SAND2018- 11960PE

Adventures in Vibrational

Spectroscopy of Layered and Porous
Materials

PRESENTED BY

Jacob A. Harvey

— — Qi

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.




Sandia
National
Laboratories

2 I Acknowledgements

« Sandia:
« Jeffery A. Greathouse
* Dorina F. Sava Gallis  U.S. DEPARTMENT OF
* Charles J. Pearce
* Mark K. Kinnan

* Purdue University

« Cliff T. Johnston
 Edgewood Chemical and Biological Center: ‘ T
* Monica L. McEntee E PURDUE

» Sergio J. Garibay
* Erin M. Durke

 Jared B. DeCoste

This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical
Sciences, Geosciences, and Biosciences Division and Laboratory Directed Research and Development Program at Sandia
National Laboratories. Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.



Molecular Simulation of Phyllosilicates

3

* Phyllosilicates exist as TOT stacked
sheets

« Stacking disorder complicates structural
analysis

« Complex chemistry with |
multicomponent systems, cation
disorder, and vacancies

* Substitutions create a charge imbalance
which is satisfied with cations in the
interlamellar layer

 Swelling occurs which requires fully
flexible force fields




ClayFF Force Field Past Successes
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 Clayff has successfully modeled interactions, structures, and dynamics in bulk clays at the basal surface
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« But what about clay edges?

Cygan, R.T. et al.; J. Phys. Chem. B 2004, 108, 1255-1266
Teich-McGoldrick, S.L. et. al; J. Phys. Chem. C 2015, 119, 20880
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Binding of organics at clay surfaces
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b. pyrophyllite

Greathouse, J.A. et. al; J. Phys. Chem. C 2017, 121, 2273-22786



5 | Effect of Angle Bending Parameters on Clay Structure

—
— DFT
— ClayFF-orig 5
B S cyrraion. Langle = k(0 — 0)
kvgon = 6 kcal-mol-'-rad-2; kaion = 15 kcal-mol-'-rad-2
— omon = 100°
— Gomon = 110°
— Gomgor = 120°; Goaion = 116°
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« Angle distributions from classical simulations with an angle bending term more
closely match results from DFT simulations ‘

Pouvreau, M. et. al; J. Phys. Chem. C 2017, 121, 14757-14771



6 | Effect of Angle Bending Parameters on Clay Structure
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« Angle distributions from classical simulations with an angle bending term more
closely match results from DFT simulations I
* |s this improved structure observable via infrared spectroscopy?

Pouvreau, M. et. al; J. Phys. Chem. C 2017, 121, 14757-14771 I



7 | Pyrophyllite Model for Density Functional Theory Calculations

8. 8L 9.0 0
structures using DFPT
‘.‘MAM,—" ::’22225(8)65(8)2

I(w) |
a=1 s=1 =1 ‘
\/ | Vibrational eigenvector

Cartesian polarizations

"’ Y - m Born effective charge of st atom

-

OD spectra replaces edge H’s with D’s

 Vibrational spectrum calculated on periodic

1x1x1 unit cell, (010) and (110) faces of pyrophyllite, 1 edge cut on each face

VASP optimized/vibrational frequencies (PAW method, PBESol functional, DFT-D3 VDW corrections)
Deuterate edges to compare to ATR-FTIR experiments where deuteration will only occur at edges
Deuterated spectra are calculated from the protonated optimized structure

Phys. Rev. B 1991, 43, 7231-7242; J. Chem. Phys. 1994, 100, 8537-8539
Rev. Mod. Phys. 2001, 73, 515-562; J. Phys. Condens. Matt. 2010, 22, 265006



g8 I VASP Calculated IR Spectra of Protonated Pyrophyllite Edges
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9 | Hydrogen Bonding Features Observed in IR Spectra
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10 I Hydrogen Bonding Features Observed in IR Spectra
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The Effect of Deuteration on IR Spectrum
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12 I Molecular Dynamics Simulations of Pyrophyllite

* 6x4x4 box created from optimized unit cells (3984
atoms) ‘

ClayFF force field with Al-O-H and Si-O-H angle
bending parameters:

k =15 kcal /mol
Eungte = k(0 —05)* 0,81 —0 — H = 100°

0, Al — O — H =110°
 H/D atoms have different masses but same force field
parameters

 NVT ensemble controlled by Nose-Hoover thermostat

* 10 ns equilibration time

« 5 ns of production run time, vibrational analysis over

1ns
* Infrared Spectrum: B B I
_ 1 - —iwt (AT (+) . N 1 = it AM (1) . dM(0)
Iw)= 5 /_ e () - 3E(0)) 1) = 5 /_ el >|

. Natom dM Natoms
M(t) = Q7 (t) ) _ q;U;(t)]

Al-O-H: Pouvreau, M. et. al; J. Phys. Chem. C 2017, 121, 14757-14771
Si-O-H: Pouvreau, M. et. al 2017, in prep.



13 | IR Spectrum of Bulk Pyrophyllite; Inclusion of Angle Bending Term
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Harvey, J.A.; Johnston, C.T.; Greathouse, J.A.; Chem. Comm., submitted |



14 | IR Spectrum of (110) Pyrophyllite Edge
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15 | Direct Comparison of Simulated Pyrophyllite Spectrum to Experiments
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16 I Conclusions

ClayFF angle bending terms improve
simulated clay edge structure
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Goal: Investigate chemistries to degrade organophosphorous compounds

17
Billion-fold Acceleration
of the Methanolysis of
Paraoxon Promoted by
La3* complexes
Scheme 12
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La 3* catechol-
functionalized POPs show
accelerated activity
towards methanolysis
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Methanolysis of organophosphates is accelerated by
La-based catalysts

J. Am. Chem. Soc. 2003, 125, 7602-7607.

ACS Catal. 2013, 3, 1454-1459

in water free environments; identify suitable simulants )

The molecular structure/reactivity of simulants vs.
Chemical Warfare Agents (CWAs) is different

Tests performed on CWAs are not trivial and conducted only
at authorized facilities

Simulants allow screening of materials

Increase in Correlation to Live Agent?

