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AGENDA

• Plasma jets onto Liquids

• Description of Experiment

• Laser Collisional Induced Fluorescence (LCIF)

• Plasma Jet Contacting TiO2 (Er = 80)

• Plasma Jet Contacting Liquid Water

• Modeling and Future Work
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ATMOSPHERIC PRESSURE PLASMA JETS

• Atmospheric pressure plasma
jets (APPJs) are a popular
source of chemistry for
biomedical applications.

• The plasma propagates as an
ionization wave (IW) that is
repetitively pulsed.

• The IW gives rise to reactive
oxygen and nitrogen species
(RONS) which produce the
biological effect.

• Objective: Investigation IW
dynamics in a plasma jet
contacting liquid in a well
controlled environment.
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• S. Mohades, et al., Physics of Plasmas
22, 122001 (2015).
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EXPERIMENTAL SETUP
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• Annular powered electrode inside the center tube.

• Placing the APPJ in a vacuum chamber - consistent and controlled
chemistry, ground planes, and gas flow.

• Coaxial tube enables a gas shroud — control environment
independently of gas in main jet.

University of Michigan

GEC_2018 Institute for Plasma Science & Engr.



LASER COLLISIONAL INDUCED
FLUORESCENCE (LCIF)

43D

- 447 nm

33P
33S

- 707 nm

33D

• An ultrashort pulse laser (<100 fs)
was used to measure the electron
density with high time resolution.

• Electrons collide with laser excited
He(33P)

• e + He(33P) —> He(33D) + e

- 588 nm • ne is proportional to ratio of LIF
/
/ signals (588 nm / 389 nm)
/
/ 23P • Sufficient He(23S) density is critical/
" 3 for accurate LCIF data.

• LCIF was initially developed for pure
He, and extended to mixtures for this
study of APPJs.

23S
• Barnat and Fierro, J. Phys. D: Appl.

Phys., 50, 14LT01 (2017).
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BASE CASE

• +6 kV

• 380 ns pulse, 100 ns rise

• 200 Torr

• Faster dynamics (for
modeling)

• Lower background LCIF
signal (for experiment)

• 500 sccm He in center tube

• 0.75% H20 in He in shroud,
500 sccm

• Gap to target: 7.5 mm

• Substrate: Liquid water or
TiO2 2.5 mm thick (same deo)

• Current measured at ground
electrode under water/Ti02.
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HUMID He SHROUD

MFC #1

MFC #2

MFC #3

 ► To center
of jet

 ►To shroud

2.3% H20 in shroud Pure He

• Humid He shroud confines the jet, much like operating with
surrounding air, while being compatible with LCIF measurements.

• First bubbler oversaturates water vapor, second bubbler removes
excess.

• Temperature of second bubbler determines humidity of gas.
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LIF (389 nm)

LCIF (588 nm)
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LCIF IN HUMID He

• 6 kV, 430 ns pulse

• Center: 500 sccm He

0 • Shroud: 500 sccm He/H20 = 97.7/2.3
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LCIF Ratio (588 nm / 389 nm) .5
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• t = 230 ns, 30 ns after I1N contacts
surface

• Moving away from He core, there are
fewer He(23S), LIF signal decreases.

He(23S) + H20 —> He + H20+ + e

• In regions of high H20 concentration,
there may be significant ne which is
not detectable due to low He(235).

0 5 • Ratio = 1 —> ne 4x1012 cm-3
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Ti02: OPTICAL EMISSION
= 190 ns
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• TiO2 substrate

• 5 ns ICCD gate, 656 nm — Ha emission, 389 nm — He(33P) —>Fle(23S)

• Line of sight imaging (not Abel inverted).

• Even He(33P) emission, indicating an annular electron density.

• Surface ionization wave (SIW) forms after IW contacts the surface.
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Ti02: ELECTRON DENSITY

t = 215 ns

2
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t = 235 ns
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• Electron density profile is annular.

• Photons from the discharge (He* or He2*) ionize H20.

• Photoionization selectively occurs in the mixing region of the
pure He with the humid He.

• After IW contacts the surface and a restrike occurs, the electron
density nearly doubles.

• Ratio = 1 —> ne 4x1012 cm-3
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WATER: OPTICAL EMISSION
t = 190 ns t = 195 ns t = 205 ns
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t= 230 ns t = 250 ns
NM.

1111111111111111.•

•
• Water substrate. 5 ns ICCD gate

• Evaporation results in much higher concentrations of H20
enabling more photoionization and Penning ionization.

• IW contacts surface 5 ns earlier than for TiO2 substrate.

• Plasma dims at 230 ns, after contacting the surface.
University of Michigan
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WATER: ELECTRON DENSITY 

t- 215 ns t 235 ns t 280 ns
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• Water substrate.

2
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• Electron density (ne) is again annular due to photoionization and
Penning ionization of surrounding water vapor.

• SIW is not visible by LCIF because high H20 density near the
surface depletes He(23S).

H20 + He(23S) —> H20+ + He

• Electron density is slightly higher than for TiO2 because of higher
water vapor density.
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WATER vs. Ti02
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• •

Animation Slide

• Electrons/ions solvate into the water
while being physisorbed on Ti02.

