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"Spin-orbit coupling is weak in Si"

Historical assumptions for electron quantum dots in silicon:

• Needn't worry much about spin-orbit coupling. If we do, then Rashba but no Dresselhaus

• g-factor should be something close to 1.998, with slight valley-dependent anisotropy as a function

of B-field orientation relative to crystallographic directions [Roth, Phys. Rev. 118, 1534 (1960)]

• To realize an effective B-field gradient, must use something like A-magnets (e.g. [Kawakami, et al.

Nat. Nano. (2014)], [Takeda, et al. Sci. Adv. 2, e1600694 (2016)])
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"Spin-orbit coupling is non-neglible in Si"

SOC in Si due to interface effects [Golub & Ivchenko, PRB (2004)]
• Significant Dresselhaus-like SOC (forbidden in the bulk due to symmetry)

• Can drive S/To qubit rotations nicely using only intrinsic SOC

• Lots of measurements and supporting theory from community over past few years
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"Spin-orbit coupling is non-neglible in Si"

SOC in Si due to interface effects [Golub & Ivchenko, PRB (2004)]

• Significant Dresselhaus-like SOC (forbidden in the bulk due to symmetry)

• Can drive S/To qubit rotations nicely using only intrinsic SOC

• Lots of measurements and supporting theory from community over past few years

In this talk:

• Summary of SOC mechanisms for electrons in silicon quantum dots

• Physics behind interesting effects that one may observe in S/To experiments

• Examples of our experiences with S/To spin-orbit qubits at Sandia

• Challenges and prospects
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dauplinals 'Jon-negligible in Si"

SOC in Si due to interface effects [Golub & Ivchenko, PRB (2004)]

• Significant Dresselhaus-like SOC (forbidden in the bulk due to symmetry)

• Can drive S/To qubit rotations nicely using only intrinsic SOC
• Lots of measurements and supporting theory from community over past few years

a)

Three mechanisms (at least) in S/To qubits:
• šg-factor between dots: Effective B-field ET2

gradient proportional to applied B

• Inter-valley SOC: Effective B-field gradient

that is a non-linear function of B

• Inter-dot tunneling+spin flip: Leakage when
a) a

passing through S/T_ anti-crossing -
11"1111 0106.,

4-+

oxide.

11)

Ag

All three effects measured [Harvey-Collard, et al. arXiv:1808.07378]
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As we reported last year at this workshop [Jock, et al. Nat. Comm. (2018)]

A S/To qubit in a poly-silicon MOS double dot, e--500 ppm 295i, no wmagnet, and no ESR
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Interpretation: Linear variation of S/To rotation frequency due to distinct g factors in each dot
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As we reported last year at this workshop [jock, et al. Nat. Comm. (2018)]

A S/To qubit in a poly-silicon MOS double dot, e--500 ppm 295i, no wmagnet, and no ESR

10
N
i
2 8
>p%oc
w 6
n
o-
El?
4— 4c
o
7cil
0cc • B

• B
.

—0.4 —0.2 0 0.2

Magnetic field (T)

Interpretation: Linea

1
[010]

20

15

10

110] [100] [110] [010]

20
[110] [001]

For recent theory treatments of this effect, see e.g.:

[Veldhorst, et al. PRB 92, 201401 (2015)]

[Ferdous, et al. npj Quant. Info. (2018)]

[Ferdous, et al. PRB 97, 241401 (2018)]

[jock, et al. Nat. Comm. 9, 1768 (2018)]

[Ruskov, et al. arXiv:1708.04555]

[Harvey-Collard, et al. arXiv:1808.07378]
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An unexpected B-field dependence... [Harvey-Collard, et al. arXiv:1808.07378]

Consider a different device (same design)
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In this device, choosing a [110] orientation for the B-

field looks like a simple inter-dot g-factor difference.
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An unexpected B-field dependence... [Harvey-Collard, et al. arXiv:1808.07378]

Consider a different device (same design)

gate
(n+ poly-Si)
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contact
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J '
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electrons QD 28Si

SET charge sensor
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VBS VBL VBC
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In this device, choosing a [110] orientation for the B-

field looks like a simple inter-dot g-factor difference.

