management
e Software

for Open Sourc

William Hart and John Siirola
Sandia National Laboratories
wehart@sandia.gov

L
under contract DE-NA0003525.

3 I Why do we care about software quality in research codes?

For ourselves
> Reputation
> Research quality
o Communication of ideas

For our jobs
> These are capabilities we can use for
> National security missions
- Commercial applications
> Education

4 1 On the Impact of Software Testing - Three Examples

Optimization Methods for AutoDock
> My thesis work analyzed GA hybrids with local search

> My analysis for why these methods worked was flawed because it ignored scaling issues
- Lesson: Testing can help you better understand how your code works

Tracking Down a bug in Acro
> During Acro development, it was common to have unresolved test failures between releases

> These test failures masked a flaw that was introduced but not realized until months later
> But the online test history proved invaluable for tracking down when this was introduced
> Lesson: Testing archives provide a rich context for identifying subtle bugs

Enabling Major Changes
> Pyomo recently replaced its expression tree logic
> High test coverage provided confidence that the software was working as expected
o Lesson: Strong tests can catalyze major software changes

s I What Is Working Well?

6 I What Is Working Well?

Cloud hosting

Repository management

Online documentation generation

Automated build, distribution and deployment

Automated testing and code coverage analysis

7 I Cloud Hosting

Repository hosting
> GitHub, GitLab, SourceForge, BitBucket, ... S%CEQ GitHub O ‘
A0 M

Testing :
> TravisCl, Appveyor, GitLab, Jenkins, G H tl-ab
circleci, ...

@ Travis C| &) AppVeyor
oai € Jenkins
O circleci &

CODESHIP {; BCImbOO I
TC -
Mostly free to academics and open-source projects TeamCIty |

s I Repository Management

Distributed repository management is much more flexible than previous paradigms

> E.g. using CVS or Subversion

Origin/Master

Example: Git Workflows O O O O J
- E.g. see https://www.atlassian.com/git/tutorials/compa

> Centralized - development occurs on the master viancn

- Feature branching - major features developed on sep

o GitFlow - feature branching will well-defin

o Forking workflow - developers work on forks of the main repository

- Impact: teams can adopt workflows that are better tailored to their needs and resources

Example: Pull Requests
> A method of submitting contributions to a project using a distributed VCS like git

- Can automate application of tests, coverage analysis, static code analysis, etc
- Impact: can ensure stability of the master branch (or other stable branches)

Diverged from
central repository

Online Documentation

Online documentation used to be a link to a PS/PDF file

Markup languages are commonly supported in various platforms
- E.g. GitHub wiki pages
- E.g. see https://en.wikipedia.org/wiki/List_of_document_markup_languages

Sophisticated HTML/PDF documents can be generated automatically
> Autodoc

* ReadTheDocs, readme.io = Read the DOCS

o apiary.io
@ readme
‘ apiary

10 I Automated build, distribution and deployment |
& Travis C1 & AppVeyor |
- . . @ .

> Hooks for up-loading distributions 0 CerIGCI ‘l' Jenklns]

Conda/Conda-Forge CODESHIP {; Bq m bOO
o Build + distribution management T n
il TeamCity

Containers/Virtualization 9 - |
CONDA =
kubernetes “=

o Kubernetes — Y

> VirtualBox Q &docker CON[;FORGE {
lﬁ//"

Azure Pipelines

Cloud build/test environments

> TravisCl, CircleCl, Appveyor,
Jenkins, CodeShip, Bamboo, TeamCity,

11 I Automated testing and code coverage analysis

Travis CI @ AppVeyor
Flexible testing tools 0 CWC'GCI Jenklns

o Java: junit, ...

> Python: unittest, nose CODESHIP {; BCI m bOO

o C++: CppUnit, CxxTest, Ctest, Boost, — u
Aeryn, NanoCppUnit, GoogleTest, - T C ty
unittest-cpp, onqtam/doctest, - eam I

philsquared/Catch

Cloud build/test environments
> TravisCl, CircleCl, Appveyor, ...

