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Abstract—Patch antennas incorporating a U-shaped slot are
well-known to have relatively large (about 30%) impedance
bandwidths. However, a theory of operation for these devices has
remained elusive more than 20 years after their introduction. This
paper uses Characteristic Mode Analysis to show a classic U-slot
patch geometry supports in-phase and anti-phase coupled modes
that occur within Coupled Mode Theory.
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I. INTRODUCTION

As first demonstrated in [1], the addition of a U-shaped slot
significantly increases the otherwise narrow impedance
bandwidth of a probe-fed microstrip patch antenna. It has been
hypothesized that this is due to the existence of two
resonances—that of the patch and that of the U-shaped slot.
Several researchers have reported observations of, and
empirical design algorithms for, the U-slot patch. One such
study [2] gave qualitative guidelines regarding how the
impedance locus behaved in response to dimensional changes.
Another study [3] found empirical relations between design
dimensions and the frequencies of the reflection coefficient
magnitude minima In [4], investigators used parametric
numerical studies to characterize the response of the impedance
locus to dimensional changes and gave an algorithm that yields
initial design dimensions. Another study [5] observed that the
ratios of acceptable design dimensions were substantially
constant with changes in substrate permittivity.
As in [6], this work uses Characteristic Mode Analysis

(CMA) and Coupled Mode Theory (CMT) to reveal some of the
principles that govern the classic U-slot patch geometry [1].
CMA is a modal decomposition technique based on the method
of moments (MoM) [7-9]. CMT states the dynamics of a system
of two coupled resonators as the superposition of two coupled
modes, an in-phase and anti-phase mode, each with different
frequencies [10] .
The coupled mode frequencies, co+ and (0_, are related to the

uncoupled mode frequencies, 6)1 and 6)2, by [11]:
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where 6)0 = (oh + 6), )/2 and K is an un-normalized coupling
coefficient. Given synchronous coupling (6)1 = 6)2), a
normalized coupling coefficient K 6)0K/2 may be calculated
from the coupled mode resonant frequencies via [12]:
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II. CHARACTERISTIC MODE ANALYSIS OF A U-SLOT PATCH

A commercial MoM/CMA solver [13] was used to analyze
the classic U-slot patch geometry given in [1]. CMA modes 1
and 3 (the mode numbers are arbitrary) are resonant at
0.80 GHz and 1.05 GHz. The reflection coefficients of these
modes in a system impedance of 50 SI are plotted in Fig. 1.
According to CMA, the total admittance of a structure is the
parallel combination of mode admittances, and thus the
reflection coefficient of the parallel combination of CMA
modes 1 and 3 is also plotted in Fig. 1. We see this agrees well
with the admittance calculated by the driven MoM solve (i.e.,
an edge port driven by a 1 Volt source), also shown in Fig. 1,
differing only by a small capacitive susceptance attributed to
sub-resonant higher order characteristic modes excluded from
the limited parallel combination of CMA modes 1 and 3. These
modes have similar broadside radiation patterns, resulting in a
stable radiation pattern throughout the entire impedance
bandwidth, as shown in Fig. 2.

Normalized charge distributions at phase angle = 90° for
CMA modes 1 and 3 at their respective resonant frequencies are
shown in Fig. 3. The expected charge accumulation is visible at
the edges of the patch and the center of the slot, however, the
spatial orientation of these distributions with respect to the other
differs between the two CMA modes. For CMA mode 1, the
patch and slot charge distributions are in phase; for CMA mode
3, the patch and slot charge distributions are anti-phase. The
presence of such modes strongly suggests that coupled mode
theory is relevant to the operation of the U-slot patch.

Further evidence of this is found in the behavior of the
resonant frequencies of CMA modes 1 and 3 in response to
changes in coupling factor. According to (1), a larger coupling
factor results in a larger difference between the coupled mode
resonant frequencies. This behavior is indeed present in the U-
slot patch design of [1], as shown in Fig. 4. Here, the width of
the "U" (the 2.70" dimension in [1]), denoted U,„„ is varied
while the total slot length remains constant. As can be seen in
Fig. 4, the ratio U,„, to the width of the patch (the 8.65"
dimension in [1]), denoted W, roughly corresponds to the
coupling coefficient calculated by (2). This can be understood
by noting that the fraction of TM01 mode patch current
intercepted by the slot is approximately /W.
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Figure 1. The admittance of the parallel combination of CMA modes
1 & 3 agrees well with the driven admittance locus of the U-slot patch.
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Figure 2. E-plane cuts of CMA mode 1 & 3 far-fields show each has a
broadside radiation pattern (each normalized to 0 dBi directivity).

(a)

(b)

►
,111/1I,/,/,`•,1, V 'WV I, \VV.

Figure 3. Normalized charge distributions of CMA modes 1 & 3 at
phase angle 90° at their respective resonant frequencies show that the
patch and slot charge distributions are (a) in-phase for CMA mode 1
and (b) anti-phase for CMA mode 3.
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Figure 4. Lefi axis (solid and dashed lines): An increase in frequency
separation of the in-phase (CMA mode 1) and anti-phase (CMA mode
3) resonances with increasing U-slot width (while keeping the total
slot length constant) is evidence for the relevance of coupled mode
theory to the operation of the U-slot patch. Right axis (* and A data
points): the ratio Uw1147 corresponds approximately to the coupling
coefficient lc, as calculated by (2).
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