Now, rotate the magnetic field to [100].
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Yet another unexpected B-field dependence... [see Ryan's poster]

In the same measurement, we

observe two frequencies with

different functional forms.

Dot occupancy: (4,0)-(3,1)

(filled lower valley in left dot)

Note: Two simultaneous frequency components have

been observed previously due to valley-dependent g-

factors [Kawakami, et al. Nat. Nano. (2014)].

(see also [Veldhorst, et al. PRB (2015)])

Why the distinct functional forms?

4

Ignore this
instrumental

background
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Measurements by Ryan Jock
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A menagerie of soc effects

The underlying microscopic SOC physics can manifest in a variety of ways:

(1) Intra-valley (g-tensor shift)
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(UNSW+LPS +Purdue)

e.g. KR* TIHsoIR
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A menagerie of soc effects

The underlying microscopic SOC physics can manifest in a variety of ways:

(1) Intra-valley (g-tensor shift)
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(UNSW+ LPS +Purdue)

e.g. KR* TIHsoIR

(3) Inter-dot S/71 anti-

crossing (leakage, SPAM error
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Now for some theory on intra- and inter-valley SOC mechanisms...
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ILA. model for intra- and inter-valley SOC AINEI [Harvey-Collard, et al. arXiv:1808.07378]

Interface SOC: [Golub & Ivchenko, PRB 69, 115333 (2004)]
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ILA. model for intra- and inter-valley soc [Harvey-Collard, et al. arXiv:1808.07378]

Interface SOC: [Golub & Ivchenko, PRB 69, 115333 (2004)]

Hso = HR ± HD
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A model for intra- and inter-valley soc [Harvey-Collard, et al. arXiv:1808.07378]

Putting this all together:

• Direct S/To coupling driven by

intra-vailey SOC
• ExcitedT: branch enters into the

mix through inter-valley SOC >N
• Both intra- and inter-valley SOC P2

CD
matrix elements proportional to B c

1..0
• Relative weights of intra- and inter-

valley contributions governed by
valley phases in dots

Bext Cr)

IS, TO
1
1
1
1
1
1 ry, i p
1 wftof BI-- ext = Evs
1
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A model for intra- and inter-valley soc [Harvey-Collard, et al. arXiv:1808.07378]

Putting this all together:

• Direct S/To coupling driven by

intra-vailey SOC
• ExcitedT: branch enters into the

mix through inter-valley SOC >N
• Both intra- and inter-valley SOC P2

CD
matrix elements proportional to B c

1..0
• Relative weights of intra- and inter-

valley contributions governed by
valley phases in dots

t
lEvs

T

Bext Cr)

orn

T *

IS, TO
1
1
1
1
1
1 ry, i p
1 wftof BI-- ext = Evs
1

Upshot: Depending on the valley phase (which may change somewhat between

tune-ups) and B-field orientation, intra- or inter-valley mechanisms may dominate.
If excited valleys in both dots relevant, more complicated behavior can emerge.
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A model for intra- and inter-valley soc [Harvey-Collard, et al. arXiv:1808.07378]

Putting this all together:

• Direct S/To coupling driven by

intra-vailey SOC
• ExcitedT: branch enters into the

mix through inter-valley SOC
• Both intra- and inter-valley SOC

matrix elements nYnnnrtinnal t

lEvs

• Relative weights Example: in [Harvey-Collard, et al. arXiv:1808.07378]
valley contributic we observed S/To rotation frequencies believed to be
valley phases in d

for B 11 [110]: oc B (mainly intra-valley)

for B 11 [100]: approximately oc B2 (mainly inter-valley)
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A menagerie of soc effects
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(2) Inter-valley (nonlinear e ects)
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Related to T1 hot-spots

[Yang, et al. Nat. Comm. (2013)]

(UNSW+LPS+Purdue)

e.g. (R* TIHSOIR 1-)

B

Now, measurements of the last of these three SOC mechanisms...
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Alkthree mechanisms  manifestrigin one device [Harvey-Collard, et al. arXiv:1808.07378]