Flexible code coverage analysis
> Python: coverage.py
o C++: lcov, gcovr

12 I Build Services and Continuous Integration

What is Continuous Integration / Continuous Deployment?
o Common (best) practices [1]:

> Maintain a code repository

- Automate the build

Make the build self-testing

Everyone commits to the baseline every day
Every commit (to the baseline) should be built
Keep the build fast

Test in a clone of the production environment

> Make it easy to get the latest deliverables (builds)
- Everyone can see the results of the latest build

- Automate deployment

o

(o]

O

e]

O

> But does COIN-OR really want (need) CI/CD?

[1] From https://en.wikipedia.org/wiki/Continuous_integration

13 | Build Services and Continuous Integration

What is Continuous Integration / Continuous Deployment?
- Common (best) practices [1]:

Vv Maintain a code repository

vV Automate the build

vV Make the build self-testing

? Everyone commits to the baseline every day

? Every commit (to the baseline) should be built

? Keep the build fast

? Test in a clone of the production environment

vV Make it easy to get the latest deliverables (builds)
? Everyone can see the results of the latest build

Vv Automate deployment

> But does COIN-OR really want (need) CI/CD?

[1] From https://en.wikipedia.org/wiki/Continuous_integration

14 I Do we really need the integration in CI?

Everyone commits to the baseline every day

CI/CD is particularly targeted toward large(r) teams focused on rapid development
> Coordinate team members through frequent integration with master

- Avoid large (and painful) merge conflicts

COIN-OR's situation is different
> (Most) projects are actually small teams
> COIN-OR development is no one's "day job"
- Development velocity is slower
> Velocity varies dramatically across a team and in time
> New features may take weeks to months to mature
> Long-running feature branches

15 I Do we have the resources to pull off CI/CD?

Every commit (to the baseline) should be built
Keep the build fast
Test in a clone of the production environment

COIN-OR is targeting a huge production environment
> Windows, Linux (Ubuntu, RHEL, ...), OSX

> Python (2.7, 3.4, 3.5, 3.6, 3.7...)
- Julia (0.7, 1.0, ...)
- Compilers (gcc, icc, msvs), Matlab, R, ...

(Free) CI/CD providers either limit concurrency, or runtime, or both
- E.g., Appveyor (Windows) runs jobs sequentially
- E.g., Travis limits concurrency to ~5-6 jobs

Build pipelines generally not supported (in free offerings)
> Azure Pipelines is an interesting exception

16 I Can third-party services meet all our needs?

Test in a clone of the production environment
Everyone can see the results of the latest build

We regularly need non-public libraries, tools, applications that are not available on
third-party public build platforms

> Matlab, HSL, Cplex/Gurobi/Xpress, (GAMS)

Private build services can support proprietary tools, but...
> Securing the server is a near-fulltime job

- E.g., Pyomo leverages corporate infrastructure (firewalls, access control, system
administration, application distribution infrastructure, Jenkins instance)

> Getting developers access to the
build results is ... difficult o Some checks were not successful

. , , . e o
> Building PR’s from third parties ailing and 5 successful checks
represents a security risk

i Y Pre-Test Inspection — INSPECTED
o But we have a SOlUt]On... v 5 re-lest Inspection

Prlvate (OI’ non'free) CI SeI’V]CeS v codecov/patch — Coverage not affected when comparing de951ef...2b1be19

can provide complex build

v continuous-integration/appveyor/pr — AppVeyor build succeeded
workfllows ®

v Q“ continuous-integration/jenkins/pr — All Jobs Finished; status = PASSED

v & continuous-integration/travis-ci/pr — The Travis Cl build passed

Hide all checks

Details

Details

Details

Details

& |

17 I Testing and CI/CD

Testing is an absolute necessity, but not all tests are created equal...
> Unit testing

> Integration testing
> Regression testing
> Performance testing

Some anecdotes
> Good unit test frameworks exist (e.g., cxxtest, unittest, pytest, ...)

o Unit testing must be integrated into the code design
o "Unit" testing 300-line functions is almost impossible

