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Sandia National Laboratories
Electrical Sciences

Our primary mission is to anticipate and advance the science,
engineering, and technology needed to understand the control
of electrical energy in complex systems for national security
applications.

CI Create and steward major electromagnetic

and radiation environment simulators

(test capabilities)

CI Advance simulation and modeling capabilities

for design and predictive performance
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Overview

■ Radiation Effects in Electronics

■ Computational Toolsets

■ Analysis
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Radiation Effects in Electronics

Some radiation event

Radiation Effects
•Dose Rate Transient Photocurrent
•Neutron Damage
•Total Dose 
•Single Event 
•Combined Environments

Circuit level response
•Device Response
•Circuit effects
•Signal Integrity/PCB effects
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Modeling Radiation Effects in Electronics

Sandia Developed
Electrical Analysis Tools
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Digital + Analog +
Software System
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Sandia Developed Radiation
Transport Tools
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cre- Parallel Circuit Simulator
• Xyce: Massively Parallel circuit simulator:

• Distributed Memory Parallel (MPI-based)
• Unique solver algorithms
• SPICE "Compatible"
• Industry standard models (BSIM, PSP, EKV, VBIC, etc)
• ADMS model compiler

• Analysis types
• DC, TRAN, AC
• Harmonic Balance (HB)
• Multi-time PDE (MPDE)

• Model order reduction (MOR)
• Direct and Adjoint sensitivity analysis

• Sandia-specific models
• Prompt Photocurrent
• Prompt Neutron

• Thermal

• Other, non-traditional models
• Neuron/synapse
• Reaction network
• TCAD (PDE-based)

• Xyce Release 6.10 pending
• Open Source!

• GPL v3 license
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http://xyce.sandia.gov

Open Source Releases (starting in 2013):
Versions 6.0 - 6.10

>1000 unique external downloads since 6.0.
Next release (v6.10) —November 2018
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What Xyce Is, and Is Not
• Xyce is: "True Spice"

• Large, monolithic, single Jacobian matrix.

• Accurate.

• Known parallel linear solvers don't scale perfectly.

• Xyce is not (currently): "Fast Spice"
• Loosely coupled separate blocks

• Implicit solver methods within blocks

• Explicit methods used to couple blocks

• Table models

• Model order reduction

• Exploits circuit hierarchy

• Effective primarily for digital circuits

• less accurate than "true spice"
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Xyce Simulation Flow

• Parsing 
• Convert netlist file syntax to equivalent devices and

network/circuit connectivity

• Distribute devices over multiple processors

• Determine global ordering and communication

• Device Evaluation 
• Loop through all devices for state evaluati matrix

loading

• Linear Solve 
• Sparse linear algebra and solvers used to solve linearized

system

• Advanced Analysis Methods 
• Sampling: Monte Carlo, LHS (DAKOTA)

Nonlinear DAE Solver
F(x,x ) = 0

Discretize

Nonlinear Solver
F(x)=0

Lin eari ze

t 

Linear Solver
Ax=b

(!nd Sir:)
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What is Charon? PIM

Ltil
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National
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• Semiconductor parallel TCAD code with support for modeling

displacement damage due to neutron radiation as well as effects

from other sources of radiation (e.g. ionization)

• Finite-volume and finite-element discretizations of governing PDEs

• Drift-Diffusion

• Drift-Diffusion + Energy (Lattice Heating)

Electric v • (€E) = q(P- " +0f

Potential Efr = _vv ip = q (pitpt — DPVP) Relations

V — qR =
Conservation

-v•ip- qR = q-ga

.17z = q (n/int + Dr 7n) 1 Constitutive

Lattice
0•(kV/1)-F pc aT Heating

9



Sandia
National
labor•atories

Charon Environments & Device Modeling Capability

■ Environments

■ Normal

■ Dose Rate — reactor environments

■ SEE—Active Research Area

■ Total Dose — future

■ Devices

■ Diodes

■ BJT (Si)

■ HBT

■ FETs

■ Memristor

■ Ultra-Wide Band Gap Diodes (new models)

0.5pm

Emitter

P

Parallel TCAD simulation

Base
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Ongoing/Future Charon Development

• Expanding Physics Capability

• SEE/SEU

• Si HVD Analysis

• GaN development

High Voltage Diodes

HEMTs

• Frequency Domain Modeling (HB)

• Improved coupled electrical & thermal

• Dose Rate/Total Dose model development

• Next Generation Development

• In preparation of next gen computational hardware

Oxide lnsulan

Cate
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Selecting a Nominal Device: Zener Diode Example
Current Voltage Characteristic

of a Zener DiodeZener Diode

MMS25239BT1G

Zener Diode

9.1V 500 mW,

SOD123,

Cu wire bond

1 mm

• A diode is an electronic component
that only allows current to flow in one
direction.

