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3 I Molecular Simulation of Phyllosilicates

• Phyllosilicates exist as TOT stacked
sheets

• Stacking disorder complicates structural
analysis

• Complex chemistry with
multicomponent systems, cation
disorder, and vacancies

• Substitutions create a charge imbalance
which is satisfied with cations in the
interlamellar layer

• Swelling occurs which requires fully
flexible force fields



4 1 CIayFF Force Field Past Successes
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b. pyrophyllite
I

• Clayff has successfully modeled interactions, structures, and dynamics in bulk clays at the basal surface
• But what about clay edges?
Cygan, R.T. et al.; J. Phys. Chem. B 2004, 108, 1255-1266
Teich-McGoldrick, S.L. et. al; J. Phys. Chem. C 2015, 119, 20880

Greathouse, J.A. et. al; J. Phys. Chem. C 2017, 121, 2273-22786



5 I Effect of Angle Bending Parameters on Clay Structure
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• Angle distributions from classical simulations with an angle bending term more
closely match results from DFT simulations

Pouvreau, M. et. al; J. Phys. Chem. C 2017, 121, 14757-14771
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• Angle distributions from classical simulations with an angle bending term more
closely match results from DFT simulations

• Is this improved structure observable via infrared spectroscopy?

Pouvreau, M. et. al; J. Phys. Chem. C 2017, 121, 14757-14771



7 Pyrophyllite Model for Density Functional Theory Calculations
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OD spectra replaces edge H's with D's

• Vibrational spectrum calculated on periodic
structures using DFPT

3 M 3

=
cv=1 s= /3=1

Vibrational eigenvector
Cartesian polarizations

Born effective charge of Sth atom

• lx1 xl unit cell, (010) and (110) faces of pyrophyllite, 1 edge cut on each face
• VASP optimized/vibrational frequencies (PAW method, PBESoI functional, DFT-D3 VDW corrections)
• Deuterate edges to compare to ATR-FTIR experiments where deuteration will only occur at edges
• Deuterated spectra are calculated from the protonated optimized structure

Phys. Rev. B 1991, 43, 7231-7242; J. Chem. Phys. 1994, 100, 8537-8539
Rev. Mod. Phys. 2001, 73, 515-562; J. Phys. Condens. Matt. 2010, 22, 265006



8 I VASP Calculated IR Spectra of Protonated Pyrophyllite Edges
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9 Hydro2en Bondin2 Features Observed in IR Spectra
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10 I Hydrogen Bonding Features Observed in IR Spectra
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I11 The Effect of Deuteration on IR Spectrum
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Harvey, J.A.; Johnston, C.T.; Greathouse, J.A.; Chem. Comm., submitted



12 1 Molecular Dynamics Simulations

I (w)

of Pyrophyllite

• 6x4x4 box created from optimized unit cells (3984
atoms)

• CIayFF force field with Al-O-H and Si-O-H angle
bending parameters:

k = 15 kcal 1 mol

14jangle — k (0 0 0)2 eosi — 0 — H = 100°
00A1 — 0 — H = 110°

• H/D atoms have different masses but same force field
parameters

• NVT ensemble controlled by Nose-Hoover thermostat
• 10 ns equilibration time
• 5 ns of production run time, vibrational analysis over

1 ns
• Infrared Spectrum:
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Al-O-H: Pouvreau, M. et. al; J. Phys. Chem. C 2017, 121, 14757-14771
Si-O-H: Pouvreau, M. et. al 2017, in prep.
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13 IR Spectrum of Bulk Pyrophyllite; Inclusion of Angle Bending Term

Experiment

w/ Angle Term

w/o Angle Term

3750 3700 3650 3600 3550 3500

Wavenumber (cm-1)

Experiment

w/ Angle Term

w/o Angle Term

1150
 1

11'00 10'50 10'00 90 900

Wavenumber (cm-1)

Harvey, J.A.; Johnston, C.T.; Greathouse, J.A.; Chem. Comm., submitted



14 I IR Spectrum of (I 10) Pyrophyllite Edge
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15 I Direct Comparison of Simulated Pyrophyllite Spectrum to Experiments
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16 I Conclusions

CIayFF angle bending terms improve
simulated clay edge structure
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Goal: Investigate chemistries to degrade organophosphorous compounds
17 in water free environments; identify suitable simulants

