
Some Perspectives on
Testing and Continuous Integration
for Open Source Software

William Hart and John Siirola

Sandia National Laboratories

wehart@sandia.gov

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy's
National Nuclear Security Administration

under contract DE-NA0003525.

SAND2018-12452PE



Some Perspectives on
Software Quality Management
for Open Source Software

William Hart and John Siirola

Sandia National Laboratories

wehart@sandia.gov

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy's
National Nuclear Security Administration

under contract DE-NA0003525.



3 Why do we care about software quality in research codes?
_ I

For ourselves

Reputation

Research quality

Communication of ideas

For our jobs

These are capabilities we can use for

National security missions

Commercial applications

Education



4 On the Impact of Software Testing - Three Examples
- •

Optimization Methods for AutoDock
My thesis work analyzed GA hybrids with local search
My analysis for why these methods worked was flawed because it ignored scaling issues
Lesson: Testing can help you better understand how your code works

Tracking Down a bug in Acro
During Acro development, it was common to have unresolved test failures between releases
These test failures masked a flaw that was introduced but not realized until months later
But the online test history proved invaluable for tracking down when this was introduced
Lesson: Testing archives provide a rich context for identifying subtle bugs

Enabling Major Changes
Pyomo recently replaced its expression tree logic
High test coverage provided confidence that the software was working as expected
Lesson: Strong tests can catalyze major software changes



5 What Is Working Well?



6 What Is Working Well? .

Cloud hosting

Repository management

Online documentation generation

Automated build, distribution and deployment

Automated testing and code coverage analysis

I



7 Cloud Hosting

Repository hosting
GitHub, GitLab, SourceForge, BitBucket,

Testing
TravisCl, Appveyor, GitLab, Jenkins,
circleci,

Package management
PyPI, conda-forge, Julia/GitHub,

Mostly free to academics and open-source projects

-
■

source
GitHub

Atlassian

Butbucket

Travis CI

GitLab

AppVeyor

0 circled Jenkins

CODESHIP e Bamboo 1
TeamCityTC



8 Repository Management

Distributed repository management is much more flexible than previous paradigms
E.g. using CVS or Subversion

Example: Git Workflows
E.g. see https://www.atlassian.com/git/tutorials/compa 
Centralized - development occurs on the mastei 1.11 dl R-1 I

' Feature branching - major features developed on sep
c GitFlow - feature branching will well-defin
Forking workflow - developers work on forks of the main repository

Impact: teams can adopt workflows that are better tailored to their needs and resources

Origin/Master

Example: Pull Requests
A method of submitting contributions to a project using a distributed VCS like git
Can automate application of tests, coverage analysis, static code analysis, etc
Impact: can ensure stability of the master branch (or other stable branches)

4,
Master

4.

Diverged from
central repository



9 Online Documentation

Online documentation used to be a link to a PS/PDF file

Markup languages are commonly supported in various platforms
E.g. GitHub wiki pages

E. g. see https://en.wikipedia.org/wiki/List_of_document_markup_languages

Sophisticated HTML/PDF documents can be generated automatically
Autodoc

ReadTheDocs, readme.io

apiary. io Read the Docs

readme
14, apiary



10 Automated build, distribution and deployment

Cloud build/test environments
TravisCl, CircleCl, Appveyor,
Jenkins, CodeShip, Bamboo, TeamCity,
• • •

Hooks for up-loading distributions

Conda/Conda-Forge
Build + distribution management

Containers/Virtualization
Docker

Kubernetes

VirtualBox

-

Travis CI

kubernetes

1
1

AppVeyor I

3 circled Jenkins 1

CODESHIP C; Bamboo
Teamaty

CO N DA iltr1 1
TC

1docker
CONDA-FORGE

Azure Pipelines
I

!V



11 Automated testing and code coverage analysis
_ 1

Travis CI AppVeyor I

0 circled Jenkins 1

CODESHIP e Bamboo
Teamaty

Cloud build/test environments
TravisCl, CircleCI, Appveyor, ...

Flexible testing tools
Java: jUnit, ...

