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Post Combustion Technologies

Post |
Combustion
CO2 Capture

Studied
iIndependently

Solid Sorbents —
adsorption

Issues
* Energy Intensive
* Plant complexity

» Hypothesis
= Hybrid CO, capture
plants could reduce
the capture costs.
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Solvents - Jeoianss
absorption PERSIER e
permeatlon
Issues Issues
* Energy Intensive * Flue gas with low CO,
 Plant complexity concentration
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> Intermediate GOALS

= Establish a consistent framework to optimize the
structure and design of capture technologies
» Superstructure optimization framework

= Robust Mathematical models
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Superstructure Optimization Framework

Clean Gas

. CO2 rich gas
,Compressmn

Adsorber
beds

Flue Gas
650 MW
fired coal
power plant

H1
Util In

» Discrete Decisions:

» Continuous decisions:
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Regeneration
beds

%}

How many units? Parallel trains?
What technology used for each reactor?

Steam + CO2

MINLP

Unit geometries, Operating conditions (temp, pressure,
flow rates, compositions)
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. Problem Statement
Cost of Electricity (COE) _
* Operating Cost
min COE min COE » Variable Cost
M ial Bal st _ * Fixed annual
s.t. aterial Balances L. Material Balances FVESTTTET O
Ene!rgy balance_s Energy balances « Net power cost
Equipment design Equipment design
Adsorption model Membrane separation model
» Design: » Design:
= # of parallel units, = # of membranes to be
= # of adsorbers and # of installed,
regenerators, = Size of equipment (Heat
= Size of equipment (Heat exchangers, pumps,
exchangers, reactors, blowers) expanders, membranes)
» Operation:
» Flows (molar and mass flow » Operation:
rates) » Flows (permeate, retentate)
» Temperatures (Coolant, steam, = Temperature (gas, coolant)
gas, solids) = Pressure (retentate and
= Pressure (gas and solids) permeate sides)
= Concentrations (gas and solids) = Concentrations (gas)
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Solid Sorbent System

Adsorption system

Plant consists on:
» Flue gas (650 MW power plant)

Clean Gas

SolidLeanHX
‘ Rich CO, Gas

to storage

O

A 4

» 90 % capture
Adsorber

Design Decisions: beds

» # number of parallel units,
» Flue gas heat exchanger,
» Adsorber and Regeneration trains,

> SolidLean and SolidRich Heat

# Nu
exchangers

Operation
> Flows, temperatures, concentrations
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Solid Sorbent System

Rich CO, Gas
Clean Gas SolidLeanHX to storage
Adsorption & Regeneration process 1
> Bubbling fluidized bed reactor "*
= Lee and Miller 20131 1
= One dimensional model
= Mass & energy balances t
= |ntegrated heat exchanger /Qgggfbef ”
= PDEs 10,000 Equations 2
L
# Nu
Mathematical Model e cas _I
« Mix of first principle >
« and Surrogate models to describe SolidRichHX
the process. FG_HX
Regeneration
1Lee A, Miller, D.C. I&ECR 2013. beds



Solid Sorbent System

Superstructure Optimization

Clean Gas 1 CO2 rich gas !

t) . iCompression i

Adsorber - n ] “ i_‘f’.‘l:a_i.n_ ---------- E
beds T I i

Regeneration
i G
a4

beds

Basic Data

Submodels

e

Heat exchangers,
blowers, pumps, etc.

» Nonlinear algebraic
equations

Optimized
Process
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Solid Sorbent System ALAMO “Surrogate models correlate the input and output
variables of the process®

_ Input o Process simulation 4
Adsorption system variables Output
. . . LeRD | .
> First principle: FEm N variables
= Heat exchangers, blowers, o
umps, etc. . :
pump Data set (simulations)
Final surrogate Model:
» Surrogate models: z; = f(xq,..,xp) VieEK
Framework for Optimization and
Uncertainty Quantification and
Surrogates FOQUS FOQUS
= — ~N /- S
- 868 O _ . /Process Surrogate Optimization
: —— Simulation model
o - Data sampling - Generation * GAMS
; e i - Data analysis - Validation ) \?gdaf}gn
; N k Data refining VAN Y, \( QUS) Y,
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Solid Sorbent System

Reactor Design

* Dt — unit diameter (m)

_ o « Heat Exchanger design

> First principle: . Solids Fluidization bed
= Heat exchangers, blowers, pumps, etc.

Adsorption system

» Surrogate models: Gas Outlet
=  Simulation
* Model 10,000 PDE’s . ]
* Aspen Custom Modeler Solids Inlet /Jﬁ Solids Outlet
= Data set BFB
+ 2000 samples Coolant —* Reactor ——
« Latin Hypercube Sampling method Coolant Outlet
Flue gas

* Flow rate

* Pressure

« Temperature

* Concentration
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Solid Sorbent System it data T

§ Estimate +/- 1 std dev
Actual +/- 7.0%

uuuuuuu
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Adsorption system
» First principle:
» Heat exchangers, blowers, pumps, etc.