Measurements by Patrick Harvey-Collard
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S/T gap characterization technique:
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Alkthree mechanisms  manifestrigin one device [Harvey-Collard, et al. arXiv:1808.07378]

Measurements by Patrick Harvey-Collard
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For B 11 [100],

S/T_ anti-crossing half-gap

between S(2,0) and T_(1,1)

AsT~ 110 neV

S/T gap characterization technique:

[Nichol, et al. Nat. Comm. (2015)] (Yacoby group)

Similar magnitude in recent UNSW measurements:

[Fogarty, et al. arXiv:1708.03445]: AsT •70 neV

[Tanttu, et al. arXiv:1807.10415]: AsT^' 15-230 neV
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A survey of soc qubits at Sandia

We regularly produce soc qubits in our polysilicon MOS devices

Here are some examples...

21 ft,
Si:1mila
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g-factor differences can drive a rather nice S/To ubit [see Chloe's talk]
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Even more spin-orbit S/To qubits at Sandia... [see Ryan's poster]

Double dot

Double dot

Quad dot

Device 1 

• 1QD layout with disorder QD
• 35nm gate oxide; Isotopically

enriched epi-layer with 500ppm

residual 29Si.
• Qubit Pair: ( ,2) ( ,1) charge

occupation on disorder
QD1

Device 2 

• DQD layout
• 50nm gate oxide; Isotopically

enriched epi-layer with 500ppm

residual 29Si.
• Qubit Pair: ( ,4) (1,3) and

( ,3) charge occupations
on QD1 and QD2

Device 3 

• 4-QD layout
• 50nm gate oxide; Natural Silicon

• Qubit Pair: (,,2)—(_L,2) charge

occupations on QD3 and QD4
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Even more spin-orbit S/To qubits at Sandia... [see Ryan's poster]

Double dot

Double dot

Device Layout 

Device 1 

• 1QD layout with disorder QD
• 35nm gate oxide; Isotopically
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QD1

Device 2 
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Survey of reported Soc strengths in silicon quantum dots
1: [Harvey-Collard, et al. arXiv:1808.07378]

2: [Jock, et al. Nat. Comm. 9, 1768 (2018)]

3: [Hao & Ruskov, et al. Nat. Comm. 5, 3860 (2014)]

4: [Hwang, et al. PRB 96, 045302 (2017)]

5: [Kawakami, et al. Nat. Nano. 9, 666 (2014)]

6: [Yang, et al. Nat. Comm. 4, 2069 (2013)]

7: [Fogarty, et al. arXiv:1708.03445]

8: [Tanttu, et al. arXiv:1807.10415]

9: [Corna, et al. npj Quant. Info. 4, 6 (2018)]

10: [Ferdous, et al. PRB 97, 241401(R) (2018)]

11: [Veldhorst, et al. PRB 92, 201401(R) (2015)]

12: [Ferdous, et al. npj Quant. Inf. 4, 26 (2018)]

13: [Scarlino, et al. PRB 95, 165429 (2017)]

14: [Eng, et al. Sci. Adv. 1, e1500214 (2015)]

15: [Jock, Rudolph, unpublished (2018)]

16: [Nichol, et al. Nat. Comm. 6, 7682 (2015)]

Broad observation:

With a few exceptions, generally

consistent magnitudes of SOC

amongst MOS systems and between

Si/Si02 and Si/SiGe implementations

owl
Rashba lAal

Dresselhaus

g or Ag between
dots or eigenvalley

Inter-valley coupli
(e.g. half gap at S _

anticrossing)

Tunneling + spin fli
(e.g. half gap at S/T

anticrossing)

2 MHz/T (MOS) Sandia [2]
2-2.4 MHz/T (MOS) UNSW [8]
[0,7] MHz/T (MOS) Sandia [15]
1 MHz/T (Si/SiGe) Purdue+Delft+Wisconsin [12]

MHz/T:
a A.. Ad. 111  • alb* lg..