• A Zener diode is a special diode
which is used to supply a constant
voltage.

A

IF I—

IR VF
IZT
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Usual operational
region of a Zener
Diode in an
electrical circuit

Electrical parameters defining
the diode electrical behavior

Symbol Parameter

Vz Reverse Zener Voltage @ lz-r

17T Reverse Current

ZZT Maximum Zener Impedance @ IZT

IZK Reverse Current

ZZK Maxirnurn Zener Impedance @ IZK

IR Reverse Leakage Current @ VR

VR Reverse Voltage

I F Forward Current

Vo tage at
which diode
allows current
to pass

VF For.vard Voltage @ IF



Zener Diode Characterization Data

• Data taken in four
different measurement
sweeps on 120 diodes

• Relevant measured
behavior spans eight
orders of magnitude

• Electrical behavior of a
single diode shifts within
a distribution

0.01 -

0.00 -

-5 0

Voltage

-8 75 -8 '50 -825

Voltage
-8.'00
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Karcher/Pointwise Mean Comparison

- 0 -

-20 -

Reverse Breakdown Forward

-8.75 '-850

Voltage

The Karcher mean was
able to more accurately
define a nominal device
as compared to a point-
wise estimate, particularly
in the critical reverse
breakdown region

o

'-825 -8'00

Devices Karcher Mean Pointwise Mean

-10.0 -

0.65
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0 (0 ( b

Voltage

Devices Karcher Mean Pointwise Mean

From N. Martin, T. Buchheit, S. Reza, Selection of a Nominal Device Using Functional Data Analysis, IEEE

International Conference on Data Science and Advanced Analytics, 2018.



Sandia facilities provide an essential set of environments to
support radiation qualification

SATURN: Hot X-rays

LIHE:

Impulse Surrogate

HERMES III:
pulsed y

GIF: Steady-
state y

y rays

neutrons

x rays

ACRR: n-y
Z: Cold X-rays

VC'
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Surrogate

15



Radiation Testing
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CLD

vcc

Power
Supply

VDC Signal Proportional to
log current

Oscilloscope

The device (DUT) can be biased (active, delayed-on) or unbiased (candy-bag)



Radiation Model Calibration Workflow
Analyst

_
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Data

Xyce
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input files

Experimental
set-up

Device
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1 Simulation

Dakota Optimization

Analysis driver

I
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Device Responses from Calibration

0.015

I
0.0

4-3

0.005

° Radiation °-
pulse time (s)

Pre-rad is matched
through the VBIC model

MatLAB used to plot all individual
experimental vs. simulated device
response waveforms (IG vs. time)

JA calibration
parameter
optimized to
calibrate InvG
change
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JA distribution captures device-
to-device variability in the
radiation response

• 10477 0.1mA
• 10477 0.22mA
• 10477 1.0mA
• 10358 1.0mA
• 10477 4.7mA
• 10477 9.0mA

6 -

2 -

8 6 0_8 1 1 2

JA multiplier

1.4 1 8
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Precision Voltage Reference (PVR) Variability Analysis
Brokaw Bandgap
Voltage Reference

0.20

0.15

±
0.10

0.05

: R6

Large area

I tra sistor 

CU

0.20

0.15

±
0.10

0.05

0.00  0.00
0 0 0.2 0 0 6 0 8 1 0 0 0 0.2 0.4 06 08 10
NIEL in sensitive volume (MeV/cubic micron NIEL in sensitive volume (MeV/cubic micron

Vref

reference
voltage

Small area
transistor

Q

Gain variability of Q1,Q2
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E
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Xyce simulations give pdf of
AVref/Vref by sampling pdfs of

- Q1,Q2 gain variability

-500 -250 0 250 500 750

AVref (PPM)
1000 1250

> Gain variability in transistors (Q1,Q2) causes
offsetting shifts in Voltage Regulator output Vref.

