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Issues 

• Energy Intensive

• Plant complexity

 Hypothesis

 Hybrid CO2 capture 

plants could reduce 

the capture costs.

Post Combustion Technologies

Issues 

• Flue gas with low CO2

concentration

Issues 

• Energy Intensive

• Plant complexity

Studied 

independently

Post 
Combustion 
CO2 Capture

Solid Sorbents –
adsorption

Solvents -
absorption

Membrane-
based – gas 
permeation

 Intermediate GOALS

 Establish a consistent framework to optimize the 

structure and design of capture technologies

• Superstructure optimization framework

 Robust Mathematical models
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 Discrete Decisions:

 Continuous decisions:

Superstructure Optimization Framework

Flue Gas

650 MW 

fired coal 

power plant

Nu – parallel 

trains

Clean Gas

Adsorber 

beds

H1

a1

a1

an

…

d1

d2

dn

…

CO2 rich gas 

Compression 

chain

Regeneration

beds

Steam + CO2

Util in

Warm in
Hot in

How many units? Parallel trains?

What technology used for each reactor?

Unit geometries, Operating conditions (temp, pressure, 

flow rates, compositions)

cold in

MINLP
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Adsorption model

 Design: 

 # of parallel units, 

 # of adsorbers and # of 

regenerators,

 Size of equipment (Heat 

exchangers, reactors, blowers)

 Operation:

 Flows (molar and mass flow 

rates)

 Temperatures (Coolant, steam, 

gas, solids)

 Pressure (gas and solids)

 Concentrations (gas and solids)

Problem Statement

Membrane separation model

 Design:

 # of membranes to be 

installed,

 Size of equipment (Heat 

exchangers, pumps, 

expanders, membranes)

 Operation:

 Flows (permeate, retentate)

 Temperature (gas, coolant)

 Pressure (retentate and 

permeate sides)

 Concentrations (gas)

𝒎𝒊𝒏 𝑪𝑶𝑬

𝒔. 𝒕. Material Balances

Energy balances

Equipment design 

𝒔. 𝒕. Material Balances

Energy balances

Equipment design 

𝒎𝒊𝒏 𝑪𝑶𝑬
• Operating Cost

• Variable Cost

• Fixed annual 

investment cost

• Net power cost

Cost of Electricity (COE)
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Adsorption system

Plant consists on: 

 Flue gas (650 MW power plant)

 90 % capture

Design Decisions:

 # number of parallel units, 

 Flue gas heat exchanger, 

 Adsorber and Regeneration trains,

 SolidLean and SolidRich Heat 

exchangers 

Operation

 Flows, temperatures, concentrations

Solid Sorbent System

Flue Gas

# Nu

SolidRichHX

SolidLeanHX
Clean Gas

Gas

Adsorber 

beds

Regeneration

beds

FG_HX

Rich CO2 Gas

to storage 
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Adsorption & Regeneration process

 Bubbling fluidized bed reactor

 Lee and Miller 20131

 One dimensional model

 Mass & energy balances

 Integrated heat exchanger

 PDEs 10,000 Equations

Solid Sorbent System

Flue Gas

# Nu

SolidRichHX

SolidLeanHXClean Gas

Gas
Mathematical Model

• Mix of first principle 

• and Surrogate models to describe 

the process.

Adsorber 

beds

Regeneration

beds

FG_HX

Rich CO2 Gas

to storage 

1Lee A, Miller, D.C. I&ECR 2013.
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Superstructure Optimization
Process Models

 Solid In

Solid Out

Gas In

Gas Out

Utility In

Utility Out

Basic Data 

Submodels

Carbon Capture Process

GHX-001
CPR-001

ADS-001

RGN-001

SHX-001

SHX-002

CPR-002

CPP-002ELE-002

ELE-001

Flue Gas

Clean Gas

Rich Sorbent

LP/IP Steam

HX Fluid

Legend

Rich CO2 Gas

Lean Sorbent

Parallel 
ADS Units

GHX-002

Injected Steam

Cooling Water

CPT-001

1

2

4

7
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6

9
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S1

S2

S3

S4

S5

S6

12
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14

15

16

17

18

19

21

24

2022

23

CYC-001

Algebraic Surrogate 

Models

First Principle Models

• Heat exchangers, 

blowers, pumps, etc.

• Nonlinear algebraic 

equations
Optimized 

Process

Solid Sorbent System
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Solid Sorbent System

Adsorption system

 First principle:

 Heat exchangers, blowers, 

pumps, etc.

 Surrogate models:

 Simulation
• Model 10,000 PDE’s

• Aspen Custom Modeler

 Data set
• 2000 samples

• Latin Hypercube Sampling method

 Surrogate model generation
• Algebraic modeling system

– Validation and cross-

validation

ALAMO “Surrogate models correlate the input and output 

variables of the process“     

Process 
Simulation

• Data sampling

• Data analysis

• Data refining

Surrogate 
model

• Generation

• Validation

Optimization

• GAMS

• Validation 
(FOQUS)

FOQUS

Framework for Optimization and 

Uncertainty Quantification and 

Surrogates - FOQUS

𝒛𝒊 = 𝒇 𝒙𝟏, … , 𝒙𝑫 ∀ 𝒊 ∈ 𝑲

Final surrogate Model:

Input 

variables Output 

variables

Data set (simulations)
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Adsorption system

 First principle:

 Heat exchangers, blowers, pumps, etc.