• Water less likely to support electron
emission to support reverse of
current.

• Evaporation produces higher water
concentrations near surface
resulting in lower mobility, thinner
SIW.

• Plasma dims after IW contacts liquid
surface.
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MODELING LIQUID INTERACTIONS
S, - 8 x 1 02° cm-3s-1

H20 - 6 x 1017 cm-3(linear) (4-dec)
n - 5 x 1013 cm-3
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• Cylindrically
symmetric.

• Modeling
work ongoing.

• Same
parameters as
experiment.

• nonPDPSIM 2-dimensional plasma hydrodynamics model

• Photoionization and photoemission from surfaces are critical in
positive IW propagation.

• Surface ionization wave develops along the liquid surface.

• Electron density profile is annular.
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CONCLUDING REMARKS

• An ionization wave exiting a He plasma jet into a humid
environment is annular due to Penning ionization and
photoionization at the boundary

• Plasma in contact with water vs TiO2 (same 6/80) are
distinguishable from electrical I-V traces.

• Mild humidity above the water produces larger forward current.

• Solvation of electrons/ions in water and larger humidity above
water result in lower reverse current.

• SIWs propagating over a liquid surface are thinner due to the
lower mobility of electrons in a saturated water vapor
environment.
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Appendix



CONVERT LCIF TO ne
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LCIF (588 nm)
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• An LCIF ratio of 1, is approximately 4 x 1012
cm-3 electrons.

0.5 • Previously, conversion factor estimated at 1.5
x 1013 cm-3 at 600 Torr.
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BASE CASE LCIF
t = 200 ns
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• +6 kV, 430 ns

• Pure He, 200 Torr

• Before IW reaches the surface, He(23S) densities are low.

• ne in the SIW is nearly double that of the bulk.

• Elevated ne in IW front may be due to Stark mixing.

Ratio = 1 —> ne z: 4x1012 cm-3
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VARY PRESSURE EMISSION 
150 Torr

. . 190 ns

400 Torr
M l 520 ns

200 Torr (Base)

I . 180 ns

500 Torr
M M 720 ns

300 Torr

. • 340 ns

600 Torr

• • 970 ns

• 6 kV, 500 sccm He, 390 nm plasma emission.

• 350 ns animated, time of first frame indicated.

• Varied pulse duration so voltage is on for 80 ns after contact.

• IW propagates slower and SIW becomes thinner for higher
pressures. (lower electron mobility)
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VARY PRESSURE — ne
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• 6 kV, 500 sccm He, 30 ns after !IN contacts surface.

• Plasma is more confined at higher pressure, ne increases.

• Current and energy deposition decrease with increasing pressure.

• Above 500 Torr, ne is collisional enough that ionization rate drops.

Ratio = 1 —> ne 4x1012 cm-3
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HUMID He SHROUD EMISSION 
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• 2.3% H20 in shroud.

• Images have not been Abel inverted.

• IW reaches outlet of the tube earlier than in base case —
photoionization from He2* causes non-local seed ionization.

• Photoionization and Penning ionization promote IW speed.

• Ha, emission appears more annular — dominates at the
interface of the center and shroud flow.
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LIF (389 nm)

LCIF (588 nm)

1

LCIF Ratio (588 nm / 389 nm)

GEC 2018

1co HUMID He SHROUD
80

60 • 6 kV, 430 ns pulse

40 • Center: 500 sccm He

20 • Shroud: 500 sccm He/H20

0 97.7/2.3

• t = 230 ns, 30 ns after IW contacts
surface

60 • Moving away from He core, there
are fewer He(23S), LIF signal

40
decreases.

100

80

20
He(23S) + H20 —> He + H20+ + e

1.5
• In regions of high H20
concentration, there may be
significant ne which is not
detectable due to low He(23S).

05 Ratio = 1 —> ne 4x1012 cm-3
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SHROUD HUMIDITY

Pure He
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• Transition from diffuse in pure helium case to confined by humid
shroud.

• Higher electron energy loss rates with H20 because of vibrational
and rotational excitation.

• ne increases with humidity due to Penning ionization.
University of Michigan

Ratio = 1 —> ne z: 4x1012 cm-3
Institute for Plasma Science & Engr.GEC_2018



VARY He FLOW RATE - ne
300 sccm

600 sccm

400 sccm

700 sccm

500 sccm

• Vary center flow rate.

• Shroud: 500 sccm, He/H20 = 98.7/2.3

• Higher He flow rates more rapidly convect in-diffusing H20.

Ratio = 1 —> ne z: 4x1012 cm-3
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BOLTZMANN CALCULATIONS 

0.001% H20
0.01% H20
0.1% H20

1 1 , ,,, 
10° 101
E/N (Td)

102

• For LCIF measurement to
be a linear representation
of ne, this rate must be
independent of Te:

e + He(33P) —> He(33D) + e

• Threshold = 0.06 eV

• In pure He, this occurs
when E/N > - 0.8 Td

• For H20 < 1%, LCIF is valid
- 1 Td


