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Outline of Presentation

* Comparison of DFN and Equivalent Continuum
Models

* dfnWorks from Los Alamos National Laboratory
* FCM from Sandia National Laboratories

« DECOVALEX 2019 Task C, GREET: Groundwater

REcovery Experiment in Tunnel
* Hydrology and Geochemical Modeling

e Effect of Grid Block Size




3 Fracture Characterization Methods

* A realistic representation of fractures in granite
rocks is needed.

- Capabilities of discrete fracture network and

equivalent continuum methods compared:

1. dfnWorks, a computational tool for discrete fracture

network modeling
* Flow and transport through fractures

2. Fractured Continuum Model (FCM)

* Flow and transport through fractures and rock matrix




.1 DFN-FCM Comparison

* Benchmark Simulations used for the comparison
* Realistic distributions of fracture parameters used

* dfnWorks output converted to FCM input to allow
direct comparison

*Eliminates uncertainty in generating fracture
network.

*Compares explicit (DFN) and effective (FCM)
representation of fracture network.

*Effective permeability of the modeling domain and
breakthrough curves can be compared for each
realization.




;| Model Setup for Simulations

* A domain 1km x 1km x 1km cube selected.

* FCM used constant grid block size of 10 m x 10 m x 10m
* Porosity: Anisotropic

* Permeability: Anisotropic

* |nitial condition: Hydrostatic pressure

* Boundary pressure: Pressure gradient from west to east

Upscaled continuum permeability
field of a realization




Effective Permeability Evaluation:
ol dfnWorks Fracture Output Data

 PFLOTRAN numerical simulator used (for both DFN and FCM)
advection-diffusion simulations. Particle tracking was also
used for DFN.

» Steady state flow utilized to estimate effective permeability
for each realization

* Darcy’s law and flux used to calculate effective permeability

Realization DFN Effective FCM Effective
Permeability (m2) Permeability (m?)
1 3.77x10-17 4.60x1017
2 4.24x10-17 3.91x10°17
3 4.28x1017 4.18x1017
4 3.81x10-17 3.62x10°17
5 3.35x10-17 3.81x10°17




.| Comparison of Tracer Breakthrough Curves

* Tracer breakthrough curves using DFN (Particle
Tracking), DFN (Advection-Diffusion) and FCM
(Advection-Diffusion) for a realization
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Hydrology and Geochemical Experiments
1 at the Mizunami Underground
Research Laboratory

* URL located at Tono area (Central Japan)
e Study is part of DECOVALEX2019 Task C (JAEA experiments)

GREET(Groundwater REcovery Experiment in
Tunnel) : Preliminary test (drift closure and water-
filling) to estimate the recovery process in granitic
rock

Monlitoring Borehale
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.| Study Area: Tunnel and an Observation
Borehole

e Tunnel sections: Inclined Drift and Closure Test Drift
* Monitoring Sections in Observation Borehole 12MI33
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»| Tunnel Excavation Progress Data

* Progress of excavation of inclined Drift and Closure
Test Drift tunnel sections
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‘ Fracture Model Development

e Measured fractured data from tunnel walls and Borehole 12M133
* FracMan used in model development (Kalinina et al., DFNE 2018)

Transmissivity [m2/s] > 6.07e-007 Permeability [m2] > 3.18e-009

Transmissivity[m2/s] “"’
Fracture transmissivity in tunnel A realization of discrete fracture network

and observation borehole 12MI33
Developed fracture data

Trend (%) | Plunge (%) Fisher Volumetric Intensity
Dispersion « P, (1/m)
| Set1 [P 8 7

0.22

| Set2 [ 1.3 3.6 0.086



-1 Simulation Model Development

e Simulation of tunnel excavation, pressure drawdown and
chloride concentration

* Domain: 200m x 300 m x 200 m
e Grid blocksize:2mx2mx2m
* Mesh Size: 1,500,000 grid blocks

* Fracture model with two fracture sets; 10 DFN realizations

* Permeability and porosity upscaled to continuum grid

* |nitial Condition: hydrostatic pressure and chloride conc. gradient

* Boundary Conditions: specified pressure and chloride
concentration

* Pressure and chloride prediction at observation points

* Inflow rate prediction

 DAKOTA, optimization code and PFLOTRAN massively parallel
numerical code used




Predicted Pressure and Chloride Distribution
Results for a Fracture Realization

13

* Pressure and Chloride distribution along tunnel axis,
after 173 days simulation time

100000




.| Predicted Inflow of Water into Tunnel

* Inflow of water during excavation of Inclined Drift and
Closure Test Drift (CTD) for 10 fracture realizations

Inflow into Tunnel: Inflow Rate Prediction
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Effect of Grid Block Size in Upscaling DFN
to Continuum Grid

For the DECOVALEX Task C modeling DFN was upscaled to
continuum in FracMan using the Oda method.

The Oda method is a geometric based upscaling method
Modeling analysis conducted to study effect of grid block size
Different domain sizes and grid block sizes considered

A fracture realization was used for the exercise

Pressure and tracer concentration gradient applied

Effective permeability and tracer breakthrough estimated
PFLOTRAN numerical code used for flow and transport
simulation




«| Effective Permeability vs Grid Block Size
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Tracer Transport Breakthrough Curves for
L Different Grid Block Sizes

« Simulations show grid block size limits of 0.5 m to 25 m
* Direct DFN simulations may help optimize grid block size
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Distribution of Tracer for Different Grid

18 Block Sizes

2Zmx2mx2m  2.5mx 2.5m x 2.5m 5m X 5m X 5m

10m‘x 10m x 10m 20m x 20m X 20m 25m x 25m x 25m

|

Grid block side sizes: 2Zm, 2.5m, 5m, 10m, 20m, 25m
Simulation Time: 10 years

Total Tracer [M]




.| Conclusions

o Three fracture models tested: dfnWorks, FCM and
FracMan

o Results show upscaled fracture model provides
oetter representation of fractured crystalline rocks
compared to homogenous porous medium
assumption

> Oda upscaling method is grid block size dependent

o Qutput shows a power law relationship between
permeability and grid block size

> There is a need to compare upscaled results to DFN
simulation results to optimize grid size
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