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Introduction

The initiation of a repetitively pulsed discharge system is heavily influenced by
the presence of gas constituents, different from an often assumed “clean”
background gas of pure ground state atoms, including the presence of
contamination species and populations of excited states.

In this work we investigate the role of a background population of metastable
excited state helium on discharge and ionization rates.

Here, the physical mechanism for generating this metastable background
density is through repetitively pulsed DC discharges building up a background
of metastables through multiple shots, whether they result in full discharges or
not. After many shots the initial condition for one cycle of the discharge has
converged to a persistent metastable density.

We provide and evaluate an effective ionization rate a4 as a function of initial
background metastable density.




Aleph: PIC-DSMC Simulation Capability

0, 1, 2, or 3D Cartesian

Unstructured FEM (compatible with CAD)
Massively parallel

Hybrid PIC + DSMC (PIC-MCC)
Electrostatics

Fixed B field

Solid conduction

Advanced surface (electrode) models

e- approximations (quasi-neutral ambipolar, Boltzmann)

Collisions, charge exchange, chemistry, excited states, ionization

Photon transport, photoemission, photoionization

Advanced particle weighting methods

Dual mesh (Particle and Electrostatics/Output)

Dynamic load balancing (tricky)

Restart (with all particles)

Agile software infrastructure for extending BCs, post-processed quantities, etc.
Currently utilizing up to 64K processors (>1B elements, >1B particles)




OD Model Description

Initial simulations were performed in 0D with a simplified model system:

e- + He (elastic)
e- + He - e- + He+ + e- (ionization)
e- + He 2 e- + He(23S) (excitation)

e- + He(23S) - e- + He+ + e- (ionization)

Initial He(23S) ratios are 10-to 10-.

Applied E/n ranges from Td = 20 to 2000.

o (m?)

Pressure of mixed initial gas is 76 torr.

We employ dynamic load balancing and
target computational # of (e-, He+,
He(23s), He) to be approximately (1000,
16, 16, 10)
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Effective ionization rate, a

As with Townsend discharge descriptions, the ionization rate a is defined as:

ad _ 1(d)
1(0)

Where I(d) is the current at x = d, and /(0) is the initial current at x = 0.

For our OD model we exchange length for time in the simulation using the
mean velocity of the EVDF at long times when the electron growth is in the
exponential regime, and total number of electrons for current,
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He(23S)/He = 0.01
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Effect of Reduced Field

In all cases, He(23S)/He = 0.01
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Effect of Reduced Field

In all cases, He(23S)/He = 0.01
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Full Variation of a
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Initial 1D Simulations

We are further investigating the timing, breakdown thresholds, and ionization
rates in experiments, leading up to 3D (potentially axisymmetric) systems.

“Injection seeded Breakdown” “Memory effect”
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As reduced fields increase the time to As initial He(23S)/He increases, a4 can

breakdown decreases. reach a level where breakdown can now
occur because of the presence of
He(23S) — breakdown in He alone
would not occur.

11




Summary

« Demonstrated the reduction in a.; as E/n increases past a critical point,
explained by the increase in v.

« Demonstrated the quicker time to reach the exponential growth phase with
increase in initial metastable population.

« He(23S)/He must be O(0.01) or higher to influence initial ionization rate.

Future Work

 Further develop 1D (and eventually 3D) models to show how spatially (and
temporally) varying E/n influences discharge evolution

» Further develop 1D (and eventually 3D) models to show how spatially
varying initially He(23S) distributions influence discharge evolution.
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