• The molecular structure/reactivity of simulants vs.
Chemical Warfare Agents (CWAs) is different

Billion-fold Acceleration La 3+ catechol-
• Tests performed on CWAs are not trivial and conducted only

of the Methanolysis of
Paraoxon Promoted by

functionalized POPs show
accelerated activity

at authorized facilities

La3+ complexes towards methanolysis • Simulants allow screening of materials
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18 I Rare-Earthed Based MOFs: 3D Structure
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19 I Importance of Adsorption of Organophosphorous Compounds in MOFs
E
n
e
r
g
y
 /
 k
J
/
m
o
l
 

TS,dd-C

R-C

SBU4+120+GB

0 0

-55

TS

-85
', -104

SBU-H,0
+GB SBU-OH

+GB

R-C

P5-C

TSeh-C (HF) 513U-IMPA-HF

TS0,-C JIPOH) SBU-MPFA-iPOH

SBU+IMPA+HF 
20

SBU+MPFA+IPOH
15

-12
,--'513U-MPFA+IPOH

TSerC (iPOH)
-162 %

----- - 581.1-MPF-iPOH

-180 (HF)

„
-188 \,TS -Cadcl

P5-C

-264"
SBU-IMPA+HF

SBU-IMPA-HF

AG (MB
(in kcal/moD

-I-0

9"" H
-0 H

+383(+6.1)
+17.9(+6.8) .11=4.
+17.9(+6.5):.!'''.:.,... s:.

"+14.4(+2.4).

Mr

i;;;;Ii

if 4z:
y H rl

• . ̂ ,
Ir. Zr

0)-

iiii_
+16.2 (+2.7) ,...
+16.1 (+3.4) ,...2-.=•. ... +13.9 (-0.1)
+14.4 (+0.5) 4' •• ''''' +13.9 (+0.4)

Ui0-66-10
NU-1000 k pore)

NU-1000 (large porel

MOF-808

4..›...ori : ; ., ..
• • s+12.4 (+0.1). • .. +11.4 (-2.4) .4": •AM

„ .• .. + 9.4 (-4.1)„
H H 9 H0 • 0 ,. ... .4, 

''':61.8 (-7.1) )---
1 ,IO i 1: -.1. ' . / 4.4.8 (-7.3) 

%its o ..
,+. 4 . zr , : 

° Me H ''''.%== / + 4.7 (-8.0) 
1--(:)"

1 901, i ,, l'-‘r; O-H . b H.40H
1 ,.

grrin : 2.5 (-9.0) 13, +2.4 (-9.4)
1.6 (-10.9) zit

-0.2 (-12.6) 90v
-0.9 (-13.2)

j.

• Adsorption of GB in MOFs is a critical first step towards the
degradation, however this process is poorly understood

• Assumption that degradation happens via adsorption onto a defect site
has never been confirmed experimentally.

reaction coordinate Troya, D., J. Phys. Chem. C, 2016, 120, 29312-29323
Momeni, M. R.; Cramer, C. J., ACS Appl. Mater. Interfaces, 2018, 10, 18435-19439



20 1 Missing Linker and Structural Defect Metal Sites
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Twisted linker defect (defect 2)



21 I Computational Methods

Cluster Models:

• Representative clusters cut from periodic structures
• Each cluster consists of full hexanuclear metal

cluster and 12 linkers
• Linkers shortened to formate groups
• M06-L density functional with def2-SVP basis set for

all non-metal atoms; ECP28MWB basis and
associated pseudopotentials for metal atoms

Periodic Models:

• Projector augmented wave approached
implemented in VASP

• Perdew-Burke-Ernzerhof revised for solids
(PBEsoI) exchange correlation functional

• DFT-D3 with Becke-Jonson damping for
empirical vdw interactions

6'Ebinding = — [Esubstrate+MOF — (Esubstrate + EMOF)1

Positive binding energy = favorable



22 Additional Binding Sites in Ui0-66

Defect - F: 18.8 kcal•mol-1 ZrOH: 7.25 kcal•mol' Ideal: -631 kcal•rnol 1

(d)

p3-0H - 0(sp3): 6.54 kcal-ma'

(e)

prOH - C: 9.55 kcal-mol-1

(f)

/43-0H - F: 4.77 kcalinol 1

• Additional favorable binding sites for GB within Ui0-66 exist; Missing linker ZrOH group, p3-OH group
• Strong orientational effects are observed