 Surrogate models:

 Simulation
• Model 10,000 PDE’s

• Aspen Custom Modeler

 Data set
• 2000 samples

• Latin Hypercube Sampling method Algebraic 

modeling system

– Validation and cross-validation

Reactor Design

• Dt – unit diameter (m) 

• Heat Exchanger design

• Solids Fluidization bed

• Flow rate

• Pressure

• Temperature

• Concentration

Solids Inlet

Flue gas

Coolant

Solids Outlet

Gas Outlet

Coolant Outlet

BFB

Reactor

Solid Sorbent System
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Adsorption system

 First principle:

 Heat exchangers, blowers, pumps, etc.

 Surrogate models:

 Simulation
• Model 10,000 PDE’s

• Aspen Custom Modeler

 Data set
• 2000 samples

• Latin Hypercube Sampling method

 Surrogate model generation
• Validation and cross-validation
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Rigorous Gas Outlet Flow rate 

R2= 0.99

R2= 0.99

Rigorous Gas Outlet Flow rate

Cross-validation

Fit dataSolid Sorbent System
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Optimal Solutions

Flue 

Gas
# Nu

SolidRichHX

SolidLeanHXClean Gas

Gas (CO2

and H2O)

Adsorber 

beds
Regeneration

beds

Optimization: 

• Superstructure 

optimization allow us to 

explore all the possible 

plant layouts.

• 90% CO2 Capture.

Best 

Case

Case 1 Case 2

COE increase 

relative to best case

- 5.12 % 3.63 %

Adsorber beds 3 3 3

Regeneration beds 1 2 1

Ads parallel units 6 6 8

Rgn parallel units 4 4 6

Flue 

Gas
# Nu

SolidRichHX

SolidLeanHXClean Gas

Gas (CO2

and H2O)

Adsorber 

beds

Regeneration

beds

Rich Gas

Fixed layout
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Membrane based systems

Fixed

Optional

Membrane separation

Design:

 # of membranes to be installed

 Membrane area

 Size/cost of Heat exchanger, 

pumps, compressors, expanders

Operation:

 Flows (feed, permeate, retentate)

 Temperature (gas, coolant)

 Pressure

 Concentrations (gas)

Tmem = 25 C

Permeance = fixed (kgmol/m2 s bar)

Operation = co-current flow

Pressure ratio = Pin (bar) /Pout (bar)

Permeate M1

Flue Gas 

(Power Plant 

650 MW)

Permeate M2

Retentate M3

Retentate M1

CO2 to 

Storage

Permeate M3

T = -30 C

P = 22 bar

Compressor
M3

M2

Expander

Expander

Retentate M2

90% Capture

97 % CO2 pure to Storage
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 Separation stage

Membrane based systems

FPi,n,s – molar flow rate permeate 

side

FRi,n,s – molar flow rate retentate 

side

FPi,n-1,s

FRi,n-1,s

Feedi

n=1 n=2 n=n-1 n=n n=n+1 n=Nc

Retentate

Permeate

Retentate 

Side

Permeate 

Side FRi,n,s = Inlet − Fi,n,s
Fi,n,s

FPi,n,s = Inlet + Fi,n,s

Fi,n,s =
𝐴𝑠
𝑁𝑐

𝑃

𝛿
𝑃1𝑠𝑥𝑟𝑖,𝑛,𝑠 − 𝑃2𝑠𝑥𝑝𝑖,𝑛,𝑠

Membrane Area

Membrane material design
Permeance (kgmol/m2 s bar)

Driving force 
(Partial pressure 

difference)2Hasan, Baliban, Elia and Floudas, I&ECR, 2012.

Co-current flow2

Fi,n,s – molar flow rate moving from 

the retentate to the permeate side

Material Balances:
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 Separation stage

Membrane based systems

Stage: 

- Compression system

- Heat exchanger

- Membrane

- Vacuum pump

- Expander 

Flue Gas

- 10-15 % CO2

- 1 bar

- 327 K

Flue Gas

- 3-6 bar

- 400-600 K

Flue Gas

- 3-6 bar

- 298.15 K Tmem = 298.15 K

Retentate

- 3-6 bar

- 298.15 K

Permeate

- 0.01 - 1 bar

- 298.15 K

- 0.25 – 0.8 % CO2

Permeate

- 1 bar

- 298.15 K

min
𝑥

𝑓(𝑥)

𝑠. 𝑡.
𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛
ℎ𝑗(𝑥) = 0, 𝑗 = 1,… ,𝑚

𝑥 ∈ 𝑋
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Optimal Solutions

Flue 

Gas 

M1

M2

M3

P2

CO2 to 

storage

P3

P1

R1

R2

R3

P – Permeate

R – Retentate

M – Membrane 

Optimization:

• Configuration: 2 membrane 

stages, flash unit, recirculation R1 

and R2 to M3

• 15% COE increase relative to best 

case

• 70% CO2 Capture

Flue 

Gas 

M1

M2 P2

CO2 to 

storage

P1

R1

R2

Optimization:

• Configuration: 3 membrane 

stages, flash unit, recirculation R1 

and R2 to M3

• 90% CO2 Capture
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 A robust mathematical optimization framework has been developed to 

optimize the structure and design of CO2 capture technologies.

 Establishing a consistent basis for analyzing the cost of electricity due to 

capture is a critical issue to compare different Post Combustion Capture 

Technologies.

 Further work has been simplified and a hybrid model is under study.

Solid Sorbents

 Rigorous models have been replaced by surrogate models.

 Surrogate model generation, validation and cross-validation have been 

simplified with the Framework for Optimization and Uncertainty 

Quantification and Surrogates. 

Membrane-based systems

 Optimization of multiple membrane configurations is a critical issue to 

enhance the separation performance.

Remarks
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