Diisopropyl I

Diethyl Dimethyl
Chlorophosphate Nitrophenylphosphate Fluorophosphate
(DECP) (DMNP) (DFP)
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18 | Rare-Earthed Based MOFs: 3D Structure

ACS Appl. Mater. Interfaces 2017, 9, 22268-22277
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Energy / kiJ/mol

Importance of Adsorption of Orga
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« Adsorption of GB in MOFs is a critical first step towards the
degradation, however this process is poorly understood
« Assumption that degradation happens via adsorption onto a defect site

has never been confirmed experimentally.

Troya, D., J. Phys. Chem. C, 2016, 120, 29312-29323

Momeni, M. R.; Cramer, C. J., ACS Appl. Mater. Interfaces, 2018, 10, 18435-19439



20 | Missing Linker and Structural Defect Metal Sites

¢ g
A Ui0-66 DOBDC
Defect 1 DECP °
H3CVO\P|/O\/CH3
\CI
DFP
o)
HyC O\lpl/o CHy
\l/ \
Defect 1 : CHj F CH,

e GB
(0]
H3C\|P|‘<,.O CH;
( Defect 2 F CH,

2 unique defects possible in Y-DOBDC:
Missing linker defect identical to UiO-66 (defect 1)F
Twisted linker defect (defect 2)
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Computational Methods

Cluster Models: Periodic Models:

Defect 1

» Representative clusters cut from periodic structures Projector augmented wave approached
« Each cluster consists of full hexanuclear metal implemented in VASP
cluster and 12 linkers * Perdew-Burke-Ernzerhof revised for solids
« Linkers shortened to formate groups (PBEsol) exchange correlation functional
« MO6-L density functional with def2-SVP basis set for DFT-D3 with Becke-Jonson damping for
all non-metal atoms; ECP28MWB basis and empirical vdw interactions
associated pseudopotentials for metal atoms

AEbinding = _[Esubstrate+M0F - (Esubstrate + EMOF)]

Positive binding energy = favorable



22 | Additional Binding Sites in UiO-66

o N\ ‘

-OH - O(sp®): 6.54 kcal-mO'l k 1:-OH - C: 9.55 kcal-mol"!

A
* 4-OH - F: 4.77 keal-mol”

/"<

« Additional favorable binding sites for GB within UiO-66 exist; Missing linker ZrOH group, p3-OH group

Strong orientational effects are observed

Harvey, J.A.; Greathouse J.A.; Sava Gallis, D.F; J. Phys. Chem. C, In Review



23 | Additional Binding Sites in UiO-66
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« Additional favorable binding sites for GB within UiO-66 exist; Missing linker ZrOH group, p;-OH group
« Strong orientational effects are observed

« ZrOH binding creates interactions with entire pore - Periodic systems are necessary to capture this interaction

Harvey, J.A.; Greathouse J.A.; Sava Gallis, D.F; J. Phys. Chem. C, In Review




24 | Additional Binding Sites in UiO-66
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« Additional favorable binding sites for GB within UiO-66 exist; Missing linker ZrOH group, p;-OH group
« Strong orientational effects are observed

« ZrOH binding creates interactions with entire pore - Periodic systems are necessary to capture this interaction

« Wide variety of binding sites and binding energies within UiO-66; is this observable with IR spectroscopy?
Harvey, J.A.; Greathouse J.A.; Sava Gallis, D.F; J. Phys. Chem. C, In Review




25 | ldentification of Binding site via the P=0O Stretch
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Harvey, J.A; McEntee, M.L.; Garibay, S.J.; Durke, E.M.; DeCoste, J.B.; Greathouse, J.A.; Sava Gallis, D.F; Nat. Comm., Submitted



26 | ldentification of Binding site via the P=0O Stretch
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27 I ldentification of Binding site via the P=0 Stretch
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A Absorbance

|dentification of Binding site via the P=0O Stretch
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29 I ldentification of Binding site via the P=0O Stretch
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» |deal vs defect site binding show a 50 cm-1 difference in the P=0 stretch
« A 3rdsite, possibly the defect created ZrOH, is observed in between the defect and ideal site binding

Harvey, J.A; et al.; Nat. Comm., Submitted



30 I Exploration of ZrOH site binding
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1 | Observation of Orientation at Binding Site
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2 Observatlon of Orlentatlon at Binding S|te
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Intensity

Possibility of p;-OH binding
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34 | Possibility of p;-OH binding

—— Theory - Defect
—— Theory - u3-OH
—— Experiment

Intensity

6(Zr-usz0-H)

JLA_,M\«

3500 3000 2500 1200
Wavenumber (cm™

00

Intensity

—— Protonated 2
----- Deuterated 2
oo X
88 9
T I
O(sp )Approach S
a
m
)
oy ‘,\I,',-\
3 58
T TT
F Approach © OO
a o
m om
o o
C Approach S 3
3800 3600 3400 3200 3000 2800 2600 2400 2200 2000 1800

Wavenumber (cm™1)
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Metal, linker, and cluster model
play distinct role in binding energy
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