Harvey, J.A.; Greathouse J.A.; Sava Gallis, D.F; J. Phys. Chem. C, In Review



23 Additional Binding Sites in Ui0-66

Defect - F: 18.8 kcatmot1

p3-0H - 0(sp3): 6.54 kcal-mo1-1 prOH - C: 9.55 kcal-mot' /43-0H - F: 4.77 kcal-mot'

• Additional favorable binding sites for GB within Ui0-66 exist; Missing linker ZrOH group, p3-OH group
• Strong orientational effects are observed
• ZrOH binding creates interactions with entire pore 4 Periodic systems are necessary to capture this interaction

Harvey, J.A.; Greathouse J.A.; Sava Gallis, D.F; J. Phys. Chem. C, In Review



24 I Additional Binding Sites in Ui0-66

Defect - F: 18.8 kcal•mol1

prOH - 0(sp3): 6.54 kcal•moP prOH - C: 9.55 kcal-mol-' /43-0H - F: 4.77 kcalinoll

• Additional favorable binding sites for GB within Ui0-66 exist; Missing linker ZrOH group, p3-OH group
• Strong orientational effects are observed
• ZrOH binding creates interactions with entire pore 4 Periodic systems are necessary to capture this interaction

• Wide variety of binding sites and binding energies within Ui0-66; is this observable with IR spectroscopy?
Harvey, J.A.; Greathouse J.A.; Sava Gallis, D.F; J. Phys. Chem. C, In Review



25 Identification of Binding site via the P=0 Stretch
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26 I Identification of Binding site via the P-0 Stretch
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27 I Identification of Binding site via the P-0 Stretch
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28 I Identification of Binding site via the P-0 Stretch
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29 I Identification of Binding site via the P-0 Stretch
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• Ideal vs defect site binding show a 50 cm-1 difference in the P=0 stretch

900 800

• A 3rd site, possibly the defect created ZrOH, is observed in between the defect and ideal site binding

Harvey, J.A; et al.; Nat. Comm., Submitted



30 Exploration of ZrOH site binding
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31 Observation of Orientation at Binding Site

Experimental
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32 1 Observation of Orientation at Binding Site
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3 3 Possibility of p3-OH binding
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34 Possibility of p3-OH binding
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35 Gas Phase Degradation in Ui0-66
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36 I Gas Phase Degradation in Ui0-66
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37 I Conclusions

Metal, linker, and cluster model
play distinct role in binding energy
40

30-

O 20

(6
• 10

a)
c

0) 30

.c 20
CO

10

40

E

Zr Defect 1 • Y Defect 1 im Y Defect 2

Zr ldeal - Y Ideal

DECP sp2 DECP sp3 DFP sp2 DFP sp3 GB sp2 GB sp3

220-

c
LLI

c

Zr Formate Ui0-66 Ui0-66-DOBDC

1

O

Binding sites are directly
observable via IR spectroscopy

— Defect

— ZrOH

— Ideal

— Experiment

v(P=0)

LC)
CO

1300 1200 1100 1000

Wavenumber (cm-1)

900

N 
N

CO
CO CO

800

Experimental v(GB C-H)
v(ZrO-H)

Theory - ZrOH
v(ZrO-H)

v(GB C-H)

N
CO
0 0)

Theory - Defect
v(GB C-H)

o co v(GB C-H OH-Zr)
a) a,

co
CO

3900 3700 3500 3300 3100 2900

Wavenumber (cm-1)

2700 2500

A
 A
b
s
o
r
b
a
n
c
e
 

Gas phase degradation of GB in
Ui0-66

0.020

0.015

0 . 0 1 0

0.005

0 . 0 0 0

-0.005

-0.010

-0.015

-0.020
1800 1600 1400 1200 1000

.u)

After GB evacuation O-P-O
C=O
MOF C-H
0

Cr)
'T LO

(D

LO N
(0
L-

C 0 0
MOF

P-CH,

Temperature (K)
320

400

P=0 C-O

TIR

ro
cc,

o MOF

P-CH,

Wavenumber (cm-1)

800

— GB Gas Phase

2
212

— GB on Defect - C Approach

— GB Decon - C Approach

1300 1200 1100 1000 900 800
DECP sp2 DFP sp2 GB sp2

Wavenumber (cm-1)