> Circuit response is simulated using Xyce and
DAKOTA to sample experimentally calibrated gain
variabilities in Q1 and Q2.

> Resulting variability distributions in circuit
response used for PVR UQ / QMU analyses
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Questions?

• Steven Wix

• Sandia National Laboratories

• sdwix@sandia.gov 
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Integrated Multi-Scale Electrical Simulation
Model

Abstraction Layers

I. Vertical Integration
across Model Layers

(Levels of Abstraction/
Fidelity) 

Environment

Functional

Digital

Analog Circuit

Geometry

Digital + Analog + Software
System
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Circuit

Device
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Xyce Model Support with ADMS
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ADMS = Automatic Device Model Synthesizer

Verilog-A: industry standard format for new models:e.g. VBIC, Mextram, EKV, HiCUM, etc

ADMS translates Verilog-A to Xyce-compliant C/C++ code;

API automatically handles data structures, matrices, tedious details.

tivities via Sacado automatic differentiation

id to include Stocahstic Expansions via Stokhos.lf Seyies RLC
/.1 Versioh L. 1 Juhe D4
// Ken Nuhdext

// Downloaded from The Designer's
// (www.designers-guide.org),
// Taken tram "The Designer's Guide to vrilog-Ams"
11 by Nundert & Zinke, Chapter 3, Listing 14.

`include "dinciplines,vams"

module series_
parameter
paramater
parameter
inaut p,
electrical
branch (p,

analog b
V(tl) c+
V(tl) c+
I(cap) c
end

endmoduLe

P, n, i;
i) rl, (i,

Guide Community

// resistiO
1/ induct
.1.1 copse

Run admsXyce

Verilog-A

// -- code converted from analog/code block// I

((V(p,internall)/R))staticContributions[admsNode:

((probeVars[admsProbeID_V_p_internall])/instancel

deID_internall] -=

((probeVars[admsProbeID_V p_internall])/instancel

(( robeVars[admsProbeID V internall internal2])*:

ternall,internal2) <+

(CapacitorCharge))dynamicContributions[admsNc

( apacitorCharge);dynamicContributions[admsNodeII

(CapacitorCharge);InductorCurrent = (probeVars[a(

V(internal2,n) <+

((L*ddt(InductorCurrent)))dynamicContributions[a(

(instancePar L*(InductorCurrent));

C++ code snippet

(actual Xyce file is 1500 lines)



SEE High Altitude View
> We anticipate a union of tools & activities
> Charon

> Device physics
> Drift-Diffusion Model
> Finite Element / Finite Volume
> Recombination / Charge generation

> *How to inform secondary effects due to parasitic bipolar
enhancement

> Monte-Carlo Radiative Energy Deposition (MRED)
> Particle physics (Geant 4)
> Nested Sensitive Volumes

> Provides approximation for device physics at reduced cost
> *How are nested sensitive volumes defined for silicon-on-

insulator (SOD devices

> Xyce
> Circuit simulation

> Charon/ MRED SEE informed netlists
> *Explain current anomalies in existing data

> Experiments
> Design of experiments
> *Validation data for research and publication
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Location of electrical contact

4--Active silicon collection volume

Substrate collection volumes

*Research Aspects

*Overall integrated, validated workflow from TCAD to IC evaluation
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Applying FDA to Zener Diode Data

0.01 -

0.00

-0.01 -

-0.02 -

Experimental
Data

120 Zener Diodes

Original Scale

1
-7 5

Voltage

-10 -

0 -20
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5.0
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-2 5
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Characterization of Variability & Selection of
Nominal Device
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Summary & Future Work

• FDA approach was used to warp data, calculate a Karcher mean, and
assess elastic distances to identify a nominal device.

• This approach was able to more accurately define a mean function
compared to a point-wise estimate, particularly in the critical reverse
breakdown region.

• This provides an objective method to chose a representative device
from a sample of devices, which is extremely useful in the first phase of
parameter calibration for compact models in electronic circuit design.

Next steps include:

• Incorporating tolerance bounds for functional data.
• Propagating uncertainty in the devices to the calibration parameters.
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