16 MHz/T (MOS) Sandia [2]
10-25 MHz/T (MOS) UNSW [8]
8-25 MHz/T (MOS) Sandia [15]
5 MHz/T (Si/SiGe) Purdue+Delft+Wisconsin [12]

Ag 4.3x10-4 (B 11 [110]) (MOS) UNSW [7]
Ag 4.3x10-4(B11 [110]) (MOS) Sandia [1]
Ag 6.4x10-4 (B L [001]) (Si/SiGe) HRL [14]
Ag 63x10-4(between valleys, 1 e-/3e-) (MOS) UNSW [11]

-4 
• •

Ge) Delft+Wisconsin [5]
(2-g)~[2,10]x10-3 (triple dot, B 11 [110]) (MOS) Purdue+UNSW+Delft [10]

--few-tens x 10-4

0.12 peV © 0.746 T (0.16 peV/T) (MOS) UCLA+LPS [3]
0.18 peV © 1.45 T (0.12 peV/T) (MOS) UNSW [4]
0.7 peV/T (MOS) Sandia [1]
~0.1 peV © 5 T (0.02 peV/T) (MOS) UNSW [6]
~0.4 peV © 0.4-1 T (~0.4-1 peV/T) (SiGe) Delft+Wisconsin [13]
1.8 peV © 0.3 T (6 peV/T) (S01 nanowire) CEA INAC/LETI [9]

F lieV!

0.1 peV (tc~5 peV) (B 11 [1 00]) (MOS) Sandia [1]
0.07 peV (tc~8 peV) (B 11 [110]) (MOS) UNSW [7]
[0.015,0.23] peV (tc~25 peV, B4001]) (MOS) UNSW [8]

For reference: In GaAs, 0.46 peV measured (Harvard [16D
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Challenges/upsides of SOC in Si

For better:

• Single-electron addressability [Veldhorst, et al. Nature (2015)]

• Drive mechanism for S/To qubits (sans A-magnets)

Cater to, ComputingResearth
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Challenges/upsides of SOC in Si

For better:

• Single-electron addressability [Veldhorst, et al. Nature (2015)]
• Drive mechanism for S/To qubits (sans A-magnets)

For worse:

• Intrinsic dot-to-dot variability (even between cool-downs)
• Error contributions
+ Leakage (SPAM)

+ More coupling between charge noise and spin

+ Effective B-fields that depend on valley occupation (especially bad if Avs--kBT)

•"CCR 27 National
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L.Strategies for mitigating SOC effectLs in Si

To reduce Ag:

• Orient B along a "magic angle" where Rashba & Dresselhaus

effects cancel [1-5] or "sweet spot" with low E-field sensitivity [4

+ Downsides: Magic angle varies from dot-to-dot; S/T_ mechanism

not suppressed

• Orient B L to the Si/Si02 or Si/SiGe interface [3-5]

+ Downside: S/T_ mechanism not suppressed

To reduce S/T- coupling:

• Orient B in-plane relative to inter-dot axis such that Bso B [5]

+ Downsides: Won't suppress šg mechanism; inter-dot axes likely

will vary within device

Failing that:

• Dynamical decoupling (for systematic or slow errors)

• Design to just be robust to these effects

References:

1: [Ferdous, et al. npj Quant. Info. 4, 26 (2018)]

2: [Ferdous, et al. PRB 97, 241401 (2018)]

3: [Jock, et al. 9, 1768 Nat. Comm. (2018)]

4: [Ruskov, et al. arXiv:1708.04555]

5: [Tanttu, et al. arXiv:1807.10415]
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Prospects
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Upshot: We now have a reasonably solid understanding of SOC effects in Si quantum dots

Theory challenges:
• Better microscopic and/or statistical models

for interface SOC variation needed (for both

MOS and SiGe)
• Intertwining of SOC and valley effects

necessitate reliable quantitative models for

valley splitting and valley phase

Architectural challenges:
• We need to:

1. Allow for intrinsic dot-to-dot variation

(possibly complicating device tune-up) or

2. Mitigate it (thoughtful B-field orientation,
better understanding of fab dependencies)

• Effects on error channels must be incorporated
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