> Unit testing is hard and time consuming
> | usually see 2:1 lines of unit test code to lines of production code

> 100% code coverage is necessary but not sufficient
> Just yesterday | fixed a bug in a subsection of new Pyomo code that already had 100% coverage
> Running the code is not the same as testing the code
> Regression tests are very good at exercising large amounts of code, but are weak tests
o Unit tests without assertions are barely tests
> Code coverage != Branch coverage
o A goal: 100% coverage of a unit by only running that unit’s tests
> ...but this kind of testing / reporting is not supported by any automation system | know of

18 I What could be better?

19 I What could be better?

Performance testing
Test integration across projects
Large-scale testing

Effective software project management

20 I Performance Testing

Challenge: Tracking code performance during development

Cloud hosting platforms are often not suitable for this

Few exemplars for benchmarking
> PyPy - http://speed.pypy.org/
- OS/Component benchmarks - https://openbenchmarking.org/

Software Performance Testing
o Test Types: Load, Stress, Soak, Spike, Breakpoint, Configuration, Isolation

21 I Example: PyPy

1.25
B PyPy trunk

1.00 - | I I ' , I L ‘ ' - Cvathun 2.?.2‘

8.42

7RG E:uE:ux? 4 F.61x 7 48:%;?'63)(
?2?:5(? 374 o
el " 7.02 | | k7id | | |
B4 5 i
617
0. 793
0.50 - | | J | | 1047 | | 5,81 - | 5. P
0.75 024 4214 | 40 M BB B B B B
0.25 | | 3.67% '
10.15

2.81

0.00 -
«&W‘ﬁ@’ o ‘@”u&"&'&&@ﬁm
& \ K a\(} il B R EREEREERERER 1
& g
0.00 A i : : ‘
a-bﬁ:'\vmg,c:huhﬁ G-& &

& qﬁﬁ*ﬁ*qﬁ@* ﬁ*@gﬂqp@@ <»~?* q{ﬁ;»qg d @"‘

22 | Performance Testing with Pyomo

Goal: Track benchmark performance relative to last release
Python=python3.6 Problem=bilinear_100000 Fileformat=nl
PYPY python2.7 pytl—lon3.6
Problem gms | Ip barl gms‘ Ip || nl gms | lp ‘ nl

bilinear 100000

(=]
O
9
(—
(=]
oo

dcopfl 0

|
3
B
|

diag 100000

it
(=]
(o]
o~
\O
oo
ot
(=]
[\
[u—
(=}
(o]
S

.99

N

jump_clnlbeam 50000

|

vvv

jump _facility 25

|

jump Iqcp 500

jump opf 6620

pmedian 8

E
4

(=}
\O
o]

O
)
O

stochpdegasl 0

(=]
O
O
—
(=]
S}

ucl 0

S
\O
oo
S
O
O

(=]
\O
(o))
(=]
O
~

=
L
(=]
(=]
\O
(o))
=
e |
—
(=)
S

B: INEENE: 8

v5.5
—e— master

Export to plot.ly »

23 | Performance Testing with Pyomo

Goal: Track relative performance of different versions of Python

Problem=dcopfl_0 Fileformat=nl

—*= pypy

WWWM ~—e— python2.7

4.5 —e— python3.6

3.5

1e (Seconds)

gms || Ip | | nl |

Problem

pypy |py2.7|py3-6] [pypy|py2.7|py3.6] [pypy [Py2.7] PY3.6]

=
1
S

|

=

S

=
-3
]
-

bilinear 100000 1525 8.25 8.36

=R
-z
»
Kl .