4000

» Surrogate models:
=  Simulation

Surrogate Gas Outlet Flow rate

2000

«  Model 10,000 PDE’s Rigorous Gas Outlet Flow rate
« Aspen Custom Modeler Cross-validation R2=0.99
= Data set

+ 2000 samples
* Latin Hypercube Sampling method

= Surrogate model generation
+ Validation and cross-validation

2000 —
0000
8000
65000
4000

2000 4”""””,,—"'
0

0 2000 4000 6000 8000 10000 12000

Rigorous Gas Outlet Flow rate

Surrogate Gas Outlet Flow rate

R?=0.99
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Optimal Solutions

Clean Gas SolidLeanHX Clean Gas A SolidLeanHX
A

L O

Regeneration
beds

Adsorber
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Adsorber
beds . beds
Rich Gas )
Regeneration
beds
Flue
Flue Gas (CO,
G CO G
e SolidRichHX and l(-|20)2 E solidrichHx ~ and Hz0)
Fixed layout
Best
Case
Optimization:
. pS truct COE increase 5.12% 3.63 %
”Pefs “.JC ure relative to best case
optimization allow us to
explore all the possible Adsorber beds 3 3
plant layouts. Regeneration beds 1 1
° 0
90% CO, Capture. Ads parallel units 6 8
Rgn parallel units 4 6
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Membrane based systems

Membrane separation

Design:

» # of membranes to be installed
» Membrane area

» Sizel/cost of Heat exchanger,
pumps, compressors, expanders

Operation:

> Flows (feed, permeate, retentate)
Temperature (gas, coolant)
Pressure

Concentrations (gas)

Y V VYV

90% Capture
97 % CO, pure to Storage

C C S I ¥ INWONM ‘m\‘m‘ || Lawrence Livermore

TECHNOLOGY

' ‘ Carbon Capture Simulation Initiative

LABORATORY

Optional

—_—
Fixed

D Retentate M3

Expander

Retentate M1
Flue Gas

(Power Plant

650 MW) L
9[:‘-—@-) Expander|

Compressor M3
Permeate M1 Permeate M3

Retentate M2 pr—t—
T=-30C
@_5 P = 22 bar
vl ()
=\

Permeate M2

CO, to
Storage

Tem =25C

Permeance = fixed (kgmol/m2 s bar)
Operation = co-current flow
Pressure ratio = Pin (bar) /Pout (bar)
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Membrane based systems FR, . . — molar flow rate retentate

,Nn,s
side
> Separation stage FP, , s — molar flow rate permeate
side
- 2 ;
Co-current flow F. n.s — molar flow rate moving from
Feed, Retentate the retentate to the permeate side
Retentate| _s | | PRl : >
Sidg L 1>t !0 . _
I Material Balances:
Permeate | __ | e LY Find s
Side ! R : : FRi,n,s = Inlet — Fi,n,s
n=1 n=2 n=n-1 n=n n=n+1 n=Nc -
Permeate FP, hs = Inlet + Fj
A; | P
Fino=—— — (Pl.xr; — P2 .xp;
i,n,s |NC| S5 ( sAlin,s S pl,n,s)
Membrane Area
_ _ Driving force
Membrane material design (Partial pressure
2Hasan, Baliban, Elia and Floudas, I&ECR, 2012. Permeance (kgmoI/m2 s bar) difference)
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Membrane based systems

» Separation stage

Flue Gas Flue Gas Retentate
- 10-15 % CO2 - 3-6 bar _ - 3-6 bar
-1 bar -298.15 K Tmem =298.15 K -298.15 K
- 327K > Q—>
Flue Gas
- 3-6 bar f\’ ‘ >
- 400-600 K Permeate Permeate
-0.01 -1 bar -1 bar
-298.15K - 298.15 K
Stage: - 0.25 - 0.8 % CO2
- Compression system .
- Heat exchanger . &
- Membrane S e .
- Vacuum pump g:(x) <0, i=1,..,n
- Expander hj(x) =0, j=1,..,m
x €X
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P — Permeate Optimal Solutions

R — Retentate
M — Membrane

<«{1 FR3
Flue RL S glue R1
Gas as
—{J— M1 <"D<_| B v s M3 <_<|—,<_
R2 R2
i M2 | p2 > o _>D_> M2 ?)
J  co,to J co,to
storage storage

Optimi;ation_: Optimization:

« Configuration: 2_mem_brane_ « Configuration: 3 membrane
stages, flash unit, recirculation R1 stages, flash unit, recirculation R1
and R2 to M3 and R2 to M3

« 15% COE increase relative to best « 90% CO, Capture

case
« 70% CO, Capture
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Remarks

> A robust mathematical optimization framework has been developed to
optimize the structure and design of CO, capture technologies.

» Establishing a consistent basis for analyzing the cost of electricity due to
capture is a critical issue to compare different Post Combustion Capture
Technologies.

» Further work has been simplified and a hybrid model is under study.

Solid Sorbents
» Rigorous models have been replaced by surrogate models.

= Surrogate model generation, validation and cross-validation have been
simplified with the Framework for Optimization and Uncertainty
Quantification and Surrogates.

Membrane-based systems

» Optimization of multiple membrane configurations is a critical issue to
enhance the separation performance.
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