Python: unittest, nose

C++: CppUnit, CxxTest, Ctest, Boost,
Aeryn, NanoCppUnit, GoogleTest,
unittest-cpp, onqtam/doctest,
philsquared/Catch

Flexible code coverage analysis
Python: coverage.py

C++: lcov, gcovr

TC

1



12 Build Services and Continuous Integration
-

What is Continuous Integration / Continuous Deployment?
Common (best) practices [1]:

Maintain a code repository

( Automate the build

c Make the build self-testing

Everyone commits to the baseline every day

Every commit (to the baseline) should be built

Keep the build fast

Test in a clone of the production environment

Make it easy to get the latest deliverables (builds)

Everyone can see the results of the latest build

Automate deployment

But does COIN-OR really want (need) Cl/CD?

[1] From https://en.wikipedia.org/wiki/Continuous integration 



13 Build Services and Continuous Integration
-

What is Continuous Integration / Continuous Deployment?
Common (best) practices [1]:

V Maintain a code repository

V Automate the build

V Make the build self-testing

? Everyone commits to the baseline every day

? Every commit (to the baseline) should be built

? Keep the build fast

"' Test in a clone of the production environment

Make it easy to get the latest deliverables (builds)

Everyone can see the results of the latest build

Automate deployment

But does COIN-OR really want (need) Cl/CD?

[1] From https://en.wikipedia.org/wiki/Continuous integration 



14 Do we really need the integration in CI?

Everyone commits to the baseline every day

-

Cl/CD is particularly targeted toward large(r) teams focused on rapid development
Coordinate team members through frequent integration with master

Avoid large (and painful) merge conflicts

COIN-OR's situation is different
(Most) projects are actually small teams

COIN-OR development is no one's "day job"

Development velocity is slower

Velocity varies dramatically across a team and in time

New features may take weeks to months to mature

Long-running feature branches



15 Do we have the resources to pull off Cl/CD?
- I

Every commit (to the baseline) should be built
Keep the build fast
Test in a clone of the production environment

COIN-OR is targeting a huge production environment
Windows, Linux (Ubuntu, RHEL, ...), OSX

Python (2.7, 3.4, 3.5, 3.6, 3.7...)

Julia (0.7, 1.0, ...)

Compilers (gcc, icc, msvs), Matlab, R, ...

(Free) Cl/CD providers either limit concurrency, or runtime, or both
E.g., Appveyor (Windows) runs jobs sequentially

E.g., Travis limits concurrency to -5-6 jobs

Build pipelines generally not supported (in free offerings)
Azure Pipelines is an interesting exception

I

1



16 I Can third-party services meet all our needs?

Test in a clone of the production environment
Everyone can see the results of the latest build

We regularly need non-public libraries, tools, applications that are not available on
third-party public build platforms

Matlab, HSL, Cplex/Gurobi/Xpress, (GAMS)

Private build services can support proprietary tools, but...
Securing the server is a near-fulltime job
E.g., Pyomo leverages corporate infrastructure (firewalls, access control, system
administration, application distribution infrastructure, Jenkins instance)

Getting developers access to the
build results is ... difficult
Building PR's from third parties
represents a security risk
But we have a solution... 

Pre-Test inspection — INSPECTED

Private (or non-free) CI services
can provide complex build
workfllows

Some checks were not successful
1 failing and 5 successful checks

codecov/patch — Coverage not affected when comparing de951ef...2b1bel 9

V continuous-integration/appveyor/pr AppVeyor build succeeded

continuous-integrationnenkins/pr — All Jobs Finished; status = PASSED

continuous-integration/travis-ci/pr — The Travis CI build passed

Hide all checks

Details

Details

Details

Details

A



17 Testing and Cl/CD

Testing is an absolute necessity, but not all tests are created equal...
Unit testing
Integration testing
Regression testing
Performance testing

Some anecdotes
Good unit test frameworks exist (e.g., cxxtest, unittest, pytest, ...)

