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2 Motivation and outline

Modeling power-flow with high fidelity is of utmost
importance for improving the performance of experiments
on present and future pulsed power facilities.

• Extended MHD equations - Hall MHD
• Need to go beyond resistive MHD.

• Transmission lines: Hall MHD simulations show complex
behavior

• MagLIF: current coupling from feed to liner

• Future direction: Incorporation of non-quasi-neutral,
space charge effects
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Extended MHD equations add Hall physics to
resistive MHD model**
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• Continuity:
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• Momentum: —

at 
(mnv) + V • (mnvv + PI) = J x B

** Until recently, the overwhelming
majority of fluid simulations of pulsed-
power problems employed an MHD
theory.
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Power flow along coaxial transmission line in
axisymmetric cylindrical geometry

Simulated region (12 cm)
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• How is energy coupling affected by
plasma from electrode surfaces?

• How does Hall physics affect the
modeled energy losses?

4- gap width = 6.5 mm



Simulations are initialized with a thin plasma layer to
study the time-evolution of electrode plasmas

6.5 mm
♦

 ►r

Inner
conductor

6 cm

Initial layer of plasma (1-cell-thick).
Initial density no = 1023 m-3.

Poynting inflow
at bottom
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Electrodes (in gray) are static; do not
produce plasma. This allows explicit control
of plasma initialization and eliminates non-
ideal effects from solid-to-plasma transition.

Outer
conductor

• Gap width — 6.5 mm

• Inner radius R — 23 mm

• 52x960 cells spanning 0.65 x 12 cm

• Ax = 125 p.rn

• Current follows a sine-squared

temporal profile that increases to

20 MA over a 100-ns rise time,

and then remains at 20 MA.



Hall term generates anode-cathode asymmetries
MHD, initialized
against cathode

MHD, initialized
against anode

MHD is insensitive
to polarity.

Hall MHD shows

considerably more

blow-off for

anode-initialized case.

Hall MHD, initialized Hall MHD, initialized

against cathode against anode
Layer is initialized

against the inner

conductor, on left.

n
floor = 10-9 nsolid

• 6.5 mm gap, 60 ns,

• initial layer density

no = 1023 m-3
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Radial current is shunted from anode - resulting in loss

Blue: Hall MHD, cathode layer

Red: Hall MHD, anode layer
Green: MHD, cathode layer

Magenta: MHD, anode layer

Integrate Jr along 12-cm

domain length in z.
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Anode filaments carry reversed axial current

• Hall MHD, 6.5 mm gap, 23 mm radius, no =

1023 m-3 layer initialized on anode (inner

conductor).

• ExB drift is relevant for the electrons only in

the Hall regime.

• This creates current opposite to the power

flow direction.

• This plasma current is opposite the anode
current and in the same direction as the

cathode current.

• This results in a repelling of the plasma away

from the anode.
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Power coupling in MagLIF: transmission line (feed) is
now coupled to a load

Applied axial magnetic field = 10 T

15 mm2.3 mill
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Magnetized Liner Inertial Fusion

experiment, Sandia National Labs

• Implosion of cylindrical liner driven by Poynting

flux with azimuthal magnetic field from power

feeds.

• Efficiency — (current in liner)/(current in feeds)

• Hall MHD vs MHD

• Cathode vs anode-initialized layer

• Azimuthally symmetric cylindrical geometry

• 216x216 cells, 15 mm by 15 mm domain

• Electrodes in feed are static (do not produce

plasma)



ICurrent coupling onto liner
Biggest delay in coupling is Hall MHD, anode-initialized case.

Blue = Hall MHD initialized against cathode
Red = Hall MHD initialized against anode
Green = MHD initialized against cathode
Gray = MHD initialized against anode

Initial layer density = 1025 m-3

nfloor = 1.2X102° 
m-3
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Hall MHD, anode-initialized:
Azimuthal flux is delayed by -
plasma from feeds.
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Sensitivity to plasma-vacuum interface

• The transmission line is now coupled to a load.

• Energy coupling to the load (liner) is sensitive
to the feed (electrode) plasma dynamics, and
therefore to modeling of the vacuum and low-
density regions.

• Hall physics shows less sensitivity to this
modeling — but the ultimate treatment of the
plasma-vacuum interface remains an active
area of research.

• It is critical to understand how the results
depend on the numerical modeling of the
low-density and vacuum regions in any
MHD or Hall-MHD simulation.

• Below is for cathode-initialized cases.
• Different colors: slightly different treatments
of plasma-vacuum interface.

Hall MHD shows less sensitivity
in the current coupling.
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12 1 Conclusions/future directions

Modeling power-flow with high fidelity is of utmost importance for
improving the performance of experiments on present and future pulsed
power facilities.

• Extended MHD equations - Hall MHD
• Resistive MHD has fundamental limitations — need to go beyond

• Transmission lines: Hall MHD simulations show complex behavior
• Anode-cathode asymmetries
• Significant current loss from anode; electron ExB drift causes bridging of gap

• MagLIF: current coupling from feed to liner
• Strong sensitivity to modeling of low-density and vacuum regions
• Hall physics significantly improves the modeling of low-density plasmas

• Future directions
• Incorporation of non-quasi-neutral, space charge effects
• Modeling of low-density/vacuum regions : Validation of fluid codes against PIC

codes and/or experiment
• T-lines with dynamic electrodes; influence of material properties
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