S
W
~J

dcopfl 0

diag_100000

'.0
3
S

1134 259 |2 55

245 242

jump_clnlbeam 50000

I I I AR I OB CHE CRTCRE I ORI B SR U US UG UGG USS USRI S IRV, SV I T IS STV
9.45 CO\IO\LHALAII\JHO\DOO\IO\U1-J>UJ!\)»—~DKDLD\IG\U1LUJ1\J»—~O
--- Latest Tests vs Current Release

jump facility 25

Export to plot.ly »

jump lqep 500

jump opf 6620

pmedian_8

sou N o 0 1
gy

stochpdegasl 0

ucl 0

o I 556 o0 s i s s

24 | Performance Testing with Pyomo

Goal: Identify points where performance changed

0 00 0 00
WhUIO~

2:15
2.1

2.45
2.4
2.35

52

>

AN

(i B 2 A

Python=python3.6 Fileformat=nl

M
i
VA4
VA S
N AN

—e— bilinear_100000

—e— dcopfi_0

—e— diag_100000

—e— jump_clnlbeam_50000

—e— jump_facility_25
jump_lgcp_S500

—e— jump_opf_6620

—e— pmedian_8

—e— stochpdegas1_0

—e— ucl_O

25 I Test Integration Across Projects

Challenge: quality management across interdependent libraries

Example: pyomocontrib_simplemodel
> A simple, PuLP-like modeling environment built using Pyomo

- Commits to Pyomo branches
> Trigger tests for Pyomo
> Commits to Pyomo master branch
> Trigger tests for the master branch of pyomo_simplemodel

Problems:
> Setting up this type of testing is not straightforward
> We probably want to test against specific versions and specific branches, which gets complex
> How do we collect/summarize test results for a large project like COIN-OR?
- Different developer groups might want to focus on different collections of stable sub-projects

26 | Large-Scale Testing

Challenge: running tests in a timely manner

Example: pyomo

> Currently tests 11 combinations on TravisCl (Python versions x Subtests)
and tests 4 combinations on Appveyor

> Test runtime and concurrency limitations prevent more Appveyor tests!

Example: pyomo benchmarks
> Currently run nightly, testing ~200 combinations
> (Python versions x Problems x 10 x Configurations)
> Benchmark tests take 10+ hours each day on a dedicated server
> Cannot run limited performance tests in an agile manner
- Cannot easily integrate testing results across multiple days
- E.g. since the codes doesn’t always change...

27 | Effective Software Project Management

Challenge: managing human capital

Applied Software

Key Project Management Activities x. Project Management

> Project planning |
Estimation
Project schedules
Reviews
Software requirements
Design and programming
o Software testing
° Managing change
> Project management

o

o

o

o

el

o

(0 e

" Andrew Stellman & Jennifer Greene

28 | Effective Software Project Management

Challenge: managing human capital

Key Project Management Activities
> Project planning

Estimation

Project schedules

Reviews

Software requirements

Design and programming

> Software testing

° Managing change

> Project management

o

o

o

o

o

Most of these activities are intrinsically labor-
intensive

29 | Effective Software Project Management

Challenge: managing human capital

Key Project Management Activities
> Project planning

Estimation

Project schedules

Reviews

Software requirements

Design and programming

> Software testing

° Managing change

> Project management

o

o

o

o

o

Most of these activities are intrinsically labor-
intensive

Thus, better tools aren’t the solution to
effective project management

Thus, effective management of our human
capital is key

> Time to lead projects

> Time for design/implementation/reviews

> Time for documentation

> Time to iterate (re-design/re-implement/...)

30 I Effective Software Project Management

Challenge: new research vs. re-usable components

Observation:
> We need both!

- COIN-OR and related initiatives are the embodiment of academic and government research
> And our own research needs to rely on a stable foundation of existing capabilities

How do we manage change that is highly intrusive?
- E.g. Pyomo replaced its expression system this year (!)
- E.g. Direct solver interfaces for Pyomo (see Carl Laird’s talk)
> E.g. Rethinking the design of COIN-OR solver interfaces

31 1 Final Observation

There are fundamentally different challenges for open source research codes like
COIN-OR.

There is high interest in developing research codes, but it is hard to recruit people to
maintain these codes.

o Because the research is done!

What is good enough for research is often not good enough for practice
- E.g. grad-ware

Research does not have a well-defined target
> The requirements are likely to change

> A seemingly good design today can be easily criticized tomorrow
It is hard to estimate the effort needed to develop new codes