Unit testing must be integrated into the code design
"Unit" testing 300-line functions is almost impossible

Unit testing is hard and time consuming
I usually see 2:1 lines of unit test code to lines of production code

100% code coverage is necessary but not sufficient
, Just yesterday I fixed a bug in a subsection of new Pyomo code that already had 100% coverage
, Running the code is not the same as testing the code
, Regression tests are very good at exercising large amounts of code, but are weak tests
. Unit tests without assertions are barely tests
Code coverage != Branch coverage
A goal: 100% coverage of a unit by only running that units tests
...but this kind of testing / reporting is not supported by any automation system I know of



18 What could be better?



19 What could be better?

Performance testing

Test integration across projects

Large-scale testing

Effective software project management



20 Performance Testing

Challenge: Tracking code performance during development

Cloud hosting platforms are often not suitable for this

Few exemplars for benchmarking
PyPy - http://speed.pypy.org/

OS/Component benchmarks - https://openbenchmarking.org/

Software Performance Testing
Test Types: Load, Stress, Soak, Spike, Breakpoint, Configuration, Isolation



21 k Example: PyPy

1.25 —

1.00

0.75

0.50

0.25

0.00

PyPy trunk

CPython 2.7.2

0.25

0.15

0.03 0.05

0.36

0.20 •
0.16

0.12

0.47

ocpi kek.
e% 6° 0 OL

d9o 

0.09

8.42

•

7.02 -

5.61 -

0.24 4.21 -

CI 2-61

A.!5. .4
Np I AD

e

t e.444'

0.00

7.59x7.66x7.48x7.61x7.43x7.48x7.63x
7.27x7-37x

3.62x

4.06x5.24x

5.79x 1 I

6.17x6.45x 6.44x6•71x 

13 cui 1 eb \ 1, 0 '0 0 \ 0 0 .b NO 1P)
di • h., • h., • 4, • h*, •

01 irk Vi 0 4;1. Ir.>. rt.?' 1"). 011'3 b" .3. .4P -13 I
11,

93- q-Vcrizri cr1 frfri ci„ri Ori ,-r Rqi 421
•-t` 9•41



22 Performance Testing with Pyomo ■

Goal: Track benchmark performance relative to last release

Problem

bilinear100000

dcopfl 0

diag_100000

jump_clnlbeam_50000

jump facility 25

jump_lqcp_500

jump_opf 6620

pmedian 8

stochpdegas1_0

uc1_0

PYPY

bar gms lp nl

python2.7

bar gms lp nl

1.08

8.6

8.4

-o

python3.6

bar gms lp

NA NA 1.00

NA 1.08 0.98 A NAA 1.02 1.08 NA A 0.99

NA NA NA NAI A A NA

NA NA NA NA NA,AA 0.96 NA

NA NA NA NA A 1.04 NA A

NA NA NA NA A A NA

NA NA A A NA A 0.98 0.99 NA A A 0.99

NA NA NA A NA 0.99 A NA 1.02

NA NA NA NA NA 0.98 0.99 NA 0.96 0.97

Python=python3.6 Problem=bilinear_100000 Fileformat=nl

- v5.5

master

nl

1.07

1.06

6 it 6 6 g9, k), 0, do J.. O, VI .1, (',) N µ°

Latest Tests vs Current Release

Export to plot.ly

1.04



23 Performance Testing with Pyomo

Goal: Track relative performance of different versions of Python

Problem

bilinear100000

dcopfl_O

diag_100000

jump_clnlbeam_50000

jump_facility_25

jump_lqcp_500

jump_opf 6620

pmedian_8

stochpdegas1_0

ucl_O

bar

PYPY py2.7

L57 7.72

I 0.73 2.9/

I 6.15 31.62

I 2.82 9.08 

[10.91 60.41

FRI Mill

I 3.12 

11 66 67.21

Problem=dcopfl 0 Fileformat=nl

UI
-o

(13

4.5

4

3.5

-6- PYPY
-0- python2.7
-0- python3.6

gms lp nl

py3.6 PYPY py2.7 py3.6 PYPY py2.7 py3.6 PYPY py2.7 py3.6

1.25 8.25 8.36

4.57 2.55

0.70 1.133.32 2.59 2.75 2.45 2.42

34.41 5.661

2.95
1

3.70

8.16

9.45
1WCO

olCul CO Lk]
ln A

ol41 CO
41 6./ V1 A LA1

l00
ol o tioCO CO A) A/ A/ r,./ A/ A/ A/ Al A/ A/  
0 VD CO "-.1 0, ln A I.A1 l0 CO

