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Mitigating fuel mix for high performance MagLIF

X-ray image
Stagnated fuel

* experimental/simulated yield~0.5
for best shots

* Mix is the most likely cause of
reduced vyield

« Mitigation techniques are presented
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Simulations predict favorable scaling of yield on Z and (i)
future machines!

Optimized B-field, fuel density, and preheat energy
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Lasnex simulations show mix can degrade MagLIF M
Laboratories
performance
Dopants introduced at t=0 Dopant effect scales as Z3
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Spectroscopic dopants indicate that the LEH window is @Eﬂ
pushed into the fuel shorts
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Laser-gate could remove "A

window and cushion mix

.

tunnel

* LEH window foil is weaken by laser heating
in an star pattern

* The fuel gas pressure breaks the foil and
pushes it out of the main laser path

« Ararefaction wave propagates downward at
~1 mm/us voiding the tunnel region.

+ The laser then propagates with little
absorption through the tunnel to only heat
fuel within the liner
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Experiments demonstrate that mix degrades the yield of
MagLIF implosions @

Yields are degraded when aluminum rather than beryllium is used for the cushions
* material is being mixed into the fuel by blast wave or direct laser heating

Iron is observed spectroscopically in the stagnated fuel

« lron is an impurity of known fraction in the liner material.

* The temperature is 70% of the burn temperature which implies it is not in the central part of the fuel
« The best experimental yields are about 50% of the simulated yields, i.e. YOC=0.5

Lasnex simulations with Be mix region ~1/3 of the fuel stagnation ratio are
consistent with YOC and Fe spectra
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The capability to operate MagLIF at cryogenic @s:_
temperatures is being developed abortors
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Vapor density of D,/DT ice (0.3 mg/cc) is not sufficient @
for MagLIF operation

Gas densities 1-10 mg/cc are required for MagLIF
» the optimal fuel density increases with current

» the convergence ratio decreases with fuel density

* ice burning targets require ~ 5 mg/cc

A plume of gas can be generated by laser heating an ice pond at
the bottom of the target

* no laser entrance hole (LEH) foil required

* gas density is nonuniform, which could disrupt implosion symmetry

Gas can be injected from a reservoir at the bottom of the target

« the warm gas will melt the ice layer

» due to gravity, melted ice will fall ~ 1 um in 450 usec

« a fast opening valve and an LEH foil are required

« an axially uniform fuel density can be produced

* nichrome wire heating % perimeter of a square foil would open in ~
10 usec “wiregate”
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2D simulation of ice burner MagLIF using a laser heated ponc@i

Elas1=1 kJ Elas2=30 kJ | .,,=64 MA Yield =4.5 GJ

time=1ns end of 1stlaser pulse
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2D simulation of ice burner MagLIF using a laser heated ponc@ﬁ

Elas1=1 kJ Elas2=30 kJ | .,,=64 MA Yield =4.5 GJ

time=91 ns

material density kg/m3 Btheta
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2D simulation of ice burner MagLIF using a laser heated ponc@i

Elas1=1 kJ Elas2=30 kJ | .,,=64 MA Yield =4.5 GJ

time= 151 ns
material density kg/m3 Btheta
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2D simulation of ice burner MagLIF using a laser heated ponc@i
Elas1=1 kJ Elas2=30kJ I_...=64 MA Yield =4.5 GJ
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2D simulation of ice burner MagLIF using a laser heated ponc@i

Elas1=1 kJ Elas2=30 kJ | .,,=64 MA Yield =4.5 GJ

time= 1000 ns machine fires
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2D simulation of ice burner MagLIF using a laser heated ponc@i

Elas1=1 kJ Elas2=30 kJ | .,,=64 MA Yield =4.5 GJ

time= 1090 ns
material density kg/m3 Btheta
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2D simulation of ice burner MagLIF using a laser heated ponc@%

Elas1=1 kJ Elas2=30 kJ | .,,=64 MA Yield =4.5 GJ

time= 1120 ns

material density g/cc Btheta
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2D simulation of ice burner MagLIF using a laser heated ponc@i

Elas1=1 kJ Elas2=30 kJ | .,,=64 MA Yield =4.5 GJ

time= 1125 ns burn phase

material density g/cc Btheta
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2D simulation of ice burner MagLIF using a laser heated ponc@a

Elas1=1 kJ Elas2=30 kJ | .,,=64 MA Yield =4.5 GJ

time= 1090 ns burn phase

material Ti keV
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Will nature be as kind to a non-uniform stagnation as this simulation?
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Summary

Simulations without mix indicate MagLIF yields can be

substantially improved

« Ten-fold increase on Z with increased B-field, fuel density and preheat and
modest increase in drive current (18-22 MA)

« Large yields (> 1GJ) and large gains (>1000) at currents above 60 MA

We have strategies to mitigate the effect of mix
» laser gate can remove mix from the LEH foil
« very thin LEH foils are possible at lower gas temperatures
« aD,/DT ice layer can separate the metal liner from the fuel

Ice layered MagLlIF liners require gas fill after formation
» laser heated ice pond
* gas injection from a reservoir




Simulated MagLIF performance parameters are in @E:‘
reasonable agreement with experiments
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! o : S : 3 DD/DT=> BR~0.4 MG-cm
e  Tritons are magnetically trapped
 Tritons good surrogate for alpha particles
» Bz*r increases with convergence
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Mix can lower the yield
+ Both window and cushion material mix
have been observed spectroscopically
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