tCO '4 it01 tA itGI A/ O
9.11 3.75

Latest Tests vs Current Release

65.14 10.741 11.81 53.28 52.90 Export to plot.ly

8.90166.564

46.81 51.61 51.33

p.19 4 3.64 1.76 1.831.61 1.80

69.44 15.42 19.86 18.77 64.94 64.6660.80 64.75



24 I Performance Testing with Pyomo

Goal: Identify points where performance changed

8.7
8.6
8.5
8.4
8.3

2.2

2.15

2.1

2.45

2.4

2.35

37

36

10
9.8
9.6
9.4
9.2

54
53.5
53

52.5

26

25.5

-

Python=python3.6 Fileformat=nl

—0— bilinear_100000

—0— dcopfl_O

—8— diag_100000

—8— jump_clnlbeam_50000

—0— jump_fadlity_25

jumplqcp_500

—0— jump_opf 6620

—0— pmedian_8

—8— stochpdegas 1_0

—9— uc1_0

•

52 A A4 .1-k I A



25 Test Integration Across Projects

Challenge: quality management across interdependent libraries

Example: pyomocontrib_simplemodel
A simple, PuLP-like modeling environment built using Pyomo

Commits to Pyomo branches

Trigger tests for Pyomo

Commits to Pyomo master branch

Trigger tests for the master branch of pyomo_simplemodel

Problems:
Setting up this type of testing is not straightforward

We probably want to test against specific versions and specific branches, which gets complex

How do we collect/summarize test results for a large project like COIN-OR?

Different developer groups might want to focus on different collections of stable sub-projects



26 Large-Scale Testing

Challenge: running tests in a timely manner

Example: pyomo
Currently tests 11 combinations on TravisCl (Python versions x Subtests)
and tests 4 combinations on Appveyor

Test runtime and concurrency limitations prevent more Appveyor tests!

Example: pyomo benchmarks
Currently run nightly, testing -200 combinations

(Python versions x Problems x 10 x Configurations)

Benchmark tests take 10+ hours each day on a dedicated server

Cannot run limited performance tests in an agile manner

Cannot easily integrate testing results across multiple days

E.g. since the codes doesn't always change...



27 Effective Software Project Management

Challenge: managing human capital

Key Project Management Activities
Project planning

Estimation

Project schedules

Revi ews

Software requirements

Design and programming

Software testing

Managing change

Project management

Applied Software

Project Management

Andrew Stel I rnan & Jennifer Greene



28 Effective Software Project Management

Challenge: managing human capital

Key Project Management Activities
Project planning

Estimation

Project schedules

Revi ews

Software requirements

Design and programming

Software testing

Managing change

Project management

-

Most of these activities are intrinsically labor-
intensive



29 Effective Software Project Management

Challenge: managing human capital

Key Project Management Activities
Project planning

Estimation

Project schedules

Revi ews

Software requirements

Design and programming

Software testing

Managing change

Project management

-

Most of these activities are intrinsically labor-
intensive

Thus, better tools aren't the solution to
effective project management

Thus, effective management of our human
capital is key

Time to lead projects

Time for design/implementation/reviews

Time for documentation

Time to iterate (re-design/re-implement/...)



30 Effective Software Project Management
-

Challenge: new research vs. re-usable components

Observation:
We need both!

COIN-OR and related initiatives are the embodiment of academic and government research

And our own research needs to rely on a stable foundation of existing capabilities

How do we manage change that is highly intrusive?
E.g. Pyomo replaced its expression system this year (!)

E.g. Direct solver interfaces for Pyomo (see Carl Laird's talk)

E.g. Rethinking the design of COIN-OR solver interfaces



31 Final Observation

There are fundamentally different challenges for open source research codes like
COIN-OR.

There is high interest in developing research codes, but it is hard to recruit people to
maintain these codes.

Because the research is done!

What is good enough for research is often not good enough for practice
E.g. grad-ware

Research does not have a well-defined target
The requirements are likely to change

A seemingly good design today can be easily criticized tomorrow

It is hard to estimate the effort